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ABSTRACT: Block copolymer stars (BCSs) have been demonstrated to constitute versatile,
self-assembling building blocks with tunable softness, functionalization, and shape. We
investigate the dynamical properties of suspensions of short-arm BCSs under linear shear flow
by means of extensive particle-based multiscale simulations. We determine the properties of
the system for representative values of monomer packing fraction ranging from semidilute to
concentrate regimes. We systematically analyze the formed network structures as a function of
both shear rate and packing fraction, the reorganization of solvophobic patches, and the
corresponding radial correlation functions. Connecting our findings with rheology, we
calculate the viscosity as a function of shear rate and discuss the implications of the found
shear thinning behavior.

1. INTRODUCTION

The design of novel building blocks for steering the self-
assembly of supramolecular systems is currently an expanding
research topic because of the wide range of practical
applications that could be realized thanks to the possibility
of tuning their microstructure, dynamics, and phase behavior.
Remarkable examples of such systems are block copolymers,
which consist of two or more monomer types polymerized
sequentially as covalently linked blocks. These can associate
hierarchically in a selective solvent into different configurations
that can be systematically modified through different ways, for
example, by changing the composition and local distribution of
the blocks, solvent quality, or temperature. Depending on the
number of blocks and their chemistry, a huge variety of block
combinations and polymer architectures are possible nowa-
days, which self-assemble in solution into structures including
spherical and cylindrical micelles, bilayer sheets, vesicles, and
Janus nanoparticles.1−3

As a particular case, amphiphilic diblock copolymers with a
starlike architecture [block copolymer stars (BCSs)] have been
proposed in the recent years as a tunable, soft, and flexible
realization of patchy particles,4,5 the latter consisting of rigid
colloidal particles decorated with distinct functionalized spots
(patches) on their surface. BCSs are formed by at least three
linear polymer arms covalently bonded to a central core
(anchor), whose size is small in comparison to the arm contour
length. At the same time, each arm consists of an amphiphilic
AB diblock copolymer with an athermal and solvophilic
segment close to the anchor (A-type monomers), followed by
thermosensitive and solvophobic monomers (B-type) at the

outermost segment. We denote the number of block
copolymer arms of the star with f, also known as the
functionality of the same, and the fraction of solvophobic
monomers in each arm with α. Because BCSs can display both
intramolecular and intermolecular association processes, a
great deal of work has been devoted to the study of their
conformational features, as well as the structure of their
suspensions in equilibrium. Examples of experimental realiza-
tions of such macromolecules are zwitterionic polybutadiene
star polymers and polybutadiene/polyisoprene, poly(acrylic
acid)/polystyrene, and poly(ethylene oxide)/poly(propylene
oxide) BCSs.6−10

Closely related systems to the model described above are
aqueous suspensions of tetronic polymers, that is, four-armed
(PEO-PPO) star-block copolymers, that, depending on
temperature, self-assemble into spherical or rodlike micelles,
which in turn form ordered mesophases with fcc cubic and
hexagonal structures, respectively.8 Additionally, the mixtures
of end-functionalized, four-armed poly(ethylene glycol) stars
display reversible sol−gel transitions in water, which are highly
pH-dependent, possess better mechanical properties than
randomly cross-linked analogues, and are able to self-heal at
low pH.11
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As mentioned before, recent simulation studies have shown
that isolated BCSs can self-assemble into configurations
featuring one or multiple clusters of B-monomers (patches)
on the outermost region of the star. The equilibrium properties
of the formed patches, that is, their number, spatial extent, and
number of arms involved, as well as their angular and radial
distributions, can be readily and precisely tuned by changing
the number of arms (functionality, f), the ratio between the
number of solvophobic and solvophilic monomers (amphiphi-
licity, α), and the strength of the attractive interaction between
B-monomers, which models the solvent quality.5 On the other
hand, changes in the same parameters in dilute solutions of
BCSs may lead the system to microphase separation, that is,
the assembly of micelle-like aggregates, macrophase separation,
that is, demixing, or the formation of percolating networks.12,13

In the latter case, the competition between attraction
strength and amphiphilicity can drive solutions of low-
functionality BCSs ( f ≲ 10) to form disordered percolating
networks, either transient or arrested ones, which are highly
homogeneous in the sense that both association sites (patches)
and cores are uniformly distributed in space and also that the
patches are not broadly polydisperse in size.13 The
homogeneity of the network is a consequence of the
reconfigurable nature of the BCSs, which acquire a much
more open and isotropic average configuration as the
concentration increases in comparison to the isolated case,
maximizing the inter-star associations and displaying short- and
intermediate-range ordering at the monomer- and macro-
molecule-length scales, in close similarity with the findings on
telechelic linear polymers. Because the analyzed systems are
assumed to be nonentangled, from the structural point of view,
these BCSs are appropriate candidates for the assembly of
homogeneous, reversible polymer gels, which could exhibit
fascinating properties such as stimuli responsiveness, self-
healing, and shape memory.14,15

From a general dynamical point of view, the behavior of
dilute solutions of associative polymers is mainly determined
by intramolecular associations, while in the semidiluted
nonentangled regime, where an interplay between inter- and
intramolecular associations takes place, viscoelastic properties
are expected to be characterized by at least two time scales,
that is, the typical time for formation and breakage of
intermolecular associations and the relaxation time of intra-
molecular chain segments.16 Of course, these factors influence
the response of the system under nonequilibrium conditions.
For example, telechelic, linear polymers assemble in equili-
brium into scaffold-like networks, whose properties are
governed by the polymer flexibility and end attraction
strength.17 In these systems, shear flow induces significant
(reversible) structural changes, which can be associated with
major rheological regimes which, depending on the strength of
the applied shear flow, include Newtonian behavior, shear
banding, and shear thinning.17−19 This behavior is also
common to a large variety of polymer-based soft colloids,
such as multiarm stars and microgels.20

In isolated BCSs, the shear can be utilized as yet another
parameter for tuning the intramolecular self-assembly behavior.
The shear increases the patchiness of low-amphiphilic-fraction
BCSs, that is, α ≲ 0.3, as a result of their alignment with the
flow field, while for high-amphiphilic-fraction stars, that is, α ≳
0.7, the number and size of patches formed are nonmonotonic
functions of shear rate. The key factors in determining the
evolution of the star’s patchiness and global configuration

under shear are the presence of nonassociated arms and the
spatial extent of the patches. Depending on these factors, the
main mechanisms for patch evolution under shear involve the
merging of free arms into new patches, the joining of two
patches into one, and the split-off of bulky patches under
strong shear.21 On the other hand, for semidilute solutions of
low-functionality telechelic star polymers ( f ≤ 3), which also
form connected networks, an increasing viscosity is predicted
as the concentration, functionality, or the attraction between
B-monomers increases.10,22 Furthermore, the steady-state
response of these solutions under shear flow features both
Newtonian and shear thinning behaviors, the latter being
linked to the fission of inter- and intra-star patches.
The aforementioned examples show how differences in the

structure of associating polymers give rise to large changes in
their properties. Until now, studies under shear flow have been
carried out for three- or four-armed BCSs. Because it is
expected that higher-functionality BCSs facilitate the formation
of stiffer networks than lower-functionality BCSs and similar
mass,6 the aim of this work is to complement our previous in-
equilibrium study of network-forming BCSs of moderate
functionality.13 We systematically analyze the effect of shear
flow on the global structure and molecular conformations of
the BCSs in reversible percolating systems, which are not too
dense yet topologically interesting. For these systems, our
results suggest that the orientation and elongation of the BCSs
induced by the shear flow give rise to reorganization of both
the patchiness and network connectivity, leading to shear
thinning behavior with the thinning exponent growing in
magnitude with the concentration of the solution.
The rest of the paper is organized as follows: in Section 2,

we briefly present the model and simulation technique
employed. Section 3 is devoted to extensively present and
discuss our results regarding the conformation properties,
patchiness, and viscosity of the system as a function of shear
rate and packing fraction. Finally, in Section 4, we summarize
and draw our conclusions.

2. MODEL AND METHODS
2.1. BCS Model. We simulate BCSs through a bead-spring model

with monomers being soft spheres of diameter σ and mass M.
Following our previous work,13 simulations were performed on BCSs
of functionality f = 9 and a polymerization degree N = 30 for each
arm. The arms are all connected to a central bead (anchor) of
diameter σa = 1.5σ and mass M. The inner block of each arm (i.e., the
one placed toward the anchor) behaves like a polymer under good
solvent conditions (solvophilic monomers), while the outer block is
solvophobic, that is, monomers of this type attract each other. The
solvophobic monomers will be referred to as B-monomers, whereas
the solvophilic ones will be denoted as A-monomers. The fraction of
B-monomers determines the amphiphilicity α and is defined as α =
NB/N, where NB is the number of B-monomers in each arm and N =
NA + NB. In the following, we focus on two cases: α = 0.3 and α = 0.5.

The interaction between monomers is constructed based on the
generalized Lennard-Jones potential
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where ϵ and σ set the energy and length units, respectively. By shifting
and truncating it in the Week−Chandlers−Anderson fashion, the
interaction potential between A-monomers and the one between A
and B monomers reads
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where rcut = 21/24σ is the cutoff distance. The interaction between an
anchor and another monomer (regardless of type A or B) is given by
the same functional form with σ replaced by σ′ = (σ + σa)/2 = 1.25σ.
For the interaction between B-monomers, we define the following
potential
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with λ the parameter employed for controlling the strength of the
attractive contribution.5 For the rest of our study, we consider the
case λ = 1.2 only. The reason for this choice is based on our previous
equilibrium studies on BCS network formation.13 For f = 9, N = 30,
and the α-s considered, single isolated stars are only partially self-
assembled, indicating that there are some arms clustered together by
their attractive segments while others are unbounded. We also note
that although the model employed here is the same as the one used by
Rovigatti et al.,5 the single-star configuration there is different for f = 9
and λ = 1.2 because stars with much longer arms (N > 120) are
considered in that work. For the systems in hand, as the stars are
brought at higher concentration, they form percolating networks
where multiarm aggregates coexist with free arms.13 Unlike at higher
attraction strengths, at λ = 1.2, the arms can unbind and rebind
relatively fast compared to our simulation time, and therefore, the
network permanently reorganizes, but it maintains its overall
structure. We expected that this type of network will have interesting

self-healing properties when disrupted by external factors such as
shear.

In addition to the Lennard-Jones-like potential, adjacent monomers
in the same arm of the star are bonded by a finitely extensible
nonlinear elastic (FENE) potential of the form
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where R0 = 1.5σ denotes the maximum separation allowed between
two beads; as before, for the anchor-arm bond, σ is replaced by σ′.

2.2. Simulation Technique. To accurately simulate our system,
we make use of a hybrid simulation technique, which combines
monomer-resolved molecular dynamics (MD) for the polymers and a
coarse-grained representation of the solvent by means of multiparticle
collision dynamics (MPCD), which models the solvent at the
Navier−Stokes level and introduces hydrodynamic interactions
between monomers.23,24 A standard version of MD is employed
based on the Verlet integration scheme25 with a time step Δt = 10−3 τ,
with τ being the microscopic time unit defined below. On the other
hand, MPCD models the solvent as composed of point particles
whose dynamics follows two steps: during the streaming step, the
solvent particles propagated ballistically, while in the collision step,
they exchange linear momentum among them and the monomers.
The latter proceeds by splitting the simulation box into cubic cells of
size a = σ and then the relative velocity of all particles in each cell
(with respect to the velocity of the cell’s center of mass) is rotated by
an angle χ = 130° around a randomly chosen axis. A random shift of
the collision cells is applied at any collision step to guarantee Galilean
invariance.26

Figure 1. Snapshots from simulation for BCS solutions with α = 0.3 at different volume fractions ϕ and shear rates γ̇. The solvophilic monomers are
shown in blue, solvophobic monomers in red, and anchors in yellow. Above each image, one star selected at random is shown separately to make
the typical shape of a BCS visible. The number of stars in all boxes is the same, but the boxes have different sizes according to the density; therefore,
the stars at lower densities appear smaller in the snapshots. The snapshots of the single stars are all drawn at the same scale to facilitate shape and
size comparisons.

Macromolecules pubs.acs.org/Macromolecules Article

https://dx.doi.org/10.1021/acs.macromol.0c01365
Macromolecules 2020, 53, 10015−10027

10017

https://pubs.acs.org/doi/10.1021/acs.macromol.0c01365?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01365?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01365?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c01365?fig=fig1&ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://dx.doi.org/10.1021/acs.macromol.0c01365?ref=pdf


We consider an average of ρ = 5 solvent particles of mass m = M/5
per collision cell, where m sets the unit of mass.21 The time between

two collision steps is defined as h = 0.1 τ, where τ σ= ϵm /2 is the
time unit. By using a Maxwell−Boltzmann cell-level thermostat, the
absolute temperature of the system is kept constant at kBT = 0.5 ϵ,
where kB is the Boltzmann constant. In this way, the solvent viscosity
results η σ≃ ϵm4.1( / )s

2 . In order to induce a shear (planar
Couette) flow on the pure solvent, Lees−Edwards boundary
conditions are applied to the simulation box, which lead to a velocity
profile v = γ̇yx ̂, with γ̇ being the shear rate.27,28

In our simulations, we choose to keep the number of stars fixed (Ns
= 35), and in order to change the concentration of stars, we vary the
box size Lbox. We focus our study on three particular values for the
(monomer) volume fraction ϕ = 0.01, 0.06, and 0.1, which is defined
as ϕ = NsV0/Lbox

3, where V0 = (π/6) (Nfσ3 + σa
3) is the volume

occupied by the monomers of each star. The lowest volume fraction
corresponds to a dilute regime in which stars interact, forming small
inter-star associations. At the intermediate ϕ, the BCSs form in
equilibrium a percolating network even if this volume fraction
accounts only for around 65% of the polymer overlap concentration
ϕ*. The latter is defined as
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with Rgyr
(at) denoting the gyration radius of an isolated athermal star

polymer (i.e., α = 0) at equilibrium. Finally, the highest ϕ-value lies
above the overlap concentration (ϕ ≃ 1.12ϕ*), where well-formed
gels are obtained.13 Using the mean-square displacement of the
anchors measured in equilibrium, we established that the system is
fluid for all parameters considered in this study, except for α = 0.5 at
ϕ = 0.06 and ϕ = 0.1, where it shows signs of being arrested.
The shear rates γ̇ considered in this work lie in the range between

10−4 τ−1 and 4 × 10−2 τ−1. To facilitate comparison with other results,
the shear rate can be expressed by the Weissenberg number via the
relation Wi0 = γ̇τZ, with τZ being a characteristic relaxation time. In
this work, τZ = ηSσ

3N3νf/(kBT) corresponds to the longest Zimm
relaxation time for an arm of an athermal star (α = 0) with ηs and νf =
3/5 being, respectively, the viscosity of the solvent and the Flory
exponent for self-avoiding chains.29,30 In this way, τZ ≈ 7.5 × 103 τ,
and consequently, the range of Weissenberg numbers covered goes
from Wi0 ≃ 0.75 to Wi0 ≃ 300.
Last, four independent runs for each considered set of parameters

{α, ϕ, γ̇} were performed. The equilibrated samples obtained from
MD-MPCD hybrid simulations without shear were used as a starting
configuration of nonequilibrium simulations. In the latter case, the
system was left to reach steady state during tss = 5 × 103 τ after which
a production stage took place at least for tprod = 5 × 104 τ. All data
presented in the remaining of this work was measured in steady-state
flow. We therefore observe no changes of the measured quantities
with time.

3. RESULTS AND DISCUSSION

3.1. General Behavior under Shear. We begin our
discussion by describing the behavior of our BCS system at
different amphiphilicities α and volume fractions ϕ as a
function of shear rate γ̇. At α = 0.3, for the lowest monomer
fraction (ϕ = 0.01) and the lower shear rates considered (γ̇τ ≲
0.001), there are no effects of the flow observed (see the upper
left panels of Figure 1), neither at the level of the single stars
(i.e., the shape of the stars appears, at least by eye, to be the
same as in equilibrium) nor at the level of inter-star aggregates
(i.e., the average number of BCSs that are connected does not
seem to change, even if arms unbind and rebind continuously).
At γ̇τ = 0.001, we start being able to distinguish stars flowing
along the field. The stars still do not change shape appreciably
and each inter-star cluster flows with a constant velocity,

keeping its equilibrium morphology. For γ̇τ = 0.004 (Wi0 ≈
30), we begin to observe elongations at the level of single stars
along the flow direction, combined with the flattening of the
star shape in the xz-plane that becomes more visible as γ̇
increases. The star clusters also start to change the shape, with
their elongation also being in the flow direction. Above γ̇τ =
0.02 shear banding can be seen, as shown in the upper right
panels of Figure 1.
At the intermediate volume fraction ϕ = 0.06, the

percolating network that characterizes our system in
equilibrium is, as in the case of lower monomer fraction,
largely undisturbed when low shear rates are applied (Figure 1,
middle row). As the shear rate increases, the size of the
attractive aggregates built by different arms coming together
starts to decline because arms are being pulled out from the
aggregates by the flow. Similar to the system at low density, for
γ̇τ ≳ 0.004, we observe stretching of the polymers,
accompanied by elongation of the attractive aggregates. The
network appears to percolate for all γ̇ values considered in this
study. The most dense system analyzed (ϕ = 0.1) shows a
similar behavior than the one at ϕ = 0.06, with the difference
that here the attractive aggregates stretch already at a lower
shear rate (γ̇τ = 0.001 compared to γ̇τ = 0.002), as shown in
the top panels of Figure 1.
For the case α = 0.5, the behavior is similar to the

corresponding system at lower α, with the particularity that
here we observe ruptures of the network, that is, our initially
percolating systems (ϕ = 0.06 and ϕ = 0.1) break down into
multiple disconnected subcomponents. This phenomenon is
due to the topology of the network in equilibrium: the systems
at this attractive monomer fraction have large free voids inside
the network.13 Then, as shear is applied, the places of the
network where the network is weaker, that is, where the inter-
star connections are minimal being formed by just one arm
coming from each star, will break apart.

3.2. Geometrical Properties. A more quantitative
description of the observed conformational changes of a BCS
under shear can be provided by the analysis of its gyration
tensor , whose entries are defined as

∑= − −μ μ ν νμν
=


N

r r r r
1

( )( )
i

N

i i
mon 1

, cm, , cm,

mon

(6)

where ri,μ and rcm,μ are the μ component (μ = x, y, z) of the i-th
monomer and of the star center of mass instantaneous
positions, respectively, and Nmon = f N + 1. The three
eigenvalues of , λ1 > λ2 > λ3, can be used to construct the
invariants I1 = λ1 + λ2 + λ3, I2 = λ1λ2 + λ2λ3 + λ1λ3, and I3 =
λ1λ2λ3, which can be used as shape descriptors of the polymers.
The first invariant can be linked to the gyration radius of the

BCS via the relation = ⟨ ⟩R Igyr 1 , where angular brackets
denote an average over all molecules and time. Similarly, we
can compute the asphericity δ, the prolateness S, and the
acylindricity c.31−33 The asphericity δ is defined as

δ = −
I
I

1 3 2

1
2

which takes values between 0 and 1, with the minimum value
describing an object with a perfect spherical symmetry. On the
other hand, the prolateness S reads
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with its value ranging from −0.25 to 2, where the negative
values indicate oblate shapes, whereas the positive ones map to
prolate objects. Last, the acylindricity c can be computed as

λ λ
=

−
c

I
2 3

1 (8)

which is a positively defined quantity with c = 0 describing a
perfect cylindrical symmetry.
The first finding to point out regarding the shape parameters

is that the volume fraction of monomers has an effect on the
gyration radius even for low shear rates: the BCSs that are part
of denser systems increase by a larger proportion relative to
their equilibrium configuration, see Figure 2a. This is a

consequence of the fact that, for ϕ = 0.06 and ϕ = 0.1, the
BCSs form a percolating network, and even a small
deformation of system leads to extension of the individual
stars. At ϕ = 0.01, where the inter-star interaction is reduced,
the relative size of the stars is around the same as for single
star. At low shear rates, the asphericity δ is higher for stars with
α = 0.5 than for these with α = 0.3 (data not shown) because
the stars with more functionalized monomers form more
asymmetric structures, that is, a higher number of B-monomers
are localized in the attractive aggregates. As the shear rate
increases, the curves for both values of α collapse. This is an
indication of the unfolding of the attractive aggregates. The
prolateness S goes up with γ̇, whereas the acylindricity c
decreases, see Figure 2b,c, which is consistent with the
observation that the BCS stretch, having a more cigar-like
shape as the system is sheared. Both of these shape parameters
also display collapse of different α-systems at high γ̇, consistent
with a fully elongated polymeric star. The higher the density,
the more elongated the stars become because of the inter-star

connections that have to be accommodated in addition to the
flow.
To obtain more information on the deformations of the

BCSs with respect to the spatial directions, we analyze the
diagonal components Gμμ = ⟨μμ⟩ of the gyration tensor
normalized to the value of isolated BCS at equilibrium, Gμμ

(0), as
shown in Figure 3a−c. At ϕ = 0.01, the system shows a

behavior similar to that of isolated stars:21 for low shear rates
(γ̇τ < 4 × 10−4), no strong deformation appears; as γ̇ increases,
both monotonically increasing Gxx and diminishing Gyy are
found, reaching a difference of almost one order of magnitude
with respect to Gμμ

(0) at the highest γ̇ probed; meanwhile, Gzz
decreases only slightly. This indicates that the extension of the
BCSs occurs along the flow direction (x-direction). Although
its size is drastically decreased in the gradient direction (y-
direction), the relative shrinkage in the vorticity direction is
comparatively small, hinting at a flattened elliptical shape of
the BCS located in the xy-plane. As mentioned above, for the
higher concentrations, spatial inhomogeneities in the shape of
the BCSs with respect to the isolated case are observed even at
γ̇τ = 10−4 and, at higher shear rate, even lower values for Gyy
and Gzz are found, which points out to a more rodlike shape of
the BCSs. It is to be noted that, for each density, the
corresponding curves for α = 0.3 and α = 0.5 collapse at high
shear rate.
Compared to nonaggregating stars (α = 0), BCSs show a

similar stretching behavior in the flow direction. For isolated
stars, the relative stretching in the flow direction is higher for
nonaggregating stars than for the functionalized ones and
decreases with the increases in functionalization fraction α.21

At finite densities, for athermal stars, the relative stretching in
the flow direction Gxx varies very little with respect to the
density for the values considered in our study,34 as opposed to
BCSs. For BCSs at ϕ = 0.01 and the higher shear rates
considered, the relative stretching in the flow direction is lower
than the one reported for athermal stars. At the intermediate
monomer fraction ϕ = 0.06, Gxx takes values similar to the

Figure 2. Global shape parameters of BCSs as a function of shear rate
for different concentrations and amphiphilicities: (a) normalized
gyration radius Rgyr/Rgyr

(0), (b) acylindricity c, and (c) prolateness S.
The value Rgyr

(0) denotes the gyration radius of an isolated BCS at
equilibrium.

Figure 3. Normalized diagonal components of the gyration tensor
Gμμ/Gμμ

(0) as a function of shear rate at different monomer volume
fractions: (a) ϕ = 0.01, (b) ϕ = 0.06, and (c) ϕ = 0.1. The quantities
Gμμ
(0) are the averaged diagonal components of  for an isolated BCS

at equilibrium.
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ones for athermal stars, whereas at ϕ = 0.1, the BCSs are more
extended.
The geometrical properties of our stars are the result of a

compromise between self-assembly and flow alignment. In the
dilute regime, the functionalized stars extend less (than
athermal ones) in order to be able to keep their patches.
When the density increases and a network is formed, the BCSs
are, in addition, subject to the pulling exerted by the
neighboring stars to which they are connected and which
also try to align to the flow. This leads to a higher relative
increase in size in the flow direction.
The elongation of star polymers along the flow direction is

not an unusual behavior in polymeric systems subjected to
shear or flow. It appears for a multitude of other polymeric
architectures such as linear chains,35−38 branched chains,39,40

and rings41,42 and spans a wide range of concentrations from
dilute to melts. Each system has its particularities; however, the
orientation and extension in the direction of the flow is a
common trend that makes these polymeric systems, to a
certain degree, lookalike. Our systems bear interesting
similarities to colloidal gels, even if the two systems are very
different in many other respects. The stretching and
reorientation of the BCS arms under flow looks surprisingly
similar to the deformations appearing in sheared colloidal
gels.43,44

Further insights into the positioning of the BCS with respect
to the flow can be gained by considering the orientational
resistance mG. This parameter measures the average alignment
of the BCS induced by the flow and it is related to the angle χG
formed by the eigenvector e1̂ associated with the largest
eigenvalue λ1 of  and the flow direction. It is defined in terms
of the components of the gyration tensor as29

χ= =
−

m W W
G

G G
tan(2 )

2
i i

xy

xx yy
G G

(9)

As displayed in Figure 4a, the orientational resistance increases
with γ̇. For the two higher densities, we observe a reasonably
fair overlap of the curves, while the dilute system features a
higher orientational resistance than the denser counterparts.

This phenomenon can be again explained by the larger
connectivity of the denser system. There, the alignment along
the flow direction is further enhanced and also stabilized
through the connection of attractive B-monomers at the end of
each arm with abundant neighboring ones from the
surrounding BCSs.
Furthermore, to understand the dynamics of the stars, we

can make use of the angular velocity which we define as

ω γ= − ̇
+

G

G G
yy

xx yy
a

(10)

For isolated BCSs, it can be interpreted either as the
tumbling frequency of a rigid body in the shear flow, whose
shape is similar to the average shape of the BCS, or as the
frequency at which the individual arms rotate by tank-treading
around the geometrical star center.45 As can be seen in Figure
4b, the ratio between the angular velocity and the shear rate
(ωa/γ̇) decreases as the latter increases, which is due to the
flexibility of the BCS: for a rigid object, we expect to have ωa/γ̇
constant, whereas here clearly ωa/γ̇ ∝ γ̇−a, with a ≃ 0.7 for the
larger shear rates probed. Also, we observe that lower densities
allow for higher ωa because stars exhibit less steric hindrance
from neighbors and also are less likely to break free from inter-
star connection and to tumble because they have fewer of these
connections per star.

3.3. Radial Correlation Functions. In order to analyze
the microscopic conformation of the system, we use radial pair-
correlation functions for the different monomer species. In
particular, it allows us to gain additional information about the
structure of the attractive patches. The pair-correlation
function gIJ(r), which assesses the probability of finding a
monomer of species I at a distance r from a monomer of
species J, is defined as

∑ ∑ δ= ̂ ̂ −
=

̂

=

̂

g r
V

N N
r r( ) ( )IJ

I J i

N

j

N

ij
1 1

I J

(11)

where r = |rij| denotes the distance between the i-th and j-th
monomers.46,47 The subindexes I and J can take any of the
values A for noninteracting monomers, B for functionalized
ones, and C for anchors. For gII, the terms with i = j are
excluded from the sum. The normalization constants N̂A
represent the total number of A monomers in the system
(N̂A = Ns f NA), N̂B is the number of functionalized monomers
(N̂B = Ns f NB), whereas N̂C = Ns is the number of anchors.
We first turn our attention to the pair-correlation function

gAA(r) between the nonfunctionalized parts of the stars as
presented in Figure 5. At α = 0.3 and low shear rates, we
observe no significant difference to the equilibrium behavior
for very dilute system (ϕ = 0.01), that is, the radial pair
correction function exhibits a first peak at r/σ ≃ 1, which
corresponds to the first-order neighbors along the chain,
followed by a much less-pronounced one at r/σ ≃ 2, see Figure
5a. By increasing the shear rate, an increase in these two peaks
takes place. At γ̇τ = 0.04, we start seeing regular peaks at
approximately integer values of r/σ. These provide evidence of
the stretching of the polymers along the flow, forming an
ordered structure. The same stretching feature of the A-blocks
of the arms is also observed in the gCA(r) correlation function
(data not shown). Moreover, the depleted region observed at
r/σ ≈ 14 corresponds to the typical size of stars and disappears
with the increase in γ̇ because of the homogenization of the

Figure 4. (a) Orientational resistance and (b) apparent angular
velocity as a function of shear rate.
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system. The higher-density systems presented in Figure 5b
show the same features as the one at ϕ = 0.01, with the peaks
being more pronounced, which is consistent with the increase
in the monomer local density. The depletion region observed
for the dilute system is not present at this monomer fraction
because each star is here surrounded by multiple other stars.
The systems with α = 0.5 show similar features, but the peaks
of gAA(r) at short distance tend to have higher values because
the stars have better formed patches, indicating that the arms
are placed closer together. The regular structure at high γ̇
vanishes at lower r/σ because the noninteracting part of the
arms is shorter at α = 0.5.
On the other hand, the correlation function (gBB(r)) for the

attractive monomers features a much more structured profile
as shown in Figure 6a. The locations of the correlation peaks
are consistent with a random hexagonal close-packed structure.
This arrangement has also been observed in equilibrium13 and
is a direct consequence of the short-range attractive interaction
between B-monomers. At low density, these peaks decrease in
height significantly for r/σ > 2, which is concomitant with the
average size of the observed clusters. For ϕ = 0.06 and ϕ = 0.1,
the peaks are observable up to a distance r ≃ 8σ and decrease
in size as the shear rate increases. Particularly visible are the
nonmonotonic changes of the peak heights of gBB(r) with shear
rate, as can be seen in inset II. Starting from equilibrium, the

peaks as well as the magnitude of the radial distribution
function first grow until the value γ̇ ≃ 0.01 is reached, arising
from the stretching of the arms due to shear and the
concomitant proximity of B-type beads along the flow
direction. However, as the increasingly high shear brings
about a breaking of the transient BB-bonds, the curve flattens
dramatically out at the highest shear rate, γ̇τ = 0.04. This loss
of the connectivity between stars at high shear is confirmed by
our subsequent analysis of the system connectivity in Section
3.4.1. At the highest shear rate analyzed γ̇τ = 0.04, the peaks at
r/σ > 4 and r/σ > 7 for α = 0.3 and α = 0.5, respectively,
vanish. Similarly, as the shear rate increases, lower peaks are
observed, suggesting that the size of the attractive aggregates
decreases as the system is sheared as a consequence of the
detachment from the cluster of some arms.
By looking at the pair-correlation function between

noninteracting and functionalized monomers (gAB(r)), we
notice significant peaks only at r/σ ≃ 1 and r/σ ≃ 2 at zero
shear. At high shear rates, gAB(r) develops a profile with
multiple peaks located at integer values of r/σ, this again being
an indication of chain stretching (data not shown). The
stretching is also supported by the anchor-functionalized
monomer correlation function gCB(r) shown in Figure 6b. As
can be seen there, the equilibrium gCB(r) shows a well-defined
peak around r/σ ≃ 8−10 depending on ϕ. This distribution
flattens out as shear increases, leading to an increasing value at
shorter r due to the induced elongation of the arms B-block.

Figure 5. Radial correlation function of A-monomers for (a) ϕ = 0.01
and (b) ϕ = 0.1. Insets show enlarged zones of the curves for different
radial distances. The data presented in both panels correspond to α =
0.3.

Figure 6. Radial correlation function for (a) B−B and (b) C−B
monomer pairs. Insets in panel (a) show enlarged zones of the curves
for different radial distance. For both panels, α = 0.3 and ϕ = 0.1.
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Because the BCSs align with the flow, a new space is open,
which can be occupied by another stars. A similar
phenomenon is also seen in the anchor−anchor correlation
function gCC(r), where anchors are allowed to come closer as
the shear increases.
The information given by our pair-correlation functions can

be experimentally accessed using rheo-SANS as it has been
shown with starlike48 and wormlike micelles.49−51 The rheo-
SANS measurements allow for detection of anisotropy in
reciprocal space, which can be related to our pair-correlation
functions in real space. In the case of starlike micelles, the
rheo-SANS experiments show an increase in both the structure
factor and inter-micelle distance, which can be directly
associated with the increase of shear rate. These changes
occur along both the flow and the vorticity directions and can
be rationalized by an elongation of the micelles together with a
tilt with respect to the flow lines.48

3.4. Patch Behavior. In the previous section, we presented
results regarding the global conformation properties of the
systems under consideration. Now, we turn our attention to
the effect of shear on the features of the formed attractive
aggregates (patches), in particular, to the number of patches in
the system (Np) and their size (Sp), that is, the number of arms
clustered in each patch. A patch is defined as the set of
functionalized monomers that have the property that any
monomer in the patch is located at a maximum distance d =
1.08σ from at least one other monomer in the patch. This
definition implies that all attractive monomers in an arm are
part of the same patch. In order to be part of the same patch,
two arms do not need to have direct “contact”, but any of their
monomers can be placed closer than d to functionalized
monomers of another arm or other arms that have contact to
each other.13

At this point, it is important to note that the average
configuration of isolated BCSs at equilibrium that we found

features the coexistence of free arms and patches. This
behavior is different from the fully self-assembled scenario, that
is, no presence of free arms, described by Rovigatti et al.,5 for
similar parameters ( f, α, and λ). This difference is a
consequence of the large arm polymerization degrees
employed there (N > 120) in comparison to the much shorter
arms (N = 30) we consider here, which in turn leads to a
higher steric penalty when forming patches. In fact, the BCSs
considered here become fully self-assembled as λ increases.13

In this way, at low density, a large fraction of the arms are
free because potential binding partners are spatially far away,
whereas at higher densities, more arms are bound, leading to
the increase of the size Sp of the equilibrium clusters. Aiming to
visualize the changes in cluster size due to different parameters,
we divided the clusters into five size categories: free arms, small
clusters involving 2−5 arms, medium clusters which are
composed of 6−9 arms, large clusters with 10−13 arms, and
giant clusters containing more than 13 arms. Each category is
assigned a different color in Figure 7. For low density (ϕ =
0.01) and γ̇τ ≤ 0.007, the cluster size does not drastically
change, the system has mostly free arm, a population of small
clusters, and few medium-sized ones, whereas at γ̇τ = 0.02, the
medium-sized clusters have vanished. For the other densities,
the largest cluster size (large for ϕ = 0.06 and giant for ϕ =
0.1) persists at low γ̇, but it vanishes at γ̇τ = 0.007. The further
increase in γ̇ leads to the disappearance of the next cluster size
population. It is also interesting to note how the clusters
elongate as the system is sheared, as well as that free arm
extend more than clusters since the energetic loss is smaller.
To have a quantitative measure of the change in cluster size

with γ̇, we show in Figure 8 the average number of patches
⟨Np⟩ as well as the average size ⟨Sp⟩. For ϕ = 0.01, we find that
the number of clusters fluctuates around an average value of 39
and the number of arms in a cluster is slightly higher than 2
regardless of γ̇. These results seem to indicate that no or little

Figure 7. Graphical representation of the patch size behavior for α = 0.3, different density (ϕ), and shear rate (γ̇). Here, only B-monomers are
displayed. Each color categorizes the size Sp of the patches: red is used for free arms (Sp = 1), whereas green, light blue, dark green, and brown
denote small, medium, large, and giant patches, respectively.
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changes in this respect occur in the dilute system when shear is
applied. We will in short demonstrate that the constant average
characteristics of the clusters are actually also almost conserved
at the cluster level. At ϕ = 0.1, ⟨Np⟩ increases with γ̇, whereas
⟨Sp⟩ decreases. This result is consistent with our observation
that larger clusters break down into smaller ones as the system
is subjected to a higher shear rate. In the intermediate shear
regime (ϕ = 0.06), we observe a constant number of clusters
(larger than for the other values of ϕ), which goes a bit down
for γ̇τ ≥ 0.01. This decrease appears not to be accompanied by
an increase in average cluster size.
From the previous analysis, two questions arise. The first

one is whether the constant average values ⟨Np⟩ and ⟨Sp⟩ for
the dilute system results in effectively no changes induced by
the shear, or of a subtle reorganization of the clusters resulting
in the same average parameters. The second question that
interests us concerns the change in cluster number and/or size
observed for ϕ = 0.06 and ϕ = 0.1; are these the results of arms
breaking free from the clusters or clusters breaking down into
smaller ones? In order to answer these questions, we proceed
to plot the cluster size distribution as a function of the number
of arms for selected γ̇ (see Figure 9). For ϕ = 0.01, the free
arms (Sp = 1) represent the vast majority of the distribution,
followed by two-arm clusters. The number of free arms appears
to remain constant with shear, whereas the population of
clusters with Sp ≥ 3 declines slightly while the clusters with Sp
= 2 become more numerous (Figure 9a).
The changes in the distributions only affect around 1% of

the clusters and are therefore not visible in the average values.
There are two mechanisms that could affect the distribution in
this way: either bigger clusters break into clusters with Sp = 2
(which is unlikely because there are also clusters containing an
odd Sp) or patches are first broken by shear and then they
reform into two-arm aggregates, which is probably the more
realistic scenario. For ϕ = 0.06, as shear increases, we observe
that the number of free arms increases at the expense of the
bigger clusters (Sp ≥ 3), the population of two-arm ones
increasing slightly. This is consistent with arms being pulled
out from clusters by the flow. For ϕ = 0.1, we also observe an
increase with shear in the number of free arms though less
important than for ϕ = 0.06. However, at the same time, the
population of small clusters (2 ≤ Sp ≤ 6) grows and the one of

larger clusters go down. At this density, the reorganization of
the network seem to be the result of both arms breaking free
from the larger-sized cluster but also a result of fragmentation
of these clusters. A surprising fact is the similarity of this
behavior to that of colloidal gels. Analogous to colloidal gels,
that decrease their coordination number when shear becomes
high enough,43,44 the BCS networks sacrifice inter-star
connections in order to conformationally adjust to shear.

3.4.1. Connectivity. Another measure of the morphological
changes occurring in our BCS systems when shear is applied is
related to the connectivity of the system. Groups of connected
BCSs at different shear rates and densities are presented in
Figure 10. At the lowest density considered, the shape of the
connected component as a whole changes when shear is
applied, becoming more elongated. The elongation does not

Figure 8. (a) Average number of patches ⟨Np⟩ and (b) average
number of arms clustered in a patch ⟨Sp⟩ for α = 0.3 as a function of
shear rate for the three monomer packing fractions indicated in the
legend.

Figure 9. Patch size distribution P(Sp) for α = 0.3 and different values
of shear rate and monomer volume fraction: (a) ϕ = 0.01, (b) ϕ =
0.06, and (c) ϕ = 0.1. The insets show a log−log representation of
P(Sp).
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only come from the stretching of stars but also from
reorganization of the inter-star connections. This allows the
BCSs to align to the flow, facilitating the movement as a group,
while as many inter-star connections as possible are kept. This
behavior is consistent with the observed shear banding
phenomena. The number of stars per connected component
decreases with shear rate because stars that become free at
some point in time are carried away by the flow, making their
reattachment unlikely. At higher densities, the BCSs appear to
form a percolating network, which seems to survive shear. The
most interesting phenomenon found is that, when stars
elongate under the effect of shear, a sort of stacked
configuration is observed, indicating that the stars bring their
anchor almost in contact forming a string-like or stack-like
structure. The noninteracting part of the stars which are on
either side of the anchor also stacks, as well as the attractive
parts. This organization was hinted at by the radial correlation
functions.
To better understand the changes that shear generates in the

structure of the system, we look at the connectivity of the
system by measuring the size of the connected components
present (i.e., the number of connected stars). In Figure 11, we
show the average number of components, the average number
of free stars, the average size of the largest component, and the
number of free arms for the whole system. We find that except
in the dilute system (ϕ = 0.01), where it is composed out of
multiple components (≈6−7) regardless of the shear rate, the
system is completely connected up to γ̇τ = 0.01. This single
component contains all the stars in the system (the number of
free stars being zero), indicating that we have a percolation
network as we had already hinted in the previous paragraph. At
ϕ = 0.1 and for the higher shear rates, a small number of single
BCSs start to fragment from the percolating component, the
rest of the stars remaining connected. In addition to the release
of a few free stars, at ϕ = 0.06, the network breaks for γ̇τ = 0.04
into two big pieces (≈10−20 stars). The low-density behavior
is different: many stars are free (more that 40%) and this
further increases with the shear rate. The size of the largest
component in the system only contains six to seven stars,
which decreases to ≈4 stars for high shear rates.
While the connectivity parameters do not vary drastically for

ϕ = 0.01 and ϕ = 0.1, at the intermediate density, provided

that the shear rate is high enough, the network connectivity
undergoes a drastic change: it breaks into two pieces. This
breakage is a mechanism to release the stress accumulated in
the network because of the deformations induced by shear. At
the higher monomer fraction, this phenomenon is not
observed for the shear rates studied because the network is
stronger, that is, each star has more connections which
mechanically reinforce the network.
The number of free arms can offer further clarification on

connectivity. For ϕ = 0.01, each star has, on average, six to
seven free arms, which indicates that only two or three are
bound. Considering that arms can bind within a star, not only
creating inter-star connections, it is to be expected that the size
of components is low and the number of free stars is high. At ϕ
= 0.06, around two arms per star are free, whereas at ϕ = 0.1,
only one arm in each stars is unbound. These values increase
with the shear rate up to ≈3 and respectively ≈1.5 free arm per
star. With such a high number of attached arms, it is natural
that we obtain a percolating network.

3.5. Viscosity. A very important macroscopic property of
non-Newtonian fluids in general and of (associating) polymer
solutions in particular is the viscosity, which bears the signature
of the polymer architecture and chemistry. Unlike the
previously presented properties that can be challenging to
address experimentally, the viscosity can be measured in
rheological experiments. Determining this quantity thus
provides an important link between microscopic organization
of the BCSs and the macroscopic behavior of the material.
Here, we calculate the polymer viscosity ηp, which is expected
to dominate the total viscosity at sufficiently high concen-
trations, and which is also responsible for the non-Newtonian
linear rheology of the system. To this effect, we calculate the
stress tensor σp that involves kinetic and interaction
contributions for the polymer beads, involving exclusively the
forces exerted by other beads, and can be conveniently
computed via the relation

∑ ∑σ ν ν= ∼ ⊗ ∼ + ⊗
= = ≠

r F
V
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1 1
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i i
i j i
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ij ijp
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Here, M = 5m is the monomer mass, V = Lbox
3 is the volume of

the simulation box, Nt = Ns Nmon is the total number of

Figure 10. Snapshots of typical groups of connected BCSs for α = 0.3 and different shear rates and volume fractions. The nonfunctionalized part of
the star is colored in blue, whereas the functionalized blocks have been colored according to the size of the clusters they are part of using the same
color code as in Figure 7. To make individual stars easier to visualize, the anchors, which are indicated in yellow, have been drawn at a 4 times
larger scale than their actual size.
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monomers, vĩ = vi − γ̇yix̂ is the peculiar velocity of the i-th
monomer, rij = ri − rj and Fij are the pair monomer−monomer
forces, including both FENE and Lennard-Jones-like con-
tributions. It is to note that for our system, the kinetic
contribution to the stress tensor is several orders of magnitude
smaller than the interaction term.
In Figure 12, we present the polymer viscosity ηp = σp;xy/γ̇ as

a function of shear rate γ̇ at both α = 0.3 and α = 0.5 for the
three densities considered. As a general trend, we observe
higher viscosity for more concentrated systems and also a shear
thinning behavior, that is, a decreasing viscosity as the shear
rate increases, for all the systems studied. The two higher
monomer fraction systems (ϕ = 0.1 and ϕ = 0.06) feature a
very similar behavior. At low shear rates, the systems with α =
0.5 exhibit a stronger shear thinning. For γ̇τ ≥ 0.01, the curves

for both α-s collapse, the slopes being very similar (−0.56 and
−0.57, respectively). For the dilute systems, we also observed a
collapse of the two curves for high γ̇; however, the slope is only
−0.43. This last result is slightly higher than the values
reported in the literature for semidilute solutions of stars with
less than 50 arms.52 Compared to nonaggregating stars, which
also exhibit a power law decay for high enough shear rates with
concentration-dependent exponent ranging from −0.3 for a
dilute system to −0.4 for a system above overlap concen-
tration,34 BCSs exhibit a stronger shear thinning, which results
from a combination of reorientation of arms and rearranging of
inter-star connections.

4. CONCLUSIONS
In this work, we analyzed the global structure, patchiness, and
viscosity of suspensions of star-shaped block copolymers
(BCS) under shear flow. Following recent studies on the
self-assembly and network formation in low-functionality BCS
systems,13 we explored their nonequilibrium behavior from
semidilute (ϕ/ϕ* ≃ 0.1) to concentrated (ϕ/ϕ* ≃ 1.1)
regimes. As previously described,13 the chosen parameters, that
is, functionality, amphiphilicity, and attraction strength
between solvophobic segments, lead the system to the
formation of homogeneous percolating networks, whose
patchiness, morphology, and connectivity are significantly
reorganized by the shear rate. As the latter increases, the BCSs
in the network elongate in the shear direction and shrink in the
other two, compelling the larger clusters of B-monomers
(patches) to break up into smaller ones. This effect becomes
more important as the concentration increases (see Figure 8),
leading to the rising of the number of patches but of a smaller
size. Also, a stacked configuration of BCSs is observed, which
allows the star cores to aligning in a stack-like structure, which
is reminiscent of the scaffold-like structures observed in rigid,
linear telechelic polymers.17

Regarding the viscosity of the system, more inter-star
association takes place as the concentration increases, leading
to an increasing zero-shear viscosity.16 As shear enters into
play, the breaking of patches plus the BCS reorientation results
into thixotropic behavior (shear thinning) with the thinning
exponent growing in magnitude with the concentration of the
solution. The stars reorganize significantly during shear and
change morphology. This could be interesting for experimental
application perspective because anchors could be function-
alized in such a way that they have an extra linking possibility
to reinforce the network.

Figure 11. Connectivity parameters as a function of shear rate for α =
0.3 and different concentrations: (a) average number of components,
(b) average number of free stars, (c) average size of the largest
component, and (d) average number of free arms.

Figure 12. Polymer viscosity ηp, expressed in units of solvent viscosity
ηs, as a function of shear rate for the systems under consideration.
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