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)e Brain-Computer Interface (BCI) permits persons with impairments to interact with the real world without using the
neuromuscular pathways. BCIs are based on artificial intelligence piloted systems.)ey collect brain activity patterns linked to the
mental process and transform them into commands for actuators.)e potential application of BCI systems is in the rehabilitation
centres. In this context, a novel method is devised for automated identification of the Motor Imagery (MI) tasks.)e contribution
is an effective hybridization of the Multiscale Principal Component Analysis (MSPCA), Wavelet Packet Decomposition (WPD),
statistical features extraction from subbands, and ensemble learning-based classifiers for categorization of the MI tasks. )e
intended electroencephalogram (EEG) signals are segmented and denoised. )e denoising is achieved with a Daubechies al-
gorithm-based wavelet transform (WT) incorporated in the MSPCA. )e WT with the 5th level of decomposition is used.
Onward, the Wavelet Packet Decomposition (WPD), with the 4th level of decomposition, is used for subbands formation. )e
statistical features are selected from each subband, namely, mean absolute value, average power, standard deviation, skewness, and
kurtosis. Also, ratios of absolute mean values of adjacent subbands are computed and concatenated with other extracted features.
Finally, the ensemble machine learning approach is used for the classification of MI tasks.)e usefulness is evaluated by using the
BCI competition III, MI dataset IVa. Results revealed that the suggested ensemble learning approach yields the highest clas-
sification accuracies of 98.69% and 94.83%, respectively, for the cases of subject-dependent and subject-independent problems.

1. Introduction

A Brain-Computer Interface (BCI) allows individuals to
use electroencephalogram (EEG) signals to operate ex-
ternal equipment such as virtual worlds, robots, or
spelling machines.)e fundamental objective of the BCI is
to use brain signals to create the required commands to
control peripherals. )e most important application is to
bypass injured areas of the body or stimulate partly
paralyzed organs. BCI devices are viewed as the best
solution to mitigate problems for persons with various
neuromuscular impairments such as spinal cord damage,
amyotrophic lateral sclerosis, cerebral palsy, and stroke
[1].

BCI systems may be divided into two categories based
on the EEG signals collection methods: noninvasive and
invasive. Because of the ease of usage, much current re-
search has focused on noninvasive BCIs. Event-related
potentials, steady-state visual-evoked potentials, and slow
cortical potentials are the three main noninvasive BCI
approaches [2]. In noninvasive approach, different EEG
signals can be utilized in BCI. Within the EEG alpha and
beta frequency regions of the brain signals, BCI systems
typically employ Motor Imagery approaches to produce
event-related actions. )is form of BCI is mostly utilized
for cursor control on computer screens and wheelchair
navigation or in virtual environments. Several Motor
Imagery (MI) techniques are commonly used, including
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tongue movement, left/right hand movement, foot
movement, and mental counting [3]. )e goal of BCI
technology is to assist people with brain diseases including
cerebral palsy, amyotrophic lateral sclerosis, and motor
neuron disease. EEG is commonly used as a tool for the BCI
system [4, 5]. Based on phenomena of event-related syn-
chronization (ERS) and event-related desynchronization
(ERD), scientists can interpret and identify MI-related
brain signals. )e translation of imagination to action
involves ERS and ERD. Both ERD and ERS are presented by
variations in the EEG signal’s oscillatory behaviour and can
be investigated by the time-frequency analysis to identify
the MI tasks [6]. MI is characterized as a human brain’s
ability to resynthesize motor experiences with no obvious
movement. Such mental images may both appear con-
sciously and be created and controlled deliberately by a
subject making MI, which is a flexible and usable method
for examining processes of human cognition and motor
activity. As various studies have shown, MI uses almost the
same neural framework as motor execution, which enables
motor activity to be altered by MI training. )e MI-based
BCI uses variations in the cortical sensorimotor rhythms
(SMR), generally ERD related to the different sensorimotor
events, including MI [7]. In addition, BCI may serve as a
technical bridge for the management of Active and Assisted
Living (AAL) systems in the sense of intelligent environ-
ments and smart homes. As with any other traditional AAL
device interface, the consumer needs to view BCI-enabled
control as simple and normal as possible in order to en-
courage BCI acceptance and effectiveness [8].

Computer-based automated MI signal detection is es-
sential for providing continuous assistance to the intended
patients. )e preprocessing, feature extraction, dimension
reduction, and classification are all parts of the EEG-based
automated MI signal detection approaches [9, 10].

Feature extraction and dimension reduction are the most
critical aspects of the classification system for EEG-based MI
signals since they greatly affect classifier efficiency and
computational complexity. If the features retrieved from EEG
signals include irrelevant characteristics, the classifier’s per-
formance will suffer. )e amount of features determines the
classifier’s processing cost. As a result, extracting the ap-
propriate amount of relevant features from EEG-based MI
signals is critical for achieving high classification performance
and computational effectiveness for a classifier [9]. In this
study, the dataset IVa from the BCI competition is utilized in
the experiments [11]. AA, AL, AV, AW, and AY are codes of
five healthy participants that contributed to this dataset. Two
classes of MI activities, right hand and right foot movement,
referred to as class 1 and class 2, respectively, are involved.

1.1. Contribution. )e main objective of this work is to
extract relevant features from the EEG signals and to design
a classifier that can effectively recognize the intended MI
tasks.

)e major contributions are to propose a novel hy-
bridization of the Multiscale Principal Component Analysis
(MSPCA), Wavelet Packet Decomposition (WPD),

subbands statistical features selection, and ensemble
learning technique for automated classification of the MI
tasks. )e functional steps are as follows:

(i) )e Multiscale Principal Component Analysis
(MSPCA) is used for denoising.

(ii) )e Wavelet Packet Decomposition is used for
producing the subbands.

(iii) )e six different statistical features are extracted
from each subband. )ese are mean absolute value,
power, standard deviation, skewness, kurtosis, and
ratio of absolute mean values of adjacent subbands.

(iv) )e extracted features are passed to the proposed
ensemble learning-based classifiers for automated
identification of the MI tasks.

1.2. Organization. )e remainder of the paper is organized
as follows. Section 2 presents a literature review. In Section 3,
materials and methods are introduced, Section 4 discusses
the results, and the conclusion is presented in Section 5.

2. Literature Review

)e loss of motor function is one of the most concerning
effects of injury or disease to the nervous system. )e BCI
assistive technologies have allowed artificial prostheses,
wheelchairs, and computers to be controlled by the electrical
activity of the brain in this decade. )e major challenges in
the BCI systems are precision and processing effectiveness.
)e current systems have high computational complexity
and need advanced and resourceful processing systems to
attain a real-time response. Additionally, their classification
performance and robustness need to be improved. In this
context, several studies have been presented [12, 13].

Zarei et al. [9] used a combination of the Principal
Component Analysis (PCA) and the cross-covariance
(CCOV) method for features extraction from the EEG
signals for the BCI application. )e multilayer perceptron
neural networks (MLP) and Least Square Support Vector
Machine (LS-SVM) are used for classification. )e perfor-
mance of the system is tested by using the BCI competitions
dataset IVa. Kayikcioglu and Aydemir [10] extracted fea-
tures from the EEG signals by using two-dimensional fea-
tures mining from the 2nd order polynomial coefficients.
)en, the functions are categorized using the algorithm
k-nearest neighbor (k-NN). )ey achieved considerable
enhancement in speed and accuracy while evolving the
performance for the dataset Ia from the 2003 BCI compe-
tition. Leamy et al. [12] conducted a comparative experi-
mental research, from a machine learning perspective, for
MI-related EEG features in stroke subjects. )ey try to
explore if such features are generalizable to use trained
machine learning parameters employing healthy subjects
and stroke-affected patients. If BCI is trained with appro-
priate data, it gives relatively good results to stroke patients;
then such a deployment model will make BCI far more
realistic in a clinical setting for stroke recovery. On the other
hand, if the stroke-affected EEG is significantly different
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from healthy EEG or changes over time, it may need more
sophisticated architecture from a machine learning per-
spective for the realistic implementation of BCI in such a
setting.

Li et al. [13] proposed a new approach for MI pattern
identification. It combines a common spatial pattern algo-
rithm for frequency band selection and features selection,
and the classification is carried out with the particle swarm
optimized twin Support Vector Machine. )ey used datasets
IIb of BCI competition IV to test the proposed system. For a
classification task, Kevric and Subasi [14] employed
MSPCA-based denoising of the EEG signals. Comparison
among three features extraction techniques, namely, the
Empirical Mode Decomposition (EMD), Discrete Wavelet
Transform (DWT), and WPD, is conducted. )e extracted
features sets are classified by using the k-Nearest Neighbor
(k-NN) algorithm. )e system performance is tested by
using the publicly available BCI competition III dataset IVa.
Miao et al. [15] have suggested an EEG signals channel
selection method. It uses the linear discriminant criteria for
automated selection of channels with strong discriminative
capabilities. Furthermore, the artificial bee colony algorithm
is used for dimension reduction. )e performance is tested
by using the dataset IVa from the BCI competition III. In
[16], Baali et al. have used a signal-dependent orthogonal
transformation for features extraction. )e classification is
carried out by using a tree-based logistic model classifier. In
[17], Chaudhary et al. used the flexible analytic wavelet
transform (FAWT) for features extraction. )e classification
is carried out with ensemble learning-based subspace
k-Nearest Neighbor (k-NN) classifier. In [18], Rahman et al.
have used the Rényi min-entropy-based features extraction
approach. )e extracted features are used for classifying 4
different BCI categories by using the Random Forest (RF)
algorithm. )e performance of the proposed method is
evaluated by using the BCI competition IV dataset.

Khare and Bajaj [19] employed the extreme learning
machine-based classification of the MI tasks. )e channels
selection is realized by using the multicluster unsupervised
learning approach. )e signal decomposition is performed
by using a flexible variational mode decomposition (F-
VMD). Pertinent features from different modes are ex-
plored, namely, hjorth, entropy, and quartiles. In [20], the
authors have used the flexible analytic wavelet transform
(FAWT) for signal decomposition. Time-frequency attri-
butes are calculated from subbands. )e PCA, kernel PCA
(KPCA), locally linear embedding (LLE), and Laplacian
Eigenmaps (LE) are used for feature selection. )e Linear
Discriminant Analysis (LDA) algorithm is used for the
classification. )e performance is tested by using the BCI
competition III dataset IIIb.

Tiwari et al. [21] proposed a Deep Neural Network
(DNN) model for automated identification of the MI tasks
by utilizing the EEG signals. )e Power Spectral Densities
(PSDs) are extracted as features from subbands by applying a
bank of Butterworth filters.)e performance is tested for the
BCI competition III and V dataset MI tasks. Musallam et al.
[22] utilized a Convolutional Neural Network (CNN) model
that incorporates a number of different methods, including

temporal convolutional networks (TCNs), separable con-
volution, depthwise convolution, and layer fusion. )e
intended EEG signals are processed by two successive 1D
convolution stages. )e first in the time domain and sub-
sequently channelwise and the second based on the image-
like representation are used as an input of the main TCN.
)e performance is tested by using the BCI competition IV,
IIa dataset.

3. Materials and Methods

)e proposed system’s framework is shown in Figure 1. A
description and parameterization of different system
modules are given in the following section.

3.1. Dataset. )e suggested system performance is evaluated
by using the well-known BCI competition III, dataset IVa1
[11]. AA, AL, AV, AW, and AY are codes of five healthy
participants that contributed to this dataset. )ey completed
two classes of MI activities involving right hand and right
foot movement, referred to as class 1 and class 2, respec-
tively. Subjects are seated in comfortable chairs with arm-
rests. )e EEG signals are acquired from 118 electrodes,
mounted by following the 10/20 globally accepted standard.
Each considered subject performed 140 trials of each cat-
egory. Being two considered classes of tasks, it resulted in a
total of 280 trials per subject. Each trial is carried out for a
duration of 3.5 sec. For each category, the data is made up of
different-sized training and testing sets.

)e training set for subjects AA, AL, AV, AW, and AY
has 168, 224, 84, 56, and 28 trials, respectively.)e testing set
consists of 112, 56, 196, 224, and 252 trials for participants
AA, AL, AV, AW, and AY, respectively.

)e EEG signals are originally recorded at a rate of 1 kHz.
)ese EEG signals are bandlimited to 50Hz by using digital
filtering and are onward downsampled to the rate of 100Hz
[11]. )ese downsampled versions of signals are used in this
study. )e EEG signals from only three channels (C3, Cz, and
C4) are selected from a total of 118 available channels. )is is
because these channels contain the most discriminatory fea-
tures onMotor Imagery activities involving the hands and feet.
For each patient, 280 EEG segments of 3.5 seconds, with 3
selected channels, are prepared [11]. )ese are from two
categories: right hand and foot. In total, 1400 EEG instances
were used for the five mentioned subjects. )ey belong to the
two considered classes of the MI tasks.

3.2. Denoising with Multiscale Principal Component Analysis
(MSPCA). Inmultivariate statistical analysis, the PCA is one
of the most important models. Let a measurement dataset
with m sensors exist, such as xϵRm. Each sensor in the
measurement sample contains n separate sampling data,
which are combined into a data matrix of size mxn. )e
process is given by

X � x1, x2, x3, . . . , xn􏼂 􏼃. (1)

Each row of X represents a sample, and each column
represents a measurement variable. )e PCA model begins
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by standardizing each sample of X by computing the co-
variance matrix of X. )e process is given by

cov(x) ≈
X

T
. X

n − 1
. (2)

)e size of the feature values is ordered from large to
small when the feature decomposition of X is done. )e
process of decomposing X in its principal components is
given by equation (3), where PϵRm×A contains first A feature
vectors of cov(x). TϵRn×A is a matrix, where each column is
known as the principal element variable. A is the count of
principal components, and it is equal to the number of
columns in T.

X � 􏽢X + Er � T.P
T

+ Er,

T � X.P.

⎧⎨

⎩ (3)

Equation (4) can be used to determine the principal
component’s covariance, where λ1, λ2, . . . , λn are the first A

large eigenvalues of the covariance matrix of X.

Λ �
X

T
.X

n − 1
�

λ1 . . . . . . · ·

. . . · λ2 . . . ·

.

.

. . . . . . . . . · λn
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. (4)

In this paper, the wavelet transform is combined with the
Principal Component Analysis (PCA) to create MSPCA for
the incoming signal denoising purpose. )e principle of
wavelet transform is described in Section 3.3. In this study,
the 5th level of decomposition is realized by using the

Daubechies wavelet analysis algorithm [23]. MATLAB is
used for implementing the wavelet transform [24].

)e ability of standard PCA is enhanced by incorpo-
rating the multiscale analysis. Collectively, it results in the
multiscale PCA (MSPCA) [25]. In MSPCA, the PCA’s ca-
pacity to extract covariance between variables is combined
with orthonormal wavelets’ ability to distinguish deter-
ministic features from stochastic processes and approxi-
mately decorrelate the autocorrelation across observations.
It identifies linearly related wavelet coefficients at multiple
level subbands, obtained with wavelet transform. It allows
representing each considered subband with fewer features
while removing the autocorrelated coefficients. It results in a
simplified representation of the considered subbands at each
level of decomposition. )e EEG waveforms are decom-
posed by using the Daubechies wavelet analysis algorithm
with the 5th level of decomposition. In the next step, the
PCA of detailed coefficients, obtained at each level, is utilized
to select the principal components at each scale. Onward, the
signal is reconstructed by using the wavelet synthesis. It
diminishes the unwanted noise from the incoming signal
and generates a simple and noise-free signal version [25, 26].
MATLAB is used for implementing the MSPCA [24].

3.3. Features Extraction with Wavelet Packet Decomposition
(WPD). Wavelets are well-known functions and widely
used for multiresolution time-frequency analysis. Wavelets
can be mathematically described by equation (5) [23], where
the dilation parameter is represented by s and the translation
parameter is represented by u. )e parameters can be
generated at the same time with different frequencies.

ψ(t) �
1
�
S

√ ψ
(t − u)

s
􏼠 􏼡. (5)
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Figure 1: )e system block diagram.
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)e process of decomposing a signal x (t), by using
wavelet transform, can be given by

WX(u, s) �
1
�
S

√ 􏽚
+∞

−∞
x(t)ψ∗

(t − u)

s
􏼠 􏼡dt. (6)

A discrete version of the wavelet transform (DWT) is
used in this study. )e selection of the right number of
wavelet decomposition levels, m, is the first key step in the
DWT decomposition. )e incoming signal x[n] passes
concurrently through both the high-pass and low-pass fil-
ters, h[k] and l[k]. For the mth scale level, the output is
represented by two subbands, namely, Detail (Dm) and
Approximation (Am). )e process is clear from equations
(7) and (8), where H is the order of filters used at different
decomposition stages:

Dm[k] 􏽘
H

k�1
x[n].h[2.k − n], (7)

Am[k] 􏽘
H

k�1
x[n].l[2.k − n]. (8)

)e Wavelet Packet Decomposition is known as the
extension of Discrete Wavelet Transform (DWT).)e DWT
mainly focuses on the low-frequency components, known as
approximate coefficients. However, WPD utilizes both ap-
proximate and detailed coefficients, high-frequency com-
ponents [27]. Consequently, when tactfully used, the WPD
can result in signal decomposition with superior frequency
resolution compared to the DWT [26]. In the studied case,
the denoised signal is further analysed by using four levels of
WPD. Pertinent statistical features are extracted from
multiresolution subbands, obtained with the 4th level of
WPD. MATLAB is used for implementing the WPD [24].
)e principle of employed WPD with the 4th level of de-
composition is shown in Figure 2, where Dm and Am are,
respectively, detailed and approximation coefficients at
different decomposition stages and mϵ 1, 2, 3, 4{ }.

3.4. Dimension Reduction. Since the dimension of the
extracted features with WPD is high, the dimension should
be reduced. )erefore, in this study, the dimension of
extracted features is reduced by using statistical values of the
WPD subbands. Using the statistical values of the subbands,
the pertinent classifiable features are created from 16 sub-
bands, shown in Figure 2. Five features are extracted from
each subband, namely, mean absolute value, average power,
standard deviation, skewness, and kurtosis. It results in 16 ×

5 � 80 features. Additionally, the ratios of absolute mean
values of the adjacent subbands are computed, resulting in
15 more features. In this way, in total, 95 features are
extracted for each EEG instance, resulting in feature set
dimension of 1400 × 95 for all considered instances.

3.5. Classification Methods. )e prepared features set is
categorized by using k-Nearest Neighbor (k-NN), C4.5
Decision Tree, REP Tree, Support Vector Machine (SVM),

Random Tree (RT), and RF, which are all well-known robust
classification algorithms. Weka is used for evaluating the
considered classifiers [28, 29]. To avoid any bias in findings
due to the limited volume of the dataset, the 10-fold cross-
validation (10-CV) approach is used along with multiple
evaluation measures, namely, accuracy, F-measure, and the
area under the ROC curve (AUC). Here, ROC stands for
receiver operating characteristic [29].

3.5.1. Support VectorMachine (SVM). )e SVM searches for
hyperplane in an N-dimensional space in the classification of
the data points. )e SVM can be used for both classification
and regression. )e system functions by focusing on the
decision line. It is a theoretically mature algorithm, only
takes tens of instances for training, and is unaffected by the
number of dimensions. Furthermore, effective approaches
are developed to rapidly train this classifier [30]. In this
study, the SVM is used with the cubic polynomial kernel and
with a regularization parameter of 100.

3.5.2. K-Nearest Neighbor (k-NN). )e k-NN refers to a
supervised learning algorithm used in regression and clas-
sification problems. )e algorithm functions by assuming
that every data falling near each other belongs to the same
class. It means that the algorithm considers that the clas-
sification of information is based on similarities. )e
technique is highly preferred because of its simplicity [30]. In
this study, the k-NN with k � 1 is used. Here, k is the
number of neighbors, used in the decision.

3.5.3. REP Tree. REP Tree creates a decision or regression
tree using information variance reduction and then prunes it
using reduced-error pruning. It optimizes speed by only
sorting values for numeric attributes once. )e minimum
number of instances per leaf, maximum tree depth, mini-
mum fraction of training set variance for a split, and the
number of folds for pruning are adjustable parameters [31].
In this study, the REP Tree is used with its default config-
urations, available in Weka [28, 29].

3.5.4. C4.5 Decision Tree. )e C4.5 can create classifiers that
are redescribed as rulesets. C4.5 starts by growing an initial
tree using the divide-and-conquer method. It labels the
potential test instances by using two heuristic criteria. )e
first is the information gain, which tries to minimize the total
entropy of subsets. )e second is the default gain ratio,
which tries to divide the information gain by the infor-
mation supplied via the test outcomes [30]. In this study, the
C4.5 is used with its default configurations, available in
Weka [28, 29].

3.5.5. Random Tree (RT) Classifiers. )e RT is a supervised
learning algorithm that is easy to use and flexible. )e al-
gorithm produces excellent results despite lacking hyper-
parameter tuning. A combination of decision subtrees is
trained based on the bagging method. )e primary concept
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of the functioning of the Random Tree is that combined
learning models will increase the quality of results gained
[31]. In this study, the RT is used with its default configu-
rations, available in Weka [28, 29].

3.5.6. Random Forests (RF). )eRF refers to a robustmachine
learning algorithm for various tasks such as classification and
regression. )e algorithm works by using bagging and ran-
domness when creating each of the trees. It makes an uncor-
related forest of trees where their prediction is more accurate
than a single tree [32]. In this study, the RF is usedwith 100 trees.

3.5.7. Rotation Forest (RoF). )e RoF is a feature extraction-
based classifier ensemble.Wemake the training data for a basic
classifier by randomly partitioning the feature set into Q

subgroups. PCA is applied to each subgroup, and Q is a pa-
rameter of the method. To retain the data’s variability infor-
mation, all basic components are kept. As a result, rotating the
Q-axis produces additional attributes for a base classifier [33].
All primary components are kept in order to preserve the data’s
variability information. As a result, new features for a base
classifier are formed by rotating theQ-axis [33].)e purpose of
the rotation approach is to enhance individual accuracy while
also providing variation within the group. Each base classifier’s
feature extraction contributes to diversity.

3.5.8. ?e Random Subspace Method (RSM). A well-known
ensemble technique is the RSM [34].)e training data is also
modified in the RSM. )is change, however, is done in the

feature space. )e B-dimensional random subspace of the
original B-dimensional feature space is thus obtained. As a
result, the updated training set has B-dimensional training
objects in it. )en, in the final decision rule, classifiers can be
built in random subspaces and combined using simple
majority voting [35].

3.6. ?e Ensemble Learning Method. )e ensemble learning
methods can improve the performance of classification [26]. In
this framework, the RoF and the RSM classifiers are employed
with single classifiers. Multiple classifiers are used for the
considered classification task. Findings of classifiers with
various accuracies are combined via an ensemble-based ap-
proach [36].)e principle is depicted with the help of Figure 3.

For the case of RoF, by randomly splitting the features set
into Q subgroups, we generate training data for a base
classifier. After that, the PCA is applied to each subgroup. To
maintain the data’s variability information, all principal
components are taken into consideration.)is is how Q-axis
rotations are realized to prepare new features for a base
classifier. )e rotation technique is designed to enhance
individual accuracy while simultaneously fostering variation
within the ensemble. Each base classifier’s diversity is created
by feature extraction. In this scenario, accuracy is measured
by training each base classifier with the entire dataset [33].

For the case of RSM, the B-dimensional random sub-
space of the original features set was produced. As a result,
the training set comprises B-dimensional training objects. In
this approach, we built classifiers in random subspaces and
used simple majority voting to aggregate their results [35].
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Figure 2: )e employed WPD scheme.
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3.7. PerformanceEvaluationMeasures. In order to avoid any
bias in the classification performance evaluation, multiple
evaluation measures, namely, accuracy, F-measure, and
AUC, are utilized [29]. )e accuracy is defined by equation
(9). True positives, true negatives, false positives, and false
negatives are represented as tp, tn, fp, and fn, respectively.
)e F-measure is given by equation (10). )e AUC presents
the classification performance graphically. It is the area
under the curve of the graph, obtained by tracing the True
Positive Rate (TPR) with respect to the False Positive Rate
(FPR). )e TPR and FPR are, respectively, given by equa-
tions (11) and (12).

accuracy(ACC) �
tp + tn

tp + tn + fp + fn
× 100 , (9)

F − measure �
tp

tp + 1/2(fp + fn)
, (10)

TPR �
tp

(tp + fn)
, (11)

FPR �
fp

(fp + tn)
. (12)

4. Results

)e system performance is tested by using the BCI com-
petition III, dataset IVa [11]. An example of the input EEG
signal and its denoised version, obtained with theMSPCA, is
shown in Figure 4.

)e denoised signal is onward decomposed in 16 sub-
bands by using the 4th level of WPD. An example of ob-
tained subbands is shown in Figure 5.

)e overall system performance is studied in terms of
classification precision. Findings are outlined in Table 1.
)ese results are also presented graphically. In Figure 6, the
accuracy scores, obtained with different classifiers, are
shown. Figures 7 and 8, respectively, show the F-Measure
and AUC values, obtained with different classifiers.

It is evident from Table 1 that the ensemble of k-NN and
RoF attains the superior classification performance in most
of the cases, compared to the other studied classifiers. )e
obtained percentages accuracies obtained for subjects AA,
AL, AV, AW, and AY are, respectively, 96.67%, 94.05%,
89.64%, 96.43%, and 90.71%. However, the results are

different for the case of subject AY. For AY, the highest
classification accuracy of 98.69% is attained RSM with RF
and 98.45% is attained by the RSM with C4.5. )e RoF with
C4.5 is the third with an accuracy of 97.14%. RSM with RT is
the fourth one with an accuracy of 97.02%. RSM with k-NN
is the eighth with an accuracy of 92.38%.

While considering the case of each subject, the highest
accuracy of 98.69% is achieved by the RSM with RF.
However, for all five subjects, the highest classification ac-
curacy of 94.83% is achieved by the RoF with k-NN. It shows
that, in general, the used assembly of MSPCA, WPD, and
statistical feature selection using RoF with k-NN results in
the best classification performance for the studied dataset.

5. Discussion

)e results, outlined in the above section, show that, for
most of the cases, the proposed framework of MSPCA,
WPD, statistical features selection, and RoF with k-NN leads
towards a high classification accuracy. However, the best
results obtained for the subject AY are obtained for a
combination of MSPCA, WPD, and statistical feature se-
lection using RSMwith RF. It happens due to the variation in
EEG signals magnitudes and response time of subjects while
executing an MI task. It has an impact on the shape of EEG
signals as well as the performance of the postsegmentation,
denoising, feature extraction, and classification algorithms.
)erefore, various subjects have varying classification ac-
curacy as a result of this.

)e BCI is a well-explored domain, and making a
performance comparison with state of the art is a tedious
task. It is mainly because of the variety of datasets, pre-
processing, features extraction, dimension reduction, and
classification techniques used in the previous studies.
However, a performance comparison of the suggested
framework is made with state-of-the-art solutions using
similar datasets. Table 2 provides a review of those studies. It
indicates that the suggested method ensures a comparable or
superior performance as compared to the previously pre-
sented methods. It indicates that the devised denoising,
dimension reduction, and ensemble classification ap-
proaches have a substantial influence on the overall preci-
sion and performance of the system. )e self-configurability
of ensemble classifiers, as a function of the utilized training
dataset, is one of their main advantages. )e use of event-
driven tools can help in enhancing the computational ef-
fectiveness of the suggested method [45–48]. In the future,

EEG Features Features
level

Classifier 1 Classifier 2 Classifier N……………

Combiner

Learner
level

Combiner
level

Figure 3: )e general framework of ensemble classifiers.
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Figure 4: (a) )e EEG signal and (b) denoised version of EEG signal.
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Table 1: Summary of the classification performance measures.

Subj. Classifier Accuracy F-measure AUC

AA

RSM RoF RSM RoF RSM RoF
SVM 89.64 90.60 0.896 0.906 0.958 0.929
k-NN 93.45 96.67 0.935 0.967 0.988 0.985
RF 82.02 84.76 0.820 0.848 0.900 0.928
C4.5 67.50 74.76 0.675 0.748 0.764 0.834

REP tree 69.88 67.50 0.699 0.675 0.765 0.746
RT 70.83 74.29 0.706 0.742 0.799 0.827

AL

SVM 86.43 84.88 0.864 0.849 0.923 0.879
k-NN 92.26 94.05 0.923 0.940 0.970 0.968
RF 75.00 77.26 0.750 0.773 0.830 0.852
C4.5 71.07 73.69 0.711 0.737 0.786 0.812

REP tree 68.93 68.69 0.689 0.687 0.751 0.756
RT 70.95 70.60 0.708 0.703 0.778 0.786

AV

SVM 87.02 84.40 0.870 0.844 0.928 0.886
k-NN 88.93 89.64 0.889 0.896 0.955 0.939
RF 73.69 76.90 0.737 0.769 0.818 0.857
C4.5 61.90 71.31 0.619 0.713 0.677 0.767

REP tree 62.38 66.19 0.624 0.662 0.671 0.721
RT 65.00 65.95 0.644 0.654 0.691 0.738

AW

SVM 86.90 85.00 0.869 0.850 0.926 0.876
k-NN 94.64 96.43 0.946 0.964 0.983 0.976
RF 77.02 78.81 0.770 0.788 0.844 0.867
C4.5 67.62 71.19 0.676 0.712 0.727 0.788

REP tree 63.45 68.33 0.634 0.683 0.683 0.742
RT 68.69 70.24 0.685 0.700 0.735 0.780

AY

SVM 92.02 91.90 0.920 0.919 0.984 0.942
k-NN 92.38 90.71 0.924 0.907 0.977 0.952
RF 98.69 94.29 0.987 0.943 0.999 0.991
C4.5 98.45 97.14 0.985 0.971 0.999 0.995

REP tree 95.60 93.10 0.956 0.931 0.988 0.980
RT 97.02 93.10 0.970 0.931 0.996 0.985

ALL

SVM 89.98 90.12 0.900 0.901 0.962 0.932
k-NN 93.55 94.83 0.935 0.948 0.984 0.974
RF 80.36 81.83 0.804 0.818 0.889 0.901
C4.5 68.57 73.00 0.686 0.730 0.769 0.815

REP tree 68.60 69.02 0.686 0.690 0.765 0.760
RT 72.57 72.40 0.724 0.722 0.807 0.809
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Figure 6: Accuracy of different classifiers.
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0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

SV
M

k-
N

N RF
C4

.5
RE

P 
Tr

ee RT
SV

M
k-

N
N RF

C4
.5

RE
P 

Tr
ee RT

SV
M

k-
N

N RF
C4

.5
RE

P 
Tr

ee RT
SV

M
k-

N
N RF

C4
.5

RE
P 

Tr
ee RT

SV
M

k-
N

N RF
C4

.5
RE

P 
Tr

ee RT
SV

M
k-

N
N RF

C4
.5

RE
P 

Tr
ee RT

AA AL AV

AUC

AW AY ALL

RSM
RoF

Figure 8: AUC of different classifiers.

Table 2: Comparison with previous studies.

Study Feature extraction Classifier Classes/subject(s) Accuracy (%)
[18] Rényi min-entropy RF 4/subject independent 80.55
[21] Subbands PSDs DNN 2/subject independent 82.48
[37] Tangent space mapping SVM 2/1-subject 97.80

[38] Common spatial pattern Backpropagation
Neural network 2/subject independent 80.73

[39] Regularized common spatial pattern SVM 2/subject independent 91.9
[40] Fisher ratio of time domain parameters SVM 2/subject independent 89.13
[41] Common spatial pattern SVM 2/subject independent 85.01
[42] Stacked autoencoders (SAE) CNN 2/subject independent 82.00
[43] Inverse problem through beamforming CNN 2/subject independent 90.50
[44] Granger causality channel selection and common spatial pattern Linear SVM 2/subject independent 88.46

Proposed WPD RF and RSM 2/subject dependent 98.69
WPD k-NN and RoF 2/subject independent 94.83

10 Journal of Healthcare Engineering



this aspect can be investigated.)e developed system has the
potential to be integrated into the future generation of Brain-
Computer Interface systems. )e solution performed well
for the intended dataset. Future work is to test its appli-
cability for other potential Motor Imagery datasets. )e
incorporation of deep learning tools is another axis to
explore.

6. Conclusion

In this paper, a novel automated Motor Imagery tasks
classification method is proposed. )e EEG signals are
processed to distinguish between two categories of the brain
activities. )is approach is an intelligent combination of
ensemble learning, Wavelet Packet Decomposition, Multi-
scale Principal Component Analysis, and subbands statis-
tical features extraction. Results have shown its effectiveness
in classifying the intended Motor Imagery tasks. Using an
intelligent ensemble of the Random Subspace classifier with
Random Forest, the highest subject-dependent accuracy of
98.69% is realized. )e suggested ensemble of the Rotation
Forest classifier with k-NN achieved the highest subject-
independent accuracy of 94.83%.
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