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PURPOSE. In order to clarify the role of the optic nerve (ON) as a load on ocular rotation,
we developed a finite element model (FEM) of incremental adduction induced by active
contractility of extraocular muscles (EOMs), with and without tethering by the ON.

METHODS. Three-dimensional (3-D) horizontal rectus EOM geometries were obtained from
magnetic resonance imaging of five healthy adults, and measured constitutive tissue
properties were used. Active and passive strain energies of EOMs were defined using
ABAQUS (Dassault Systemes) software. All deformations were assumed to be caused by
EOM twitch activation that rotated the eye about a fixed center. The medial rectus (MR)
muscle was commanded to additionally contract starting from 26 degrees adducted posi-
tion, and the lateral rectus (LR) to relax, further adducting the eye either with or without
loading by the ON. Tridimensional heat maps were generated to represent the stress and
strain distributions.

RESULTS. Tensions in the EOMs were physiologically plausible during incremental adduc-
tion. Force in the MR increased from 10 gm at 26 degrees adduction to approximately 28
gm at 32 degrees adduction. Under identical MR contraction, adduction with ON loading
reached 32 degrees but 36 degrees without it. Maximum and minimum principal strains
within the MR were 16% and 22%, respectively, but when ON loading was included,
resulting stress and strain were concentrated at the optic disc.

CONCLUSIONS. This physiologically plausible method of simulating EOM activation can
provide realistic input to model biomechanical behavior of active and passive tissues in
the orbit to clarify biomechanical consequences of ON traction during adduction.
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Quantitative models have been invaluable in clarifying
many neural control and muscular aspects of normal

ocular motility1 as well as various aspects of disorders
of binocular alignment that comprise strabismus.2,3 Not
surprisingly in view of the multiple compartments of the
six oculorotary extraocular muscles (EOMs) of each eye4,5

and the intricacy of their connective tissue gimbal system
upon which the EOMs also insert,6 computational models
of binocular alignment can be overwhelmingly complex.
As in modeling of almost every phenomenon, simplifica-
tions have been made. The model of D. A. Robinson,3 later
expanded in collaboration with J. M. Miller,2,7 and simpli-
fied by Haslwanter et al.,8–10 considered the EOMs as thin,
curved, or straight lines in lumped parameter analyses. A
similar modeling approach based on string primitives was
also simplified.11 An alternative approach of finite element
modeling (FEM) has been used on a limited basis to simulate
small horizontal eye rotations based on a thermal expansion
implementation of EOM contraction and relaxation,12 but
only one anatomically simplified model has up to this time

sought to implement physiologically realistic EOM activa-
tion.13 All of the forgoing lumped parameter and FE models
of ocular motility have neglected the effect of the optic nerve
(ON) altogether.

It was thus a further challenge to the ocular motor
field when magnetic resonance imaging (MRI) studies
revealed that the ON acts as a significant mechanical load
during ocular rotations.14 When adduction exceeds about 26
degrees,15 and in some people, even a smaller angle,16 the
redundancy in typical ON length is geometrically exhausted
so that its path becomes maximally straightened, and the
ON begins to act as a tether.14,17–19 In healthy people, this
tethering in adduction stretches the ON16 and translates
the eyeball nasally but does not retract it posteriorly.16,19,20

However, in patients with primary open angle glaucoma
(POAG) who have either had only normal20 or elevated levels
of intraocular pressure,19 ON traction in adduction causes
significant globe retraction. Not surprisingly, infrared imag-
ing discloses deformation of the optic disc during horizontal
eye rotation,21 particularly in adduction beyond exceeding
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the threshold of tethering.15 It is also notable that lesser but
still significant optic disc tilting occurs even in abduction
where there is no tethering of the ON.15,21 See-saw deforma-
tion of the optic disc during horizontal eye rotation is exag-
gerated in patients with papilledema in whom the pressure
of intracranial fluid that fills the optic nerve sheath (ONS)
is abnormally elevated,22 but even in this case adduction
causes greater folding in the peripapillary retina than does
abduction.23 An FEM of modest 13 degrees ab- and adduc-
tions has been implemented by assumed forces exerted at
the scleral insertions of the horizontal rectus EOMs as the
globe rotates about an assumed fixed center within homoge-
neous but freely flowing orbital fat filling the orbit, without
explicit EOMs or discrete connective tissues.24 This simpli-
fied FEM predicts that transverse forces in the orbit cause
significant shearing forces even in the sinuous ON that tilt
the optic disc and peripapillary tissues during adduction
more than abduction, remarkably predicting ON tractional
force at about the same absolute level as reported for hori-
zontal rectus EOM tensions: about 15 gm in adduction and
9 gm in abduction.24

A sinuous ON path is not only complex, but individu-
ally variable in shape and relative length among different
people. It is therefore a useful simplification to consider the
behavior of the ON when its path has become uniformly
straightened by adduction. An FEM has been developed to
evaluate the effect of traction exerted by the straight ON
in larger adduction by an additional 6 degrees from its 26
degrees threshold.25 This model also assumed ocular rota-
tion about a fixed center by EOM traction on the anterior
sclera (AS), and neglected all orbital tissues except for the
globe and ON because for these gaze angles straight ON
has negligible transverse path changes. While the FEM of
Shin et al. made several assumptions that are in a sense
complementary to those of Wang et al.,24 it also predicted
significant deformation of the optic disc, lamina cribrosa
(LC), and peripapillary sclera (PPS) during adduction
tethering.

The forgoing FEMs suggest that the ON significantly loads
the globe during horizontal eye movements. However, rather
than incorporate explicit EOMs, both FEMs assumed ocular
rotation by artificial forces, and neither assumed realistic
orbital fat and connective tissue structures. It is the aim of the
current study to develop an FEM of ocular adduction imple-
mented by anatomically and functionally realistic EOMs and
to evaluate the magnitude of resulting mechanical effects
imposed by this eye movement on the ON and posterior
ocular tissues.

MATERIALS AND METHODS

A realistic anatomic structure of a left orbit was defined
based on our extensive collection of MRI from which excel-
lent quality sets were selected of five healthy normal volun-
teers imaged in multiple gaze positions established by fixa-
tion of fiber optic targets.26 All volunteers had given writ-
ten informed consent prior to participation in a protocol
approved by the Institutional Review Board for Protection
of Human Subjects, and in conformity with the Declara-
tion of Helsinki. Imaging was obtained using a General
Electric (Milwaukee, WI, USA) 1.5T Signa scanner using a
quad surface coil array by Medical Advances (Milwaukee,
WI, USA), with 2 mm plane thickness and 246 square matrix
and T2 fast spin echo pulse sequences as published.26,27 The

field of view was 100 mm for axial planes, and 80 mm for
quasi-coronal images perpendicular to the long orbital axis.
Left orbits were digitally reflected to the orientations of right
orbits.

In this modeling study, ocular adduction was simulated
by contracting the medial rectus (MR) muscle as the lateral
rectus (LR) relaxed (Fig. 1). Previous studies have demon-
strated that MR and LR EOMs are the principal actuators for
horizontal eye rotation9,28,29 and treatment of horizontal stra-
bismus.30 Therefore, for simplicity the model disregarded the
existence of the vertical rectus and oblique EOMs. Initial eye
position was set at 26 degrees (small adduction), which is
estimated to be the average threshold for ON straightening19

at which tethering begins in healthy adults.19

Geometrical Representation

The geometrical data defining the 3D structure of the
orbit was obtained from high-resolution MRI, along with
published data describing several regions of sclera,31–33

including PPS34,35; LC36,37; ON14; and ONS.14 The PPS was
taken to be an annulus with approximately 0.4 mm thick-
ness34,35 and 8 mm outer diameter that surrounds the optic
disc. In this study, quasi-coronal MRI planes perpendicular to
the long axis of the orbits of five healthy eye volunteers were
used to define the 3-D geometries of the MR and LR muscles.
On average, 16 coronal planes 2 mm thick starting from near
the apex to the globe equator were analyzed. The 3-D coor-
dinate of the area centroids, as well as the cross-sectional
area of the horizontal rectus EOMs, were analyzed as previ-
ously published38 and described in anatomical detail.38,39

Published locations of rectus insertions were used.40

As shown in the axial view in central gaze, Figure 1A,
ON path straightens by 26 degrees adduction, the reference
state for these simulations (Fig. 1B). With further adduc-
tion to 32° (Fig. 1C.), the ON undergoes tensile elongation,
exerting traction on its junction with the globe, near the
visually-critical LC. A hemisymmetric, 3-D model of the refer-
ence state was designed using the software package SOLID-
WORKS 2020 (Dassault Systèmes SIMULIA Corp., Johnston,
RI, USA; Figs. 1E, 1F). A hemisected image is represented
in Figure 1G to show the interior of the eye.

Material Properties and Constitutive Models

Although it is recognized that ocular tissues exhibit complex
mechanical behavior due to their anisotropic structure and
time-dependent material properties, such behaviors repre-
sent a heavy computational burden for numerical simula-
tions. This study assumed all tissues except the EOMs to be
homogeneous, isotropic, incompressible, and hyperelastic
based on tensile data obtained in 22 pairs of fresh, unfixed
human ocular specimens in our laboratory.41 The hyperelas-
tic functions describing these data have coefficients of deter-
mination (R2) exceeding 0.99, indicating that the functions
describe the tensile behavior well. This data thus defined
the material properties of ON, ONS, PPS, posterior sclera
(PS), equatorial sclera (EqS), and anterior sclera (AS). Collec-
tion of this tensile data required pre-stretching of specimens
until first detectable tension exceeding sensor noise level;
this approach would not be able to determine the complete
extent of the low toe loading region. Therefore, 2% strain
was added to the beginning of each curve to replace the
low toe region presumably undetectable in the experimen-
tal data.
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FIGURE 1. Axial magnetic resonance imaging (MRI) and renderings of a left orbit. (A) Axial MRI in central gaze position (angle of 0 degrees
showing a sinuous ON). (B) MRI in 26 degrees adduction showing a straight ON. (C) MRI in 32 degrees adduction showing an elongated ON
remaining straight. (D) Quasi-coronal MRI of the orbit illustrated in panel A. (E) The 3-D representation designed in SolidWorks. Complete
(F) and horizontally hemisected (G) representation in 26 degrees adduction. LC, lamina cribrosa; MR, medial rectus muscle; LR, lateral rectus
muscle; ONS, optic nerve sheath; PPS, peripapillary sclera.

The small size of the LC makes it difficult to define its
tensile properties. Stress-strain behavior of strips of tissue
containing the LC42 and attached PPS has been published,
but may be confounded by inclusion of other tissues in
the specimens.42 Atomic force microscopy nano-indentation
of the entire LC has been published.43 We have reported
that the ON contains a matrix of intrinsic connective tissue
patterned similarly to the LC with which it abuts,44 and
suggested that this is the reason for high ON stiffness.25

Therefore, the current study assumed that the stress-strain
curve of LC is the average of those of the ON and PPS,
because LC is transitional between the ON and PPS, and its
material properties should change gradually to avoid junc-
tional discontinuities. The stress-strain data for all tissues
are imported into the software package ABAQUS 2020
(Dassault Systèmes SIMULIA Corp.) using hyperelastic mate-
rial coefficients. Tendons are assumed to be linear elas-
tic with relatively high stiffness approximately that of the
anterior sclera (Table 1). In this table, C10-C50 and D1-D5

represent the coefficients of reduced polynomial constitutive

model:

U =
N∑
i=1

Ci0
(
ĪC1 − 3

)i +
N∑
i=1

1

Di
(Jel − 1)2i (1)

where U is the strain energy, ĪC1 is the first invariant of
the right Cauchy–Green strain tensor, and Jel is elastic
volume strain. In this study, N ranges from 2 to 5 according
to Table 1. The E and ν in Table 1 represent Young’s modulus
and Poisson’s ratio of linear elastic material, respectively.

Rectus EOMs were represented as fiber-reinforced mate-
rial38,39,45 exhibiting nonlinear, hyperelastic, and active
mechanical behaviors.9,45 In this study, we applied a 3-D
skeletal muscle constitutive model developed by Lu et al.46,47

and based on Hill’s 3-element model48 as shown in Figure 2.
This model has the capability of simulating both passive and
active EOM behavior during shortening and lengthening.

The contractile element (CE) generates active force in the
EOM. When non-activated, the CE can freely extend. The
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FIGURE 2. Hill’s three element model of muscle.46,47

TABLE 2. Variables and Functions for EOM Behavior

Variable Definition

λs Stretch ratio in series elastic element
�λs Stretch increment in series elastic element
ĪC1 The first invariant of the right Cauchy–Green strain tensor
J Jacobian of the deformation gradient
λ Muscle stretch
λ̄ f Fiber stretch ratio with the volume change eliminated
λ̇m Stretch rate in contractile element (s−1)
σPE Stress in passive element (MPa)
fPE Normalized function used for σPE
σ SEE Stress in series elastic element (MPa)
σCE Stress in contractile element (MPa)
σ f Total stress created in muscle (MPa)
U (ĪC1 , λ̄ f , λs, J ) Strain energy density function in rectus muscle (MPa)
UI (ĪC1 ) Strain energy function stored in the isotropic matrix (MPa)
Uf (λ̄ f , λs ) Strain energy function stored in the muscle fibers (MPa)
UJ(J) Strain energy function associated with the volume change (MPa)
UPE(λ̄ f ) Energy stored in passive element (MPa)
USEE (λ f , λs ) Energy stored in series elastic element (MPa)
ft(t) Muscle activation function (MPa)
fλ(λ̄ f ) Muscle force-stretch function (MPa)
fv (λ̇m) Muscle force-velocity function (MPa)

series elastic element (SEE) is a nonlinear spring in series
with the CE. The SEE provides a rapid transition from inac-
tive to active state, and an energy storing mechanism.47 The
parallel element (PE) is a nonlinear spring in parallel with
the CE and SEE. It represents the elasticity of the connective
tissues and is responsible for the passive mechanical behav-
ior of the EOM under stretch. The σ f represents the total
EOM tension.47 All EOM variables supplied to the ABAQUS
subroutine are time-dependent and explained in Table 2.

We used the following total strain energy density function
U (ĪC1 , λ̄ f , λs, J ) for rectus EOM46,47,49:

U
(
ĪC1 , λ̄ f , λs, J

) = UI
(
ĪC1

) +Uf

(
λ̄ f , λs

) +UJ (J ) , (2)

where, UI (ĪC1 ) is the strain energy function related to the
isotropic matrix, and UJ(J) is the strain energy function
related to volume change. The ĪC1 represents the first invari-
ant of the right Cauchy–Green strain tensor, λ̄ f and λs are
incompressible fiber and SEE stretch ratios, respectively. The
J defines Jacobian of the deformation gradient (Table 2).

The first part of the strain energy is given by:

UI
(
ĪC1

) = c
{
exp

[
b

(
ĪC1 − 3

)]} − 1, (3)

where b and c are the material parameters for the isotropic
matrix (Table 3). Volumetric strain energy, which considers

material compressibility has the form:

UJ (J ) − 1

D
(J − 1)2 (4)

where D is the compressibility constant.
The second part of Equation (2) is associated with the

strain energy of the EOM fibers as follows:

Uf

(
λ̄ f , λs

) = UPE
(
λ̄ f

) +USEE
(
λ̄ f , λs

)
, (5)

where UPE and USEE are the energy stored in the PE and SEE,
respectively. The integral forms of UPE and USEE in terms of
stresses, respectively, are:

UPE
(
λ̄ f

) =
∫ λ̄ f

1
σPE (λ)dλ, (6)

and

USEE
(
λ̄ f , λs

) =
∫ λ̄ f

1
σSEE (λ, λs)dλ. (7)

σ PE(λ) and σ SEE(λ,λs) represent the stress in the PE and SEE,
respectively. In Equation (6), time-dependent stress in the
PE is expressed as:

t+�tσPE
(
λ̄ f

) = σ0 fPE
(
t+�t λ̄ f

)
, (8)



Model of Active Contraction in Adduction IOVS | January 2021 | Vol. 62 | No. 1 | Article 1 | 6

TABLE 3. Mechanical and Physiological Muscle Parameters

Parameter Definition MR LR

b Material parameter for isotropic matrix 15.2 15.2
c Material parameter for isotropic matrix (MPa) 0.1 × 10−3 0.1 × 10−3

σ 0 Maximum isometric stress (MPa) 0.04 0.04
D Compressibility constant (MPa−1) 10 10
k Length ratio SEE: CE 0.3 0.3
α Material constant in SEE 10 10
β Material constant in SEE (MPa) 0.4 × 10−3 0.4 × 10−3

λ̇minm Minimum stretch rate (s−1) −10 −10
kc Shape parameter in force-velocity function 5 5
ke Shape parameter in force-velocity function 5 5
d Offset of the eccentric function 1.5 1.5
t0 Activation time (s) 0 0
t1 Deactivation time (s) 0.4 0
S Exponential factor in activation function 100 100
A Material parameter for stress in PE 4 4
n1 Activation level before and after activation 0.6 0
n2 Activation level during activation 1 0
λopt Optimal fiber stretch 1.05 1.05
f 0PE Initial normalized force within PE 0 0.2
m1 First component of unit vector along the muscle fiber direction 0 0

Posterior Anterior
m2 Second component of unit vector along the muscle fiber direction 0.25 0.175 −0.43
m3 Third component of unit vector along the muscle fiber direction −0.97 0.984 0.902
λ0f Initial stretch for muscle 0.02 1.03 1.01

FIGURE 3. Stress-stretch curve of passive EOM loading. Dotted line represents data obtained experimentally53,54 and solid graph plots the
equation for passive behavior including fibers.

where t and �t are the time and time increment respectively.
The σ 0 is constant and expresses the maximum isometric
stress in the EOM (see Table 3). The fPE (t+�t λ̄ f ) is a normal-
ized function of λ̄ f .

fPE
(
λ̄ f

) =
{
A
(
λ̄ f − 1

)2
, if λ̄ f > 1

0, otherwise,
(9)

A is a material parameter. The fPE (λ̄ f ) is equal to zero when
the EOM undergoes shortening contraction, as EOM fibers
cannot resist axial compressive loads.47

In Equation (7), σ SEE can be obtained by:

t+�tσSEE = eα�λs
(
tσSEE + β

) − β, (10)

where α and β are the material constants of the SEE deter-
mined from empirical data below (Fig. 3), and:

tσSEE = β
[
eα(tλS−1) − 1

]
. (11)

It has been previously shown that the stress in CE is equal
to the stress in the SEE at any time, t+�tσSEE = t+�tσCE .50 The
stress in the CE is given by:

t+�tσCE = σ0 · ft (t + �t ) · fλ
(
λ̄ f

) · fv
(
λ̇m

)
, (12)

where ft(t) is EOM activation function given by Kojic et al.50:

ft (t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n1, i f t < t0
n1 + (n2 − n1) · ht (t, t0) , i f t0 < t < t1
n1 + (n2 − n1) · ht (t1, t0)

− [(n2 − n1) · ht (t1, t0)]
·ht (t, t1) , i f t > t1

(13)
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FIGURE 4. Eye geometry in ABAQUS. (A) The reference state at 26 degrees adduction relative to central gaze. The MR has been partitioned
into tendon and muscle. The LR has been partitioned into three parts: tendon, LRAnt, and LRPos. The sclera is partitioned into three parts:
AS, EqS, and PS. Mesh distribution of the model with (B) and without (C) the optic nerve.

where n1 is the level of activation before and after activa-
tion of the EOM, and n2 is the level during activation. The
t0 is the beginning time of activation, and t1 is the time of
deactivation. Function ht(ti,tj) is defined by:

ht
(
ti, t j

) = {
1 − exp

[−S · (
ti − t j

)]}
. (14)

where S is an exponential factor. The ti could be t or t1 , and
tj could be t0 or t1 in Equation (13).

The fλ(λ̄ f ) in Equation (12) is the EOM force-stretch func-
tion defined by47,51,52:

fλ(λ̄ f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i f
t λ̄ f

λopt
< 0.4

9
( t λ̄ f

λopt
− 0.4

)2
, i f 0.4 ≤ t λ̄ f

λopt
< 0.6

1 − 4
(
1 − t λ̄ f

λopt

)2
, i f 0.6 ≤ t λ̄ f

λopt
< 1.4

9
( t λ̄ f

λopt
− 1.6

)2
, i f 1.4 ≤ t λ̄ f

λopt<1.6

0, i f
t λ̄ f

λopt
≥ 1.6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (15)

In Equation (15), λopt is constant and represents the opti-
mal fiber stretch (Table 3).

The fv(λ̇m) in Equation (12) is the EOM force-velocity
function:

fv
(
λ̇m

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1− λ̇m
λ̇minm

1+ kc λ̇m
λ̇minm

, i f λ̇m ≤ 0

d − (d − 1)
1+ λ̇m

λ̇minm

1− kcke λ̇m
λ̇minm

, i f λ̇m > 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (16)

where variable λ̇m is the stretch rate in CE, λ̇minm is the mini-
mum stretch rate, kc and ke are the shape parameters, and d
is the offset of the eccentric function.

Material constants b, c, α, and β have been obtained by
fitting for the EOM the average stress-stretch curve53,54 and
the constitutive equation for passive tensile behavior55 and
using “cftool” function in MATLAB R2019a (MathWorks,

Natick, MA, USA; see Fig. 3). Other mechanical and phys-
iological muscle parameters in Table 3 were set to what we
presume to be reasonable values, but by trial and error until
plausible model behavior was achieved. There exist no data
to do otherwise.

FEM Simulation

The 3-D geometry (see Fig. 1E) was transferred from SOLID-
WORKS into Abaqus/Explicit (Fig. 4A). Because the model
describing EOM behavior is based on 1-D fiber orientation,
differing fiber orientations in the LR require that it be parti-
tioned to two different regions, anterior LR (LRAnt) and poste-
rior LR (LRPos), due to differing fiber orientations. As indi-
cated in Table 3, λ0

f (initial stretch for EOM), m2 (second
component of unit vector along the EOM fiber direction),
and m3 (third component of unit vector along the EOM fiber
direction) are defined separately according to the stretch
fraction and fiber direction within LRAnt and LRPos. Because
the reference state is at 26 degrees adduction, pre-stretch λ0

f
is applied to the LR and MR whereas the normalized pre-
force within PE, f 0PE is only applied to the LR (see Table 3).
It has been previously shown that at this angle of adduction,
there is a very low active LR force that we considered negli-
gible for additional adduction beyond 26 degrees.9,45 Active
force was included in the MR to account for the 26 degrees
of initial adducted position.

For quasi-static analysis, a mass scaling factor of 100
was used. The ratio of kinetic energy to internal energy
for the whole model was minimized (less than 5%). To
fix the center of the rotation of the eye as a deformable
body, a kinetic coupling constraint was defined at the globe
center. The origins of the LR and MR muscles are fixed as
shown in Figure 4A. All elements in ABAQUS are defined as
explicit element type, a 4-node linear tetrahedron (C3D4).
The average optimized mesh size was set to be about 0.8
mm for EOMs and 0.6 mm near the optic disc, refined
enough to obtain a consistent result. A mesh convergence
test was done by using courser mesh sizes (1.5–2 times
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FIGURE 5. Flowchart for the implementation of the skeletal muscle model in Abaqus/Explicit.

larger than the current mesh sizes) for EOMs, and there
was only approximately 0.4% change in maximum principal
strain. Further refinement of mesh sizes would increase the
time cost dramatically. The complete model, including the
mesh distribution, is shown in Figures 4B and 4C. The model
assumed no external force boundary condition because the
only force moving the eye is MR contraction. We simulated
two situations: adduction from the 26 degrees reference state
with a straight (tethered) ON (see Fig. 4B), and adduction
omitting the ON and ONS (see Fig. 4C).

The active, fiber-reinforced hyperelastic behavior of
skeletal muscle was implemented into Abaqus/Explicit using
the user defined material model interface (VUMAT), as
explained in the flowchart in Figure 5. In brief, the mate-
rial properties, such as the maximal isometric stress and
activation levels before and after contraction, etc. were read
into the VUMAT. Then, in the first VUMAT iteration, initial
values for the EOM fiber orientation, stretch ratios in SEE
and CE, maximal stress in CE, etc. were defined.46,47 In
subsequent iterations, values for present fiber orientation,
present stretch ratios, etc. were updated. Afterward, EOM
strain energy density was calculated and Cauchy stress at
each Gauss point was computed from the strain energy

density function. At the end of the VUMAT, the information
needed for the next iteration, such as the stretch rates in SEE
and CE, was passed back to Abaqus/Explicit as history vari-
ables. The VUMAT code was called throughout the entire FE
simulation.

RESULTS

Color maps of maximum principal strain (maximum
effect [Emax]) during incremental adduction are presented
in Figure 6 assuming presence (panels A and B) or absence
(panels C and D) of the ON. At the reference state, there
was 0.07 (7%) average maximum principal strain within
the LR due to its initial stretching by MR active contrac-
tion. Figures 6B and 6D show the maximum principal strain
map after completion of MR contraction. Under the same MR
contraction level, the adduction in panel D where the exis-
tence of ON is ignored is more than 50% greater than that
of panel B (10 degrees versus 6 degrees adduction). This is
because in Figure 6B the ON resists adduction by stretch-
ing. Due to the greater adduction angle, the LR experiences
greater strain at approximately 16% strain when there is no
ON.
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FIGURE 6. Color maps of maximum principal Lagrangian strain
(maximum effect [Emax]) in MR and LR muscles assuming the pres-
ence or absence of the ON. (A) Maximum principal strain, Emax
color map at reference state 26 degrees adduction at which the ON
becomes completely straight. (B) Maximum principal strain, Emax
within the muscles after 6 degrees adduction from the reference
state. (C) Maximum principal strain, Emax at reference state when
the ON is assumed absent. (D) Maximum principal strain, Emax after
10 degrees adduction from the reference state of panel C. The red
and green dashed lines (oa and oaˊ) indicate orientation in reference
and adducted states, respectively.

Similar behavior was observed for minimum principal
strain (Emin) distribution within the EOMs (Fig. 7). The initial
compressive strain along the fiber directions within the MR
was set to be ε0f = −0.08 (Figs. 7A, 7C). The absolute value
of Emin increased nonuniformly within the MR during adduc-
tion (Figs. 7B, 7D), as it was maximal at the middle of MR
where its volume is greatest (max|Emin|≈ 22%). Compar-
ing Figure 7D to Figure 7B, presence or absence of the ON
was associated with no significant difference in minimum
principal strains throughout the MR, although the adduction
angle differs.

Principal strains Emax and Emin, occur roughly parallel,
and perpendicular to the bulging direction of the MR, respec-

FIGURE 7. Principal Lagrangian strain distribution (minimum effect
[Emin]) within MR and LR including ON, versus ignoring existence
of the ON. (A) Minimum principal strain, Emin color map at refer-
ence state, 26 degrees adduction. (B) Minimum principal strain, Emin
within the EOMs after 6 degrees additional adduction from panel A.
(C) Minimum principal strain, Emin color map at reference state, 26
degrees adduction, omitting the ON. (D) Minimum principal strain,
Emin within the EOMs after 10 degrees additional adduction from
panel C. Red and green dashed lines (oa and oaˊ) indicate eye orien-
tation in the reference and adducted state, respectively.

tively (Fig. 6), but along and perpendicular to the fiber direc-
tion of the LR, respectively (Fig. 7). Tendon and ONS are
stiffer than the rectus EOMs, so the strain in these passive
tissues is much lower than within EOMs. Figure 8 shows von
Mises stress distribution σ ν with and without the ON, at 32
degrees and 36 degrees adduction.

In the 26 degrees adducted reference state (Figs. 8A, 8C),
stress is greatest within tendons due to initial MR contrac-
tion force and compressive strain. Regardless of edge effect,
maximum stress is observed within the MR myotendinous
junction after maximal adduction. The material discontinu-
ity between EOM and stiff tendon concentrates high stress
(approximately 80 kPa) across the myotendinous junction
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FIGURE 8. Simulated von Mises stress, σν (MPa) with and without consideration of the ON. (A–C) Reference state at 26 degrees adduction at
which the ON becomes completely straight. B Stress after 6 degrees adduction from reference state. C ON assumed absent in the reference
state. (D) Stress after 10 degrees adduction from the reference state without the ON. Insets magnify muscle and ON insertions.

(magnified insets in Figs. 8B, 8D). During adduction, stress
is concentrated in the ONS at its junction with the PS (magni-
fied inset in Fig. 8B). The straight ON adds to LR elasticity
as a load against adduction, which decreases the rotational
angle for the same MR contraction and concentrates stress
on the posterior globe. The LR is fully relaxed during the
large adduction as it develops no active contraction.

Figure 9 illustrates the maximum (Emax) and minimum
(Emin) principal strains, and von Mises stress distributions at
32 degrees adduction. Figure 9A represents a 3-D view of
the eye at the reference state of 26 degrees adduction. The
region in the red square in Figure 9A is magnified 9-fold
(Figs. 9B–D). As shown in Figure 9B, Emax is significantly
distributed within the PPS, LC, and ONS where the tissue
undergoes stretching. Maximum principal strain reached 6%
within ONS, 4% within ON, 8% within LC, and 10% within
PPS. As shown in Figure 9C, Emin has its highest absolute
value within the optic disc, LC, and nasal PPS, with 7% aver-
age magnitude. At 32 degrees adduction, stress was signifi-
cantly concentrated within the LC (approximately 350 kPa)
and at the globe-ON junction (approximately 150 kPa), as
seen in Figure 9D.

A check on the reasonability of the simulation was
obtained by computing force within the MR fibers at comple-
tion of the MR activation. Figure 10 is a force-angle graph
during adduction for the MR with the ON present, using
units of gram-force for comparison with the empirical liter-
ature. Force in the MR increased from 10 gm at 26 degrees
adduction to approximately 28 gm at 32 degrees adduction.

DISCUSSION

We developed a quasi-static FEM of the human eye and
horizontal rectus EOMs during incremental adduction from
26 degrees achieved by active EOM contraction, ultimately
reacting 32 degrees with the ON realistically included, but
36 degrees with the effect of the ON neglected. This EOM
contraction was implemented in a physiologically realistic
manner, using experimentally observed twitch contraction
properties of EOM rather than approximations by thermal
contraction or shortening by an assumed length change.
Under the same MR contraction level, the adduction angle
was predicted to be substantially greater in the absence of
the ON. Because the model predicted total MR tension to be
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FIGURE 9. Color map of maximum and minimum principal strains,
and von Mises stress within the posterior eye after 6 degrees incre-
mental adduction from initial threshold optic nerve tethering at 26
degrees. (A) Reference state at 26 degrees adduction. Region within
red square in panel A is magnified 9 × in panels B, C, and D to
illustrate effects of 6 degrees further adduction. (B) Maximum prin-
cipal strain (maximum effect [Emax]). (C) Minimum principal strain
(minimum effect [Emin]). (D) von Mises stress (σν) after 6 degrees
further adduction.

FIGURE 10. Force-angle relationship for the MR muscle FMR assum-
ing presence of the optic nerve.

a physiologically plausible 28 gm at the end of activation for
either assumed condition, it can be concluded that the lesser
adduction in the presence of the ON is due to its mechanical
loading in opposition to the MR. The present FEM has thus
answered a challenge issued at the time of the discovery in
2016 that the ON becomes tethered in adduction angles far
short of the approximately 40 degrees limit3,29,45,56 of the
oculomotor range, a challenge to quantitatively model the
effect of the ON as a mechanical load on ocular duction.14

Experimental studies have since reported that ON tether-
ing in large adduction translates the globe mediolaterally in
healthy people but retracts it in POAG,19,20 particularly in
Asians,19 stretches the normal but not glaucomatous ON,16

deforms the optic disc,15,21 and compresses the choroid.57

The current approach marks a crucial step toward a fully
realistic, homeomorphic model of ocular rotation capable
of accurately simulating the mechanical states of all tissues
influenced by eye movement, particularly the visually critical
structures, such as the ON itself.

The current approach modeled the initial states of the
LR and MR EOMs based on detailed anatomy characterized
by MRI. The FEM was thus able to simulate the inhomoge-
neous strain distribution within these rectus EOMs, with the
MR not only shortening along its predominant fiber direc-
tion, but also bulging due to its contraction. Thus, during
adduction the maximum principal strain, Emax reached 17%
in the radial direction for the MR, while reaching 15% in LR
along the fiber direction. Qualitatively, the results concord
with typical MRI findings demonstrating increase in the cross
section of contracting human EOMs.58 The highest absolute
value of minimum principal strain occurred in the middle
of the MR for both 32 degrees and 36 degrees adduction.
The absolute value of minimum principal strain at maximal
adduction, Emin was approximately 22% and occurred in the
middle of the MR.

The current study simulated the 3-D structure of contract-
ing and relaxing EOMs, as well as their stress and strain
distributions. MRI scans show the 3-D change of EOM shape
and volume due to different gaze positions but cannot
directly demonstrate spatial variation of stress and strain
internally.58,59 Unidimensional passive and active length-
tension models have been obtained for animal and human
rectus EOM.3,9,45,56 However, large local 3-D stress and strain
may influence the EOM behavior are important to calculate.

Large adduction concentrates stress both on the posterior
globe at the ON attachment, as well as at the MR insertion. At
32 degrees adduction, the FEM predicted von Misses stress
reaching 150 kPa within the ONS and 350 kPa within the
LC. The current FEM predicted that adduction may produce
up to 3% strain in the horizontal rectus tendons, which is
consistent with suggestions about EOM tendon strain.10

Stress on the posterior eye has been postulated as a
possible cause of ON damage,14–17,19–21,25 although greater
strain on posterior ocular tissues observed in healthy young
eyes argues that mechanical deformations are not necessar-
ily damaging when tissues are compliant.60 The current FEM
suggests that during only 6 degrees incremental adduction
beyond the threshold of ON tethering, maximum principal
strain can reach 6% in the ONS, 4% in the ON, 8% in the
LC, and 10% within PPS. The absolute value of minimum
principal strain for ON, LC, and PPS reached an average
of 7%. This is comparable to, but slightly larger than, the
4% elongation of the ON observed in healthy older adults
during 6 degrees incremental adduction starting at about
26 degrees.16 The present model avoided the potentially
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confounding phenomenon of change in ON path during
adduction, because it assumed that the ON had been initially
tethered straight by 26 degrees adduction. This situation
simplified induced strain within the ON to simple length
elongation and change in regular cross section. In contrast,
the FEM of Wang et al. assumed a sinuous ON in central
gaze but predicted as much as 13% strain in the peripap-
illary region caused by only 13 degrees rotation from that
central position.61 However, at less than the approximately
26 degrees threshold of adduction tethering,14,16 posterior
ocular strain caused by smaller horizontal duction would
presumably be due, not to ON elongation, but to bending
stiffness of the sinuous ON and resistance of the surround-
ing orbital tissues, and only minimally by ON tensile stiff-
ness. Although some data are available about the properties
of orbital fat and connective tissues,62 their specific interac-
tions with the ON very likely depend on their fine anatomic
structure in the immediate vicinity, which are unlikely to be
homogeneous throughout the orbit as typically assumed.

The current FEM can be used to evaluate adduction-
related stress and strain in any part of the eye, includ-
ing the sclera at the horizontal rectus insertions as seen
in Figures 8B and 8D. However, because characterization
of local mechanical loading on regions of the anterior sclera
was not a major question for the current study, this region
was only coarsely meshed in the interest of computational
efficiency. Future investigations directed toward this ques-
tion could simply increase the mesh density of the anterior
sclera or any other ocular region of particular interest, with-
out other changes in the current FEM.

In this paper, the contraction of human-shaped rectus
EOMs was simulated by using a quasi-static skeletal muscle
model46,47,49,63 in the FEM environment of Abaqus/explicit.
Other investigators have used properties of non-EOM stri-
ated muscle to represent EOMs as simple strings10,11,31 with-
out internal stress or strain distributions. Schutte et al.
described a 3-D FEM in which linearly elastic rectus EOMs
were made to contract thermally,12 rather than physiologi-
cally, over a limited range. Another FEM of EOMs did use
more physiologic contraction but did not use anatomically
realistic 3-D EOM shape.13

The simulations obtained from this study provide quanti-
tative ocular adduction under physiologic MR active contrac-
tion, with and without a straight ON, and so represent
resulting stress and strain distributions in different parts
of the eye and ON. The range of MR force created during
the rotation of the eye from 26 degrees to 32 degrees to
36 degrees adduction is consistent with experimental force
measurements, which have typically been reported in units
of gram force.2,3,13,28,45,56 For this FEM, it was necessary to
assume many constants and parameters describing the inter-
nal contractile behavior of EOM. However, the exact values
of these constants and parameters are not important in them-
selves to EOM loading of other orbital structures, as long as
overall EOM shape and force generation are consistent with
known anatomy and physiology, as is the case.

This FEM analysis was intended mainly to demonstrate
the novel ability to implement active internal force in an
EOM using physiologically reasonable behavior, but was
not aimed to achieve a comprehensive model of the entire
orbital ocular motor apparatus. The model therefore has
limitations created by deliberate simplifications facilitating
computational efficiency, or due to unavailability of suffi-
cient data on the orbital suspensory system of the globe,
among other things. The vertical rectus and oblique EOMs,

which have minor secondary or tertiary effects on adduction,
have been omitted entirely. Inclusion of these cyclovertical
EOMs would likely change the forces in the MR, and distri-
bution of forces exerted on the sclera. The globe center was
assumed to be fixed so as to prohibit translational move-
ment. Relaxation of this assumption will require detailed
modeling of the globe’s complex, gimbal-like connective
tissue suspension system. Orbital connective tissues, includ-
ing the rectus pulleys, are key factors to balance retracting
forces of the EOMs on the eye and control the direction
of the globe rotation.6,38,39 Furthermore, viscous orbital fat
probably has a role in supporting the eye12,13,61 and control-
ling EOM paths.12,13 It should ultimately be possible to elab-
orate the FEM to include both of these factors to further
improve the realism of simulations. Nevertheless, the novel
method reported here for implementing physiological EOM
contraction constitutes a significant advance in modeling of
ocular motility.
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