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1 Introduction

Based on current understanding of a biological sys-
tem, bioengineers predict how the system will re-
spond to designed perturbations. One important
manifestation of this process is predicting whether
exposing a patient to a drug with a pre-defined tar-

get will result in a favorable clinical outcome. This
approach works well when few relevant compo-
nents of the system are considered. However, it is
more difficult to propagate possible effects through
a complex system using intuition alone, which hin-
ders the capability for reliable prediction.

To aid intuition, a broad spectrum of mathemat-
ical and computational models have been devel-
oped [1, 2]. For example, “theory-driven” differen-
tial equations (DEs) based on physico-chemical
mechanisms have been used to model and make
predictions in biological systems ranging from
virus population dynamics in a host organism [3] to
receptor trafficking through cellular compartments
[4] to enzymatic phosphorylation cascades [5]; at
the other end of the spectrum, “data-driven” alge-
braic and statistical algorithms have been used to
understand the integrated influence of multiple
signaling pathways on cell phenotypic outcomes [6,
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7]. While these approaches have proven useful in
biological and pharmaceutical contexts, their abili-
ty to make reliable predictions depends heavily on
a large amount of appropriate experimental data
for determining relationships, topologies, and pa-
rameter values. This critical dependence creates a
high barrier-to-entry for using mathematical mod-
els to guide scientific decisions on a day-to-day ba-
sis. Furthermore, using these methods to describe
relationships between different biological scales,
such as the exchange of a molecule from tissues to
individual cells and subsequent molecular interac-
tions within the cell, is a significant challenge and
an active area of research [8–10].

Logic-based models are an attractive alternative
because they are readily derivable from either a
theory-driven or data-driven foundation [11] and
have been successfully used to predict the re-
sponse of a biological system to perturbation (e.g.,
[12, 13]). In discrete (e.g., Boolean) logic models, all
species are found categorically in one of a few lev-
els of activity. However, this description is often too
simple to adequately describe biological systems,
and feedback in these models can result in oscilla-
tions which convolute interpretation of their re-
sults. Recently, some have proposed transforming
discrete logic models into either ordinary or piece-
wise linear differential equations [14–16]. While
some software tools for building and simulating
models of these types exist (reviewed in [11]),
changes to parameters of such models affect the
differential equations governing each species, and
it is not immediately evident how such changes af-
fect the quantitative relationships among the
species in the system. Moreover, use of these tools
to determine the effect of perturbations to species
or parameters requires familiarity with the partic-
ular software and is not straightforward.

To alleviate these difficulties, we present a new
analysis framework for asking questions of logic-
based models, which we term “querying quantita-
tive logic models” (Q2LM). We use the constrained
fuzzy logic (cFL) formalism recently developed for
training a logic model to data [17], but here demon-
strate the ability to make predictions with models
based solely on prior knowledge of the biological
system. Additionally, we introduce a simulation
procedure that is able to solve for the steady state
of a system even when feedback results in oscilla-
tory behavior. This logic formalism allows species
in a biological system to be modeled with a contin-
uous range between zero and one using mathemat-
ical functions that directly relate input and output
species (transfer functions). Importantly, the Q2LM
approach facilitates querying these models for ef-
ficient prediction of the behavior of biological

 systems in response to perturbation. Q2LM is a
MATLAB toolbox freely available at http://sites.
google. com/site/saezrodriguez/software.

Because we use a simple logic-based frame-
work, Q2LM is flexible enough to concomitantly in-
corporate multiple scales of biology—from molec-
ular species to whole organisms. We illustrate the
use of Q2LM to build and query a logic model with
a simple example intracellular signaling model.
Subsequently, we investigate a logic model of mul-
tiscale pharmacokinetics and pharmacodynamics
(PK/PD) of granulocyte colony stimulating factor
(G-CSF) with the objective of predicting the mo-
lecular-level alterations that would best stimulate
maturation of precursor neutrophils.

2 Methods

2.1 What is a constrained fuzzy logic model?

In a cFL model, the relationship between species is
described by logic gates with transfer functions,
from “upstream” parent node(s) to a “downstream”
child node. In the simplest logic gate, one input par-
ent species activates an output species, designated
by an arrow between the two (Fig. 1A). In cFL, this
activating relationship is represented with a trans-
fer function, which is simply a mathematical func-
tion used to evaluate the value of the output species
given the value of the input species (Fig. 1B).

In the current implementation, each transfer
function is a normalized Hill function with a gain,
where the gain, g, is a constant between zero and
one, n is the Hill coefficient, and k is the parameter
that determines the EC50 of the function. If the in-
put species inhibits the output species (a NOT gate
in traditional logic modeling, Fig. 1A), the transfer
function is subtracted from one, effectively invert-
ing it. We have found this transfer function form to
be useful because it is simple yet flexible enough to
accommodate a variety of biologically relevant
functional relationships including linear, sig-
moidal, and digital. Furthermore, each parameter
of the transfer function determines a specific as-
pect of the function shape: g determines the maxi-
mum value of the output species given maximal in-
put species value; k determines the EC50 (value of
input species necessary for the output to reach ac-
tivation at half of its maximum), and n determines
whether the shape is linear or sigmoidal. Thus,
changing any of these parameters changes the
transfer function shape in a predictable manner
(Fig. 1B).

Transfer functions are specified for every rela-
tionship between species and provide the basis for
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all quantitative relationships between species in a
cFL model. If an output species has more than one
input species, multiple transfer functions are eval-
uated for each input–output relationship, resulting
in multiple possible values for the output species.
The final value for the output species is then de-
termined based on these possible values as well as
the logic of the interactions. For example, if an out-
put species has two inputs species, both could be
necessary to affect the output species (an AND
gate) or they could affect the output species inde-
pendently of one another (an OR gate). If both AND
and OR gates are used to relate inputs species to an
output species, AND gates are evaluated before the
OR gates (i.e., the sum-of-products formalism, Fig.
1A).

2.2 Building a cFL model

To build a logic-based model, one must first identi-
fy the species in the biological system of interest to
be included in the model. These species might be
intra- or extra-cellular molecules, specific cell
types, or the “state” of a molecule or cell; thus, with-
in the model a single entity can be represented by
several species (e.g., ligand-bound and unbound
cell receptors; differentiated or undifferentiated
hematopoietic cells), where the name of the species
is used to distinguish among various states of a sin-

gle entity. Assigning specific names to species of
any type of entity enables logic models to concomi-
tantly incorporate processes at multiple biological
scales.

The next step for building a logic model is to
specify the interactions between species both in
terms of the species that interact as well as whether
the interaction is activating or inhibitory. Know -
ledge of these interactions can come from a variety
of sources. An expert may have accumulated
enough knowledge to build such a model using in-
tuition alone. Additionally, a wealth of databases
exists that contain such interactions [18]. It is im-
portant to document sources used during the mod-
el building process so that, if discrepancies arise
between the model simulations and what is known
about the system, the knowledge basis of the mod-
el can easily be revisited.

The most challenging aspect of building a logic
model is specifying AND or OR logic gates for
species with more than one input parent species. In
previous work we used the CellNOpt software to
train logic gates to dedicated experimental data [17,
19]. Here, we rely on prior knowledge to determine
the logic of the relationships. An AND gate should
be used if the input species “work together” to af-
fect the output. Alternatively, one can identify an
AND gate by asking “Should the output be affected
with only that input, or are other species neces-

Figure 1. Constrained fuzzy logic. (A) Constrained fuzzy logic describes interactions between biological species with logic gates. The logic gates are evalu-
ated based on the output of the transfer function (f) that quantitatively relates the input and output species. In this example, AND gates are evaluated with
the PRODUCT operator and OR gates are evaluated with the SUM operator. Evaluation of the AND and OR gates with the MIN and MAX operators, re-
spectively, is also supported by Q2LM. Note that the SUM operator is not identical to arithmetic sum, but rather, the logical sum of two possible values is
equal to the first plus the second minus the product of the two (i.e., V1 + V2 – V1V2, where V1 is the value of one possible output and V2 is the value of the
other). (B) The quantitative relationship between any two species is specified with a transfer function. In this paper, we use a normalized Hill function mul-
tiplied by a gain as the transfer function, although other functional forms can easily be imagined.
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sary?” If other species are necessary, an AND gate
should be used. Otherwise, it is an OR gate. For ex-
ample, a molecular binding event is represented
with an AND gate because both binding partners
are necessary to form the bound species.

The final step is to write the model in a form
readable by the software. For Q2LM, this involves
making a spreadsheet that specifies the interac-
tions and parameters of the transfer functions used
to evaluate the effect.

2.3 Simulating a cFL model

Q2LM simulates a cFL model with synchronous
updating. The initial values of all non-stimuli
species are designated as Not-a-Number (NaN)
and ignored until their values have been specified
by an upstream interacting species. At each simu-
lation step, species’ values are calculated based on
the values of their input species at the previous
step. Species that have been designated as “stimuli”
are maintained at the stimulated value or, if its in-
put species specify it to be a larger value during
simulation, it is assigned the maximum of the stim-
ulated and calculated values. The value of an in-
hibited species is multiplied by the percent inhibi-
tion at each simulation step. The simulation termi-
nates when either the values of all species stabilize
(the so-called “logic steady-state”). If any species
value does not stabilize due to oscillations, the sim-
ulation will terminate after a pre-defined maxi-
mum number of steps has been reached. The value
of the oscillating species can be set as a NaN, the
average of several simulation steps, or calculated
by solving the system of equations specifying the
network.

2.4 Querying a cFL model

Q2LM poses the following questions: (i) “What per-
turbations to species in the system result in a de-
sired outcome?” and (ii) “In what environmental
conditions are these perturbations effective?” To
answer these questions, one must provide environ-
mental conditions (the “environment”), the pertur-
bations (“experiments”) and the desired outcome
(the “criteria”). Environmental conditions are con-
sidered invariant while experimental perturba-
tions are varied and their effects within each envi-
ronmental condition evaluated. Perturbation ef-
fects are then compared to the criteria to reveal if
the perturbation “met” the criteria. Strictly speak-
ing, only an environment is required to simulate
the model while experiments and criteria are used
to address a specific query.

2.5 In vivo validation of model prediction

Mice were treated with 150 mg/kg 5-fluorouracil
(5FU) for 24 h prior to treatment with either wild-
type or mutant colony stimulating factor for 9 days.
Control mice were either treated with vehicle PBS
or 150 mg/kg 5FU alone. Five mice were treated for
each condition. Animals were sacrificed and blood
collected by cardiac puncture. After hemolysing red
blood cells using a lysis solution, white blood cells
were concentrated and cell count performed with a
Coulter counter. Experiments using animals we
performed under the permission of MIT Commit-
tee on Animal Care protocol #0904-063-07.

3 Results

3.1 Logic-based model of an intracellular signaling
network

We first exemplify the use of Q2LM with a highly
simplified network that models potential crosstalk
between tumor necrosis factor α (TNF-α) and
transforming growth factor α (TGF-α)-induced sig-
naling pathways. We previously observed that both
TNF-α and TGF-α stimulation of HepG2 cells acti-
vated the c-Jun N-terminal kinase (JNK)/c-Jun
pathway while only TGF-α stimulation activated
the mitogen-activated protein kinas (MEK)/extra-
cellular regulated kinase (ERK) pathway and only
TNF-α stimulation activated the nuclear factor
kappa B (NF-κB) pathway [17]. These pathways ac-
tivate a variety of transcriptional programs; here,
we focused on activator protein 1 (AP1) transcrip-
tion factor activation, which involves the oligomer-
ization of c-Jun and Fos. We postulated from litera-
ture evidence that ERK phosphorylates Fos, which
facilitates its dimerization with c-Jun, thus forming
AP1 heterodimers. Alternatively, c-Jun can be
phosphorylated via the JNK pathway and dimerize
to form AP1 homodimers [20–22]. To demonstrate
Q2LM analysis, we question whether inhibiting the
activation of MEK, ERK, or JNK would increase the
amount of AP1 homodimers.

From our understanding of this simple biologi-
cal system, we specified the interactions between
species in the network (Fig. 2A). In most cases, in-
creasing the value of the input species increased
the value, or activity, of the output species. Howev-
er, there were a few cases of inhibitory interactions:
IκB sequesters and inhibits the activity of NF-κB,
and increased activity of IκB kinase (IκK) decreas-
es the ability of IκB to sequester NF-κB. For this
 example, we also assumed that there was limited
c-Jun available in the system which resulted in
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 stoichiometry-driven inhibitory relationships be-
tween AP1 hetero- and homodimers because the
presence of one dimer form indicated that there
was less c-Jun available to form the other.

To convert these interactions into a logic model
(Fig. 2B), we considered species with more than
one parent input species for possible AND logic re-
lating the species. Two parent inputs (TGF-α and
TNF-α) activated JNK, but they did so independ-
ently of one another. Thus, this gate was an OR (not
an AND gate). The AP1 heterodimers species also
had more than one parent input species (c-Jun, Fos,
and NOT AP1 homodimers). Because a het-
erodimer consists of both c-Jun and Fos, both were
necessary to increase the amount of heterodimer,
and an AND gate was used to model their logic. The
presence of AP1 homodimer limits the amount of
AP1 heterodimer, but only when c-Jun and Fos are
present to make a heterodimer. Thus, it was also a
parent input for the AND gate.

Finally, we wrote our logic model in a spread-
sheet compatible with Q2LM (Fig. 2C). For most
model parameters, we were uncertain of their val-
ues, so reasonable defaults were chosen. However,
from our initial dataset, we knew that TGF-α did

not activate the JNK pathway as strongly as TNF-α
in HepG2 cells [17], but since we were not certain
of the relative activating potentials we made sever-
al models, each with a different gain parameter for
this interaction. This was indicated in the spread-
sheet by including an array of gain parameters in
the corresponding entry (Fig. 2C). Additionally, we
added normally distributed noise to each parame-
ter when the model was loaded to simulate biolog-
ical noise.

We queried our intracellular signaling model to
determine if inhibiting MEK, ERK, and JNK alone
or in combination would increase AP1 homodimers
in specific environments composed of varying lev-
els of TNF-α and TGF-α alone or in combination
(Fig. 2D). We simulated these environments with
partial or complete inhibition of MEK, ERK, and
JNK and then compared the resulting levels of AP1
homodimers with the levels that resulted without
inhibition. This information was encoded in two in-
put files: (i) the “Scenario” file included the envi-
ronments and species to perturb with inhibition
(Fig. 3A) and (ii) the “Criteria” file specified that the
software should return experimental conditions
that increase AP1 homodimers (Fig. 3B).

Figure 2. Converting posited interac-
tions of intracellular signaling into a
logic model. (A) The relationship be-
tween species in an intracellular signal-
ing network is depicted graphically.
Grey dashed blunted arrows indicate in-
hibitory interactions. (B) To convert the
posited interactions in A into a logic
model, we consider if the logic describ-
ing the relationship between input and
output species should include an AND
gate for species with more than one in-
put, and find that AND gates are neces-
sary for description of formation of AP1
homo- and heterodimers. AND gates
are indicated by the input species linked
to a small circle, which is further linked
to the output species. (C) The logic
model is recorded as a spreadsheet to
be loaded into the Q2LM software. The
first three columns specify which
species interact as well as the logic of
these relationships. The last three
columns specify the parameters of the
transfer functions of the interaction
contained in that row. (D) Q2LM has
been specifically designed to ask aca-
demically and industrially relevant ques-
tions.
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Q2LM results revealed perturbations that met
our criteria of increased values of AP1 homodimers
(Fig. 3C). We found that partially or completely in-
hibiting ERK and/or MEK increased AP1 homod-
imers in environments featuring high values of
TGF-α stimulation, but had minimal effect in those
with low values of TGF-α stimulation. Because this

example served only to illustrate the use of Q2LM,
a test of this hypothesis was out of the scope of this
paper. However, we note that because the software
asked questions of the model in a manner analo-
gous to experimental queries, experimental tests
are easy to specify. For this example, a follow-up
experiment to test this hypothesis would be to

Figure 3. Q2LM files for examining intracellular signaling logic model. (A) Example of a scenario file that Q2LM imports to simulate experimental pertur-
bations in a variety of environmental conditions. A detailed description of all file types is provided in the software’s manual. In this case, environments with
partial or full stimulation of TNF-α and TGF-α alone or in combination will be simulated with inhibition of the “Experimental” species JNK, ERK, and
MEK at levels listed in the “Values” column alone or in combination, where the maximum number of species to inhibit at any one time is listed in the
“MaxNum” column. (B) Example of a criteria file. Simulation results from environments with perturbation are compared to environments without pertur-
bation and Q2LM calculates if the criteria have been met. In this case, the criterion is that the AP1HomoDim species increase in value by at least 0.25 with
perturbation compared to without. (C) Example of portion of a Results file Q2LM outputs to indicate, for each environment, the values of perturbation that
met the criteria in 3B and in what fraction of models they were effective. Ellipsis indicates conditions of intermediate doses that were not included. Tested
environments for which no perturbation met the criteria are not listed.
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stimulate cells with low and high concentrations of
TGF-α in the presence or absence of ERK or MEK
inhibition and to measure the resulting AP1 ho-
modimer levels.

We next investigated how the system evolved
during model simulation (Fig. 4A). It was apparent
that the values of the AP1 homo- and heterodimers
oscillated in several inhibition conditions. This is a
common occurrence in models with feedback that
have been simulated with discrete updating [14].
However, Q2LM offers a novel treatment for such
cases in which the system of equations specifying
the network is solved for the steady state solution
of environment/perturbation combinations that
exhibit oscillations (Supporting information). In
this case, we observe that AP1 homo- and het-
erodimers oscillated due to the negative feedback
between them in the absence of perturbation (Fig.
4B). However, the steady state solution of these was
calculated to 0.5 because the feedback “balanced
out” to an intermediate value. In inhibitor combi-
nations that met the designated criteria, no oscilla-
tions were observed (Fig. 4C). Instead, the values of
the homo- and heterodimer species approached
unity and zero, respectively. Thus, these conditions
increased homodimers because they were no
longer limited by negative feedback from het-
erodimers. By examining the system evolution, we
confirmed that the conditions met our criteria.

3.2 Logic-based modeling of pharmacokinetics of
G-CSF

For our second example, we investigated whether
Q2LM could be useful for multiscale models of
physiological significance by using it to address the
(PK/PD) of G-CSF (Fig. 5A). G-CSF is administered
intravenously to stimulate the maturation of pre-
cursor neutrophils to restore neutrophil levels in
situations generating neutropenia, such as
chemotherapy treatment. After binding its recep-
tor, G-CSF is internalized and either degraded in
endosomes or recycled back into the bloodstream.
Additionally, G-CSF is cleared from the blood
through non-specific clearance mechanisms, pri-
marily renal clearance. Sarkar et al. used a DE mod-
el of G-CSF PK/PD to predict that when non-spe-
cific mechanisms are not the dominant mechanism
of clearance, decreasing the rate of endosomal
degradation of G-CSF is more effective in stimulat-
ing neutrophil maturation than increasing the
binding affinity of G-CSF to its receptor [23]. This
insight was consistent with the effects of engi-
neered G-CSF variants in vitro [24] but had not
been verified in vivo. Here, we examined whether a
simpler cFL model would allow us to reach compa-

rable conclusions without the requirement of esti-
mating model parameter value for a complicated
mechanistic DE model.

We first converted the linguistic description of
the G-CSF system above to a cFL model (Fig. 5B).
Although no dedicated experimental data were
used to train this model in a traditional sense, it was
derived from literature knowledge describing
PK/PD of G-CSF [25, 26]. Rather than using kinet-
ic parameters to describe intracellular trafficking
and non-specific clearance mechanisms, we use an
AND gate to model these processes as limiting the
amount of G-CSF available in the bloodstream
(Supporting information). The logic description
therefore allowed us to easily relate tissue level
phenomena to cellular- and molecular-level phe-
nomena.

To validate that the cFL model recapitulated
known system behavior, we simulated model be-
havior under several conditions and plotted the
species’ values at each simulation step. We found
that with decreasing clearance, the maximum val-
ue of both mature neutrophil (N) and G-CSF in the
blood (bloodGCSF) species values increased (Fig.
5C). Although these species eventually reached a
value of zero due to G-CSF degradation via recep-
tor-mediated endocytic uptake, in some cases these
decreases occurred at later simulation steps. This
result agrees with how we understand the system
to behave: a decrease in rate of clearance leads to
an increase in total amount of G-CSF that reaches
precursor neutrophils due to increased half-life,
but G-CSF is nevertheless eventually cleared from
the system. From this analysis, we identified two
criteria to consider for assessing the impact of a
perturbation on the N and bloodGCSF species: (i)
maximum value attained; and (ii) the number of
simulation steps during which the nodes were at a
value greater than zero.

Having established that the model was recapit-
ulating known behavior, we explored the effects of
altering G-CSF properties on physiological effec-
tiveness, as measured by N and bloodGCSF levels.
In particular, we calculated the above criteria under
two conditions: (i) diminished degradation mod-
eled by multiplying the pNdegGCSF and NdegGCSF
species by a percent inhibition; or (ii) enhanced
binding modeled by increasing the minimal value
of the boundGCSF species. We then compared the
values of criteria under these conditions to those
from simulations with no such perturbation (Fig.
6A, B). Our results indicated that when the degra-
dation nodes (pNdegGCSF and NdegGCSF) were
inhibited by more than 50% at low values of clear-
ance, there was a substantial increase in the num-
ber of simulation steps for the bloodGCSF species
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Figure 4. Species values as a function of simulation step for intracellular signaling model. (A) For each indicated species, the median value for all models
at the final 19 simulation steps is shown (Q2LM does not save all simulation steps when memory is a limitation) along with the final value calculated by
the solver, which has been copied several times for visualization. Upper and lower error bars indicate the third and first quartile, respectively. Simulation
conditions: TGF-α = 1; TNF-α = 1; Perturbation with different combinations of JNK, MEK, and ERK inhibition is indicated by different line color. Different
line styles represent different models. (B) Median value for AP1 homo- or heterodimers with no inhibitor perturbations. (C) Median value for AP1 homo- or
heterodimers for inhibitor combinations that met criteria of increasing the value of AP1HomDimer by at least 0.25 in at least 25% of the models.
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to reach zero. However, there was no effect on max-
imal value of N or bloodGCSF (Fig. 6A). On the oth-
er hand, increasing binding by setting the mini-
mum of the pNboundGCSF species to a value
greater than zero resulted in no decay of the N node
(i.e., a logic steady state value greater than zero, Fig.
6B). This result was expected because the pN-
boundGCSF species directly activated the N

species, so fixing the minimum value of one should
directly affect the value of the other. This effect was
also reflected in an increase in the maximum value
that the N species attained. However, the maximal
value of the bloodGCSF species did not increase,
and in fact the number of simulation steps for the
bloodGCSF species to reach zero decreased in
many conditions (Fig. 6B). These results provided a

Figure 5. Development of logic model of G-CSF administration. (A) Depiction of G-CSF pharmacokinetics at the tissue, cellular, and molecular level,
adapted from [23]. (B) Logic model based on 5A. All transfer functions have default parameters g = 1; n = 3; and EC50 = 0.5. Arrow labels indicate the follow-
ing steps of the pharmacokinetics of the molecule: (1) When G-CSF is administered intravenously (doseGCSF), it enters the bloodstream where it is subject
to (2) nonspecific clearance (clearance). (3) Precursor neutrophils (pN) possess receptors (pNR), which (4) bind G-CSF in the blood (pNboundGCSF). 
(5) Bound G-CSF can be degraded (pNdegGCSF), and (6) what is not degraded is recycled back into the bloodstream (pNrecGCSF). (7) Bound G-CSF also
stimulates proliferation and differentiation into mature neutrophils (N). (8) Mature neutrophils possess receptors (NR) that can (9) bind G-CSF (Nbound-
GCSF). Bound G-CSF is then (10) degraded (NdegGCSF) or (11) recycled (NrecGCSF). (12) Value of G-CSF in the blood (bloodGCSF) is limited by the dose,
clearance, and amount recycled. (13) An additional species bodyGCSF represents the exchange of G-CSF from the blood to the body cavity and is necessary
in the logic model to ensure that the bloodGCSF node is also limited by its own value. (C) The G-CSF logic model was simulated under non-limiting precur-
sor neutrophils and dose conditions (pN = 1 and doseGCSF = 1) with multiple levels of clearance (0, 0.1, 0.2, etc.). Median value of the neutrophil and G-
CSF levels in the blood nodes (N and bloodGCSF) were plotted as a function of simulation step, with error bars indicating the first and third quartile of pre-
dictions of 100 models with normally distributed noise with a standard deviation of 5% added to the transfer function parameters. As levels of clearance
decreased, maximal values of N and bloodGCSF increased as well as the number of simulation steps until the species values decreased to zero. Further
analysis indicated adding noise with a standard deviation of up to 25% led to identical conclusions for all results.



© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 383

Biotechnol. J. 2012, 7, 374–386 www.biotechnology-journal.com

Figure 6. Effect of perturbations to G-CSF pharmacokinetics on criteria. In all parts, perturbations to (A, B) species or  (C,D) model parameters were made
when the G-CSF logic model was simulated under non-limiting precursor neutrophils and dose conditions (i.e., pN = 1 and doseGCSF = 1) with multiple
levels of clearance (0, 0.1, 0.2, etc.), with each color and line style corresponding to a different fixed value of the clearance species as shown in the legend in
the rightmost panel for each part. Median effects are plotted, with error bars indicating the first and third quartile of predictions of 100 models. (A) The
median effect of increasing inhibition of the pNdegGCSF and NdegGCSF nodes on each criteria. (B) The median effect of varying the minimal possible val-
ue of the pNboundGCSF node. Because the N species was not observed to decay in these simulation, the first panel is the increase in logic steady state val-
ue of N, instead of number of steps until decay. (C) The median effect of changing the gain of the transfer function relating pNboundGCSF to pNdegGCSF
and NboundGCSF to NdegGCSF on each criteria. (D) The effect of changing the EC50 of the bloodGCSF to pNboundGCSF interaction.
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first indication that inhibiting degradation was the
better strategy for increasing numbers of mature
neutrophils.

As a complementary approach, we examined
the effect of varying the parameters controlling the
processes of binding and degradation (Fig. 6C, D).
We varied the gain parameter of the boundGCSF-
to-degGCSF transfer function to represent varying
the fraction of boundGCSF that was degraded, and
found that these results recapitulated those ob-
tained when the degradation nodes were inhibited:
Steps to decay of bloodGCSF and N increased with
no effect on the maximal level of these species (Fig.
6C). We also decreased the EC50 parameter of
bloodGCSF to pNboundGCSF to represent an in-
crease in binding affinity. By definition, decreasing
the EC50 results in an increase in the value of pN-
boundGCSF for a given value of bloodGCSF. This
perturbation led to a corresponding increase in
maximum value of N while the value of bloodGCSF
remained constant for intermediate values of
clearance (Fig. 6D). At high or low values of clear-
ance, this effect was not observed, pointing to an-
other interesting aspect of our system: At high val-
ues of clearance, bloodGCSF never reached a value
large enough to activate the pNboundGCSF and N
nodes while at low values of clearance, the N
species reached a large value at the default EC50, so
only minimal effects were observed when affinity
was further increased. Changing these parameter
values had no substantial effects on the number of
simulation steps until decay.

In summary, these results indicated that while
increasing the binding affinity of G-CSF to its re-
ceptor might result in an increase in N for a given
level of bloodGCSF (Fig. 6D), this effect occurred in
a limited range of clearance values, and an increase
in bound receptor was predicted to have the dele-
terious effect of decreasing the number of simula-
tion steps required for decay of bloodGCSF (Fig.
6B). In contrast, decreasing the amount of degrada-
tion consistently increased the number of simula-
tion steps required for decay of bloodGCSF (Figs.
6A and 6C). We therefore concluded that decreas-
ing degradation of G-CSF is the superior strategy
for stimulating neutrophil maturation.

Thus far, we have used in silico logic model sim-
ulations to generate hypotheses about optimization
of G-CSF potency in living systems. This work sug-
gested decreasing degradation of receptor bound
G-CSF is an effective strategy for improving poten-
cy in vivo. In previous work, a mutant G-CSF with
weaker receptor binding affinity at the endosomal
pH exhibited decreased degradation in vitro
through increased recycling of internalized recep-
tor, resulting in increased potency of the molecule

in vitro [24]. To examine whether decreased degra-
dation had any effect in an in vivo setting, we de-
termined white blood cell (WBC) counts in mice
that were first treated with 5FU for 24 h to inhibit
haematopoiesis followed by treatment with wild-
type G-CSF or mutant G-CSF engineered for in-
creased dissociation at an endosomal pH (mutant
D113H), which reduces its degradation through in-
creased recycling. In accordance with the modeling
prediction, the mutant G-CSF was more effective in
increasing WBC count than wild-type G-CSF (Fig.
7). This result illustrated that cFL models can faith-
fully represent complex multi-scale systems and
that the hypotheses generated from the Q2LM
analysis presented here were relevant to both in
vitro and in vivo settings.

4 Discussion

In this work we presented Q2LM as a means for
generating insights from cFL models of biological
systems based on literature knowledge. We queried
the models to address two questions relevant to
translational research: (i) “Which therapeutic per-
turbation of a system will result in a pre-defined
clinical goal?”; and (ii) “In which environments will
these perturbations be effective?”We used this soft-
ware framework to explore two biological systems
of different scales. With the first, an intracellular
signaling model, we illustrated use of the software

Figure 7. In vivo increase in WBC associated with decreased G-CSF degra-
dation. White blood cell count was higher in mice treated with a mutant
G-CSF engineered for decreased degradation via increased dissociation in
the endosomal compartment (D113H) than those treated with wildtype
G-CSF. Five animals were treated with 5FU to inhibit haematopoiesis 24 h
prior to treatment with the colony stimulating factor. “Veh” denotes sham
treatment with PBS rather than 5FU. *p < 0.001 versus vehicle-treated
controls.
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to make testable hypotheses. This model exempli-
fied several important features of Q2LM, including
the ability to solve for steady state of oscillating
species. In order to create an appropriately simple
example, we neglected several AP1 dimer forms
known to be important in physiologic response
(most notably the c-Jun-ATF2 dimer [20–22]). Thus,
a more complete model should be constructed to
make reliable predictions regarding the affect of in-
hibition on AP1-mediated transcription. With the
second, a multi-scale model of G-CSF administra-
tion, we generated and tested hypotheses to show
that a logic model was able to recapitulate the ex-
perimentally validated results of a mechanistic or-
dinary differential equation without the prerequi-
site of estimating a multitude of kinetic parameters.

Building a logic model requires a significant
amount of abstraction of the system to convert a lin-
guistic description into logic gates. For intracellular
signaling networks, this process is natural because
relationships between proteins are commonly de-
scribed in terms of their influence (e.g., “phospho-
rylation by JNK activates c-Jun” and “TGF-α stimu-
lation activates the MEK/ERK pathway”). However,
for describing interactions at the tissue, cellular, and
molecular level, this process is arguably less intu-
itive, in part because the relationships between
these types of interactions and logic gates are less
obvious (e.g., it is initially unclear how “binding a
receptor” and “intracellular degradation” can be de-
scribed with logic gates; see Supporting informa-
tion). Nevertheless, with our logic model of G-CSF
we demonstrated that transforming such linguistic
descriptions into a logic model can provide valuable
insights into the operation of a system.

Along with abstracting the relationships be-
tween species by describing them as logic gates, the
concepts of time and amount are also abstracted in
a logic model. The plots presented in Figs. 4 and 5C
appear similar to time courses. However, the values
of species were plotted as a function of simulation
step, not time. Thus, these plots allow one to direct-
ly “follow the logic” of environmental conditions
and perturbations, which is not equivalent to ex-
amining the value of a species as a function of time.
The exact relationship between simulation steps
and time cannot be ascertained without additional
information regarding the dynamic behavior of the
system. Similarly, the meaning of the values of
species in relation to a physical descriptor such as
concentration is unclear without additional infor-
mation. Nevertheless, the relative values of species
in simulations of the same model carry inter-
pretable information regarding the qualitative ef-
fect of perturbations (e.g., the value of N is nonze-
ro for more simulation steps when degradation is

inhibited than when it is not) that suggest a testable
hypotheses (e.g., inhibiting degradation will lead to
greater neutrophil maturation).

One of the main results of this work is a “seam-
less” approach to multi-scale modeling, exempli-
fied by our logic model of G-CSF administration
that integrates ligand/receptor binding and endo-
cytic trafficking at the molecular level, the transi-
tion between differentiation states at the cellular
level, and systemic pharmacokinetics at the tissue
level. The insights from this model were validated
both in vitro and in vivo. Thus, the relevance of this
model to the therapeutic administration of other
receptor agonists should be considered. Because
intracellular trafficking is important for cellular re-
sponses to other stimulatory ligands such as epi-
dermal growth factor (EGF) and interleukin 2
(IL-2) [27], it is likely that the insights from this
model will be applicable to the administration of
these molecules. More broadly, these results may be
applicable to therapeutics for which endosomal
degradation is an important mechanism for clear-
ance, underscoring the importance of understand-
ing intracellular trafficking when administering re-
ceptor agonists as therapeutics [28–30].

From this work, we submit that our Q2LM
framework holds promise for effective use toward
generating testable hypotheses of interest in aca-
demic and industrial settings. Additionally, the fur-
ther development of cFL will enable the prediction
of perturbation effects on a complex system with-
out requiring a large amount of experimental data,
thereby facilitating the use of mathematical models
for guiding scientific decisions.
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