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ABSTRACT

Objective: The study sought to assist practitioners in identifying and prioritizing radiography exams that are

more likely to contain abnormalities, and provide them with a diagnosis in order to manage heavy workload

more efficiently (eg, during a pandemic) or avoid mistakes due to tiredness.

Materials and Methods: This article introduces RTEx, a novel framework for (1) ranking radiography exams

based on their probability to be abnormal, (2) generating abnormality tags for abnormal exams, and (3) provid-

ing a diagnostic explanation in natural language for each abnormal exam. Our framework consists of deep

learning and retrieval methods and is assessed on 2 publicly available datasets.

Results: For ranking, RTEx outperforms its competitors in terms of nDCG@k. The tagging component outper-

forms 2 strong competitor methods in terms of F1. Moreover, the diagnostic captioning component, which

exploits the predicted tags to constrain the captioning process, outperforms 4 captioning competitors with re-

spect to clinical precision and recall.

Discussion: RTEx prioritizes abnormal exams toward the improvement of the healthcare workflow by introduc-

ing a ranking method. Also, for each abnormal radiography exam RTEx generates a set of abnormality tags

alongside a diagnostic text to explain the tags and guide the medical expert. Human evaluation of the produced

text shows that employing the generated tags offers consistency to the clinical correctness and that the senten-

ces of each text have high clinical accuracy.

Conclusions: This is the first framework that successfully combines 3 tasks: ranking, tagging, and diagnostic

captioning with focus on radiography exams that contain abnormalities.

Key words: deep learning, information storage and retrieval, diagnostic imaging, diagnostic captioning, computer-assisted diag-

nosis, explainability

INTRODUCTION

Medical imaging is the method of forming visual representations of the

anatomy or a function of the human body using a variety of imaging

modalities (eg, computed radiography, computed tomography, mag-

netic resonance imaging).1,2 In this article, we particularly focus on

chest radiography exams, which contain medical images produced by x-

rays. It is estimated that over 3 billion radiography exams are performed

annually worldwide,3 making the daily need for processing and inter-

pretation of the produced radiographs paramount. The daily routine of

diagnostic radiologists includes the examination of radiographs for ab-

normalities or other findings, and an explanation of these findings in

the form of a medical report per radiography exam.4 This is a rather

challenging and time-consuming task, imposing a high burden both to

radiologists and patients. For example, approximately 230 000 patients
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in England are waiting for over a month for their imaging test results,5

while 71% of the clinics in the United Kingdom report a lack of clinical

radiologists.6 An example of a radiography exam is provided in Figure 1,

consisting of 2 chest radiographs, the diagnostic text describing the

medical observations on the radiographs, and a list of abnormality tags

indicating the most critical observations in the exam.

While several methods have emerged that automatically detect

abnormalities in radiographs7,8 or generate a diagnostic text,9–12

their solutions are hindered by 3 major challenges:

• Screening and prioritization. Radiologists have to examine a

large amount of radiographs and write diagnostic reports, which

is a demanding and time-consuming task. Current methods do

not perform prioritization of the exams.
• Clinically correct diagnostic captioning. Existing diagnostic cap-

tioning models are not optimized in terms of clinical correctness,

as they are trained on both normal and abnormal exams. This

makes them less effective compared with being trained only on

abnormal exams (see Results).
• Explainability and clinical relevance. On the one hand, system-

generated visual explanations usually only function as means for

highlighting image parts relevant to the diagnostic tags, without any

textual explanation. On the other hand, diagnostic captioning meth-

ods can provide both a diagnosis and an explanation for the problem

at hand; however, the produced reports are typically of low clinical

correctness, as they are not optimized in terms of clinical relevance.13

We address these challenges by introducing a novel framework

called RTEx. Our main contributions are summarized as follows:

• Novelty. RTEx provides 3 key functionalities: (1) ranking of ab-

normal radiography exams, prioritizing those likelier to include

an abnormality from a large collection of normal and abnormal

ones; (2) diagnostic tagging, generating a set of abnormality tags

for the highly ranked radiography exams, trained on an indepen-

dent set of abnormal ones; and (3) diagnostic captioning, the pre-

dicted tags are used by RTEx to provide a diagnostic text,

serving as a clinically relevant explanation of the detected abnor-

mal findings.
• Applicability and efficiency. We provide an empirical evaluation

of RTEx, using 2 publicly available datasets of radiography

exams.14,15 Our benchmarks assess the performance of RTEx on

the ability to (1) rank abnormal radiography exams higher than

normal ones, (2) produce the correct medical abnormality tags

for abnormal exams, and (3) explain the reasoning behind the se-

lection of the detected tags in the form of diagnostic text. More-

over, we perform a runtime experiment to demonstrate the time

efficiency of RTEx.
• Effectiveness and clinical accuracy. Our experiments further

demonstrate the effectiveness of RTEx against state-of-the-art

competitors for the tasks of ranking, tagging, and captioning. In

addition, human evaluation indicates that RTEx@X produces

texts of high clinical accuracy, and when using predicted tags, it

can produce text with higher clinical consistency.

RELATED WORK

Automated screening of radiography exams is not a novel idea.16–18

Many works perform binary classification by employing pretrained

convolutional neural networks (CNNs), eg, DenseNet-12119 and

VGG-19,20 and report high scores.21,22 As they mention, these meth-

ods can also be used for exam prioritization. Especially when the

number of exams is overwhelming, the employment of an auto-

Figure 1. A posteroanterior/lateral chest radiography exam along with the corresponding human-authored DIAGNOSTIC TEXT from IU X-ray, and the abnormal-

ity tags. The “XXXX” is due to the de-identification process.
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mated method to exclude normal cases can lead to faster treatment

of abnormal cases. Recently, pretrained CNNs were found to suc-

cessfully distinguish normal cases from ones with pneumonia and

COVID-19 (coronavirus disease 2019).23 The authors of the previ-

ously mentioned works noted that their models aim to ease the

workload of radiologists, which is also an objective of our work.

However, we propose a ranking of the exams based on their proba-

bility of being abnormal, rather than classifying exams as normal

and abnormal, which has not been proposed by previous works.

Also, a lot of research has been focused on labeling radiographs that

are associated with a single abnormality,24,25 assuming that the

problem is a priori known. This is not always the case, for example,

when a new patient arrives for the first time to the clinic.

Another line of research, that of classifying multiple abnormality

types, focuses on associating medical tags to radiographs. This task

is addressed in the literature,8 as well as in the ImageCLEFmed Con-

cept Detection competition that is held every year.7,26–28 In 2017,

retrieval-based methods achieved the highest scores,29 while in 2018

onward, the best methods were deep learning classifiers.30 In 2019,

first place was awarded to a DenseNet-121 CNN followed by a

feedforward neural network (FFNN).31 The third-best method was

a DenseNet-121 CNN encoder followed by a k-NN image retrieval

approach. This work builds on top of the 2 best-performing methods

(the second place was awarded to an ensemble of the 2 best-

performing methods). The method ranked first in 2020 was an en-

semble of the best-performing method of the previous year.32

Image captioning has been applied to medical images in order to

assist clinicians in authoring diagnostic reports.26,27,33–35 The

widely used architecture for this is encoder-decoder usually with vi-

sual attention,9,36 while incorporating predicted tags into the text

generation process has been shown to achieve very good results.37

Image retrieval methods for diagnostic captioning can also achieve

competitive performance,11,38 but using predicted tags in these

approaches has not been examined before.

MATERIALS AND METHODS

The RTEx framework
We present the 3 stages of RTEx that are outlined in Figure 2, with

an overview of the whole pipeline depicted in Figure 3.

RTEx@R: Ranking

For the first stage in our framework,. we implement an architecture,

which we refer to as RTEx@R, shown in Figure 4. We employ the

same visual encoder as in Rajpurkar et al.39 That is the DenseNet-

121 CNN, which is followed by a FFNN. The input of the network

comprises images of radiography exams, while the output is a score

representing the probability that the exam in question is abnormal.

First, both images of the exam are fed to DenseNet-121 (depicted in-

side the box in the center), and an embedding for each image is

extracted from its last average pooling layer. These embeddings are

concatenated to yield a single embedding for the radiography exam.

Then, the exam embedding is passed to a FFNN with a sigmoid to

return a score from 0 (normal) to 1 (abnormal).

RTEx@T: Diagnostic tagging

The second stage of RTEx comprises the assignment of a set of tags

Tj to a radiography exam Sj 2 Hk, where Hk is the set of the top k

abnormal exams. Our method for addressing this task is called

RTEx@T and is shown in Figure 4. It is similar to RTEx@R in that

it uses the DenseNet-121 CNN encoder and an FFNN. But it differs

in that the FFNN has 1 output and 1 sigmoid activation per abnor-

mality tag in the dataset, leading to A different output nodes (the

bottom right arrows in the figure). In effect, it returns a probability

distribution over the abnormality tags and if the probability of an

abnormality tag (ie, its respective node) exceeds a learned threshold,

then the tag is assigned to the radiography exam.

RTEx@X: Diagnostic captioning

For the last stage of our framework (Figure 3), referred to as

RTEx@X, we use the DenseNet-121 CNN encoder, calibrated for

the task of diagnostic captioning. More specifically, each radiogra-

phy exam in the database is encoded (offline) by our CNN to an em-

bedding (ie, 2 image embeddings extracted from the last average

pooling layer of the encoder, concatenated). Our CNN also encodes

any new test exam. Then, the cosine similarities between the test em-

bedding and all the training embeddings in the database are calcu-

lated and the most similar exam is retrieved from the database. Its

diagnostic text is then assigned to the test exam. RTEx@X limits its

search to training exams that have the exact same tags as the ones

predicted (during the tagging stage) for the test exam. However, the

whole database is searched when no exams exist with the same tags.

We note that this method is the most efficient compared with its

competitors (milliseconds instead of minutes).

Datasets
IU X-ray

The IU X-ray14 is a collection of radiology exams that is publicly

available through the OpenI (Open Access Biomedical Image Search

Engine) (https://openi.nlm.nih.gov/). The dataset consists of 3995

radiology reports (1 report per patient) and 7470 frontal or lateral

radiographs, with each report consisting of an “indication” (eg,

symptoms), a “comparison” (eg, previous information about the pa-

tient), a “findings,” and an “impression” section. Each report con-

tains 2 groups of tags. There are manual tags (a combination of

Figure 2. The algorithm of our RTEx framework.
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MeSH codes [https://goo.gl/iDvwj2] and RadLex codes [http://

www.radlex.org/]) assigned by 2 trained coders, each comprising a

heading (disorder, anatomy, object, or sign) and subheadings (eg,

“hiatal/large,” where “large” is an attribute). Also, each report is as-

sociated with tags, extracted automatically by Medical Text Indexer

(MTI tags).40 An example exam is shown in Figure 1, in which it

can be seen that the MTI tags are simple words or terms (eg,

“Hiatus”).

For the ranking stage of our framework, each exam was labeled

as abnormal, if 1 or more manual abnormality tags were assigned,

and normal otherwise (the tag “normal” or “no indexing” was

assigned). For the tagging stage of our framework, we employed the

MTI codes because the manual codes do not explicitly describe the

abnormality, but most often also include other information (eg, ana-

tomical site). For the explanation stage, we employed the “findings”

section. Also, in our experiments we used only exams with 2 images

considering this to be the standard (1 frontal and 1 lateral radio-

graph) and excluded the rest. We also discarded exams that did not

have a “findings” section. This resulted in 2790 exams, from which

1952 are used for training, 276 for validation, and 562 for testing

(we used the same split as in Li et a).9,33 The class ratio in the data-

set is slightly imbalanced, with 39% normal radiology exams. Ab-

normal exams are assigned with 3 tags on average, while the most

frequent tag is “degenerative change.” The length of the diagnostic

text in each report is 40 words on average. For the normal exams

the diagnostic text can be exactly the same for many different

patients (eg, 29 exams), while the most frequent abnormal text

appeared exactly the same in 7 exams.

MIMIC-CXR

The MIMIC-CXR dataset comprises 377 110 chest radiographs as-

sociated with 227 835 exams that come from 64 588 patients of the

Beth Israel Deaconess Medical Center (MIMIC-CXR v2.0.0 [https://

mimic-cxr.mit.edu/]). As in IU X-ray, reports in MIMIC are orga-

nized in sections, while some reports include additional sections ,”as

“history,” “examination,” or “technique,” but not in a consistent

manner.15 The current version of the dataset does not contain the

initial labels, so we reproduced them by applying the CheXpert dis-

ease mention labeler41 on the reports as described in Johnson et al.15

CheXpert classifies texts into 14 labels (13 diseases and “no

finding”), each as “negative,” “positive,” or “uncertain” for a spe-

cific text. We treated those labeled uncertain as positive. For the

ranking step, we labeled exams as normal when the “no finding” la-

bel was assigned. In total, there are 40 306 exams with 2 images

that correspond to 29 482 patients. After removing 11 exams that

did not have a “findings” section, which we used for the explanation

stage of RTEx, we split the dataset to 70% (training), 10% (valida-

Figure 3. A depiction of our RTEx framework. It first ranks the radiography exams based on their probability (ie, using the radiographs of each exam) to include

an abnormality. The highest ranked are tagged with abnormality terms and an explanatory diagnostic text is automatically provided to assist the expert.

Figure 4. The architecture of RTEx@R and RTEx@T. They both take as input a radiography exam, employ DenseNet-121 to obtain an exam embedding, and feed

it to a dense layer that serves as the classifier. RTEx@R outputs the probability of an exam to be abnormal. On the other hand, the input of RTEx@T is an abnor-

mal radiography exam and the output consists of A binary nodes, where A is the total number of tags in the dataset. The nodes that yield probabilities higher

than a defined threshold indicate the presence of the respective medical abnormalities.
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tion), and 20% (test) with respect to patients. For our experiments

we randomly kept 1 exam per patient and sampled 2300 patients

from the training set, 300 from the validation set, and 650 from the

test set, with 68% of this final dataset consisting of normal exams.

Each abnormal exam has 2 labels on average, while the most com-

mon label is “pneumonia.” The average diagnostic text length is 55

words. Many normal exams have the same diagnostic text, eg, the

most common normal caption appears in 53 exams. Considering

only the abnormal exams the most frequent caption appears 4 times.

Experimental setup
Ranking and tagging

For the first 2 steps of RTEx we investigated one baseline, referred

to as RANDOM. RTEx@R was also benchmarked against RTEx@T

by using the maximum probability from the probability distribution

over the tags as the abnormality probability. For the tagging stage,

RTEx@T was compared with 2 competitors, referred to as

CNNþNN and CNNþKNN. RTEx@R and its competitors are

trained on both normal and abnormal exams, while at the tagging

stage, the methods are trained only on abnormal exams. Next, we

describe the baseline and the 2 tagging methods.

RANDOM. This is a baseline method used both for ranking and

tagging and simulates the case in which no screening is performed.

For the ranking task, it randomly returns a number serving as the

abnormality probability. For tagging, it simply assigns a set of ran-

dom tags from the training set. The number of tags assigned is the

average number of tags per training exam.

CNN1NN. This method employs a DenseNet-121 CNN19 en-

coder, pretrained on ImageNet and fine-tuned on our datasets (IU

X-ray or MIMIC-CXR). CNNþNN encodes all images (from the

training and test sets) and concatenates the obtained representations

for each radiograph in an exam, to yield a single representation per

exam. Then, for each test representation, the cosine similarity

against all the training representations is computed and the nearest

exam is returned. The abnormality tags of the nearest exam are

returned and assigned to the test exam.

CNN1KNN. This method is an extension of CNNþNN that

uses the k-most similar training exams to compute the tags Tj for

exam Sj. To constrain the number of returned tags (Tj), only the r

most frequent tags of the k exams are held. Moreover, we set r to be

the average number of tags per exam of the particular k retrieved

exams. We observe that CNNþKNN is considered a very strong

baseline for tagging. It was ranked third in a recent medical tagging

competition.31 The first 2 methods are RTEx@T (see RTEx@T: Di-

agnostic Tagging) and an ensemble of CNNþKNN and RTEx@T,

respectively.

Diagnostic captioning

We benchmarked 3 competitors for the task of diagnostic captioning

showing the benefits of RTEx@X in terms of clinical correctness.

S&T was introduced by Vinyals et al42 for image captioning and

is only applicable for the stage of diagnostic captioning. As the en-

coder of the S&T architecture, we employ the DenseNet-12119

CNN, which is used to initialize a long short-term memory recurrent

neural network decoder.43 A dense layer on top outputs a probabil-

ity distribution over the words of the vocabulary, so that the decoder

generates a word at a time. The word generation process continues

until a special “end” token is produced or the maximum caption

length is reached.

S&T1 extends S&T (also applicable solely to diagnostic cap-

tioning) so that the generated text explains the predicted tags.

Hence, after the encoding phase and prior to the decoding phase (be-

fore the generation of the first word), the tags are provided to the de-

coder, as if they were words of the diagnostic text; similar to teacher

forcing.44 Because the decoder is an recurrent neural network, this

acts as a prior during the decoding that will follow.

ETD follows a tag and image constrained Encoder-Decoder ar-

chitecture. A DenseNet-121 CNN19 yields one visual embedding per

exam. The decoder is a long short-term memory constrained from

the visual embedding and the tags that were assigned to the exam

during the tagging step.

For all the text generation methods mentioned previously, we

preprocessed the text by tokenizing, lowercasing the words, and re-

moving digits and words with length 1. We used the Adam opti-

mizer45 everywhere with initial learning rate 10e-3. RTEX@T and

RTEX@R were trained using binary cross-entropy loss and

employed a learning rate reducing mechanism.39

RESULTS

The evaluation of the ranking methods was performed in terms of

nDCG@k, with a varying k. We also used Precision@k, but prelimi-

nary experiments showed that this measure correlates highly with

nDCG@k. Figure 5 depicts the performance of the methods. We

used bootstrapping, sampling 100 exams at a time, varying k from

Figure 5. nDCG@K of all methods for the task of ranking radiography exams based on the probability of abnormality for (A) MIMIC-CXR and (B) IU X-ray. We

used bootstrapping (1000 samples of 100 exams each) and report the average value. K varies from 10 to 80 and moving average was used with a window of 5.

We observe that RTEX@R outperforms its competitors for both datasets.
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10 to 80 radiography exams. RANDOM is outperformed by both

competitors, while RTEx@R is the overall winner for both datasets.

Tagging methods were evaluated in terms of F1@k. During this

step we assume that the radiography exams are already ranked

based on an abnormality probability. Thus, we evaluate various

methods with respect to their ability to correctly detect the abnor-

mality tags. We used the top-k abnormal cases (ranked by RTEx@R)

to compute the Macro F1 score (macro averaging across exams) be-

tween their predicted and their gold tags, which is also the standard

measure of a recent competition on medical term tagging.7 As it can

be seen in Figure 6, RTEx@T outperforms the 2 competitors in both

datasets, with the second best being CNNþKNN, with a difference

of up to a factor of 2 for MIMIC-CXR.

Evaluation of system-produced diagnostic texts was undertaken

using word-overlap and clinical correctness measures. The most

common word-overlap measures in diagnostic captioning are

BLEU46 and ROUGE-L.47 BLEU is precision-based and measures

word n-gram overlap between the produced and the ground truth

texts. ROUGE-L measures the ratio of the length of the longest com-

mon n-gram shared by the produced text and the ground truth texts,

to either the length of the ground truth text (ROUGE-L Recall) or

the length of the generated text (ROUGE-L Precision). We employ

the harmonic mean of the 2 (ROUGE-L F-measure). For the imple-

mentations of BLEU and ROUGE-L, we used respectively sacrebleu

(https://github.com/mjpost/sacrebleu/blob/master/sacrebleu/sacre-

bleu.py) and MSCOCO (https://github.com/salaniz/pycocoevalcap/

tree/master/rouge). To evaluate the clinical correctness, following

the work of,11 we used the CheXPert labeler41 to extract labels from

both the ground truth and the system-produced diagnostic texts.

Clinical precision is then the average number of labels shared be-

tween the ground truth and system-generated texts, to the number

of labels of the latter. Similarly, clinical recall is the average number

of labels shared between the ground truth and system-generated

texts, to the number of labels of the former. However, we note that

these measures have limitations, since CheXpert shows only if an ab-

normality is mentioned (and not for example its location) and

decides only for 14 labels.

Table 1 provides the results for the task of diagnostic captioning.

We considered as ground truth the correct reports and as predicted

captions the system-produced diagnostic texts. Our RTEx@X out-

performs all methods in terms of clinical precision and recall. On

the one hand, generative models achieve higher word-overlap scores,

mainly because they learn to repeat common phrases that exist in

the reports. On the other hand, retrieval methods assign texts that

are written from radiologists, so they have a higher clinical value.

When training S&T on all exams (S&T@ALL), using both normal

and abnormal cases, clinical precision and recall decrease in both

datasets. By contrast, the performance in terms of word-overlap

measures (BLEU and ROUGE-L) was slightly improved overall,

probably because the decoder is now better in generating text pre-

sent in normal reports, which however is also present in abnormal

reports (see Figure 1).

As a final benchmark, we calculated the runtime of RTEx on

ranking, tagging, and captioning on 500 randomly selected radiog-

raphy exams from our IU X-ray test set. Ranking lasted 19.78 sec-

onds. Producing tags and diagnostic texts for the top 100 ranked

exams lasted 19.43 seconds. All 100 top-ranked exams in this exper-

iment were abnormal. Note that an experienced radiologist needs 2

minutes on average6 for reporting a radiography exam, hence 200

minutes for 100 exams. The experiment was performed on a 32-

core server with 256GB RAM and 4 GPUs.

Figure 6. F1 of diagnostic tagging methods, on the top 100 ranked radiography exams. The cases were ranked by RTEx@R, based on their abnormality probability

for for (A) MIMIC-CXR and (B) IU X-ray. We observe that RTEx@T is the winner for both datasets, with CNNþKNN being the second best by up to a factor of 2 for

MIMIC-CXR.

Table 1. The results of our explanatory captioning phase, evaluated

with BLEU, ROU, CP, and CR

Dataset Model BLEU ROU CP CR

MIMIC-

CXR

S&T@ALL 7.8 25.7 0.080 0.118

S&T 8.2 25.2 0.208 0.151

S&Tþ 9.8 26.2 0.081 0.117

ETD 6.9 25.5 0.171 0.144

RTEX@X 5.9 20.5 0.229 0.284

IU X-ray S&T@ALL 6.9 23.6 0.118 0.088

S&T 6.5 23.0 0.153 0.113

S&Tþ 9.5 23.4 0.085 0.071

ETD 10.0 26.7 0.131 0.124

RTEX@X 5.5 20.2 0.193 0.222

Clinical correctness decreases when S&T is trained also on normal exams

(S&T@ALL). Our RTEX@X outperforms all other methods in CP and CR.

CP: clinical precision; CR: clinical recall; ROU: ROUGE-L.
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Repeatability. For repeatability purposes, the code for the best

performing pipeline of RTEx is available on github (https://github.-

com/ipavlopoulos/rtex.git).

Qualitative analysis. In order to assess the benefit of using the

predicted tags in captioning, we gave 10 randomly selected exams to

M.G. (M.G. is one of the authors and a medical practitioner assess-

ing a large number of radiology exams per day.). M.G. was also pro-

vided with the 10 ground truth captions, 10 captions produced by

RTEx@X, and 10 captions produced by RTEx@X without using

any predicted tags. M.G., who did not have any prior information

about which method produced each caption, assigned a score to

each caption based on its clinical accuracy, from 1 (clinically inaccu-

rate) to 5 (clinically accurate). Interestingly, by removing the tag

constraint mechanism, the mean clinical accuracy remained the

same, but its standard deviation was doubled, in effect leading to

more inconsistent results. The outcome of this experiment suggests

that the tags produced by RTEx@T have a detrimental effect on the

clinical consistency of the produced captions.

We also performed human evaluation by asking 2 evaluators to

examine the radiographs and identify factual errors in the

RTEx@X-produced captions, eg, errors in the presence/absence or

the characteristics of an abnormality (the evaluators are Dana

Kokey and Anastasiia Iushina, who are medical experts) (Table 2).

Each evaluator was provided with 20 exams, comprising the 10 top

RTEx@R-ranked exams (set C) and 10 randomly chosen exams (dis-

tinct among the evaluators, sets S1 and S2). For the C set (49 senten-

ces), we found an interannotator agreement (Cohen’s kappa) of 0.6

and a percentage agreement between the 2 evaluators of 85.7%. In

Table 3, we report some of the results of the human evaluation. For

more details, see the Supplementary Appendix.

DISCUSSION

In Table 4, we present the strengths and limitations of RTEx based

on evaluation results and discussion with experts. Human evalua-

tion of the RTEx@X-produced captions showed that the tag con-

straint mechanism offers consistency to their clinical accuracy. Also,

2 experts assessed the errors in produced sentences. Based on the

results, RTEx@X achieved a micro clinical accuracy of 0.837, which

is a considerably high score given the difficulty of the task. Higher

clinical accuracy of randomly selected against top-ranked exams

showed that the latter are harder due to their complexity and high-

lights the importance of the prioritization step.

We note that there are currently some limitations regarding the

clinical applicability of RTEx (see Table 4). First, ranking is not based

on the urgency/severity of an abnormality because this information is

not available in the existing publicly available datasets. Also, RTEx

has not been tested on larger datasets that are closer to a real-world

scenario and other imaging exams. However, larger datasets could

benefit our retrieval component, which we plan to extend by experi-

menting with retrieval-augmented generation 48 that achieves state-of-

the-art results in language generation tasks. We argue that the

strengths of our system show its clinical utility and importance despite

the discussed limitations, which we will address with further experi-

ments, directly passing the RTEx@R output to RTEx@T/X and longi-

tudinal expert evaluation, with RTEx deployed in a hospital.

CONCLUSIONS

We introduced a novel framework that can be used for (1) ranking ra-

diography exams based on the probability of containing an abnormal-

ity, (2) producing diagnostic tags using abnormal exams for training,

and (3) providing diagnostic text produced based on both radiographs

and tags, as means of explaining the predicted tags. This is an impor-

Table 2. Results of the human evaluation for 5 captions produced by RTEx@X, randomly selected from the evaluation set

Caption Produced by RTEx@X Sentence(s) With Factual Errors

[S1] The heart pulmonary xxxx and mediastinum are within normal limits. [S2] There is no pleural effusion

or pneumothorax. [S3] There is no focal air space opacity to suggest a pneumonia. [S4] There are mini-

mal degenerative changes of the spine.

None

[S1] There is hyperinflation. [S2] There is some subtle scarring in the lateral right base. [S3] There is no

pleural effusion or pneumothorax. [S4] The heart is not significantly enlarged. [S5] There are atheroscle-

rotic changes of the aorta. [S6] Arthritic changes of the skeletal structures are noted.

[S1]

[S1] The cardiomediastinal contours are within normal limits. [S2] Pulmonary vasculature is unremarkable.

[S3] There is no focal airspace opacity. [S4] No pleural effusion or pneumothorax is seen. [S5] There is a

stable calcified granuloma in the infrahilar right lung. [S6] There are mild degenerative changes along the

thoracic spine. [S7] No acute bony abnormality is identified.

[S5]

[S1] Lungs are hyperexpanded. [S2] No infiltrates or masses in the lungs. [S3] Heart size normal. [S2]

[S1] Stable normal cardiomediastinal silhouette. [S2] Bilateral calcified hilar perihilar lymph xxxx. [S3]

Left lateral lung calcified granuloma. [S4] Lungs are grossly clear without focal consolidation pleural ef-

fusion or pneumothorax. [S5] Stable degenerative changes of the thoracic spine. [S6] No acute osseous

abnormality.

[S2, S3]

For each caption we report the sentence(s) that contain at least 1 factual error.

Table 3. Micro- and macro-averaged clinical accuracies for the set

of the top 10 ranked exams (C) that both experts evaluated, and the

2 sets of randomly selected exams (S1 and S2) evaluated by the

first expert (E1) and the second expert (E2), respectively

Set Schema Clinical Accuracy

Micro Macro

C Per rater E1: 0.755 E1: 0.714

E2: 0.776 E2: 0.722

Strict voting 0.837 0.788

S1 — 0.803 0.791

S2 — 0.816 0.799

For C, we calculated the accuracy per rater, as well as the accuracy consid-

ering a sentence false when both raters identified it as false (strict voting).
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tant step for practitioners to prioritize cases with abnormalities. Our

framework can be further used to predict abnormality tags and com-

plement them with an automatically suggested explanatory diagnostic

text to guide the medical expert. We experimented with 2 publicly

available datasets showing that our ranking and tagging components

outperform 2 strong competitors and a baseline. Our diagnostic cap-

tioning component achieves high clinical precision and recall, and hu-

man evaluation demonstrates the benefit of employing tags for

producing text of higher clinical consistency. We also demonstrated

that limiting training data to only abnormal exams improves the clini-

cal correctness of the produced text. Additional sentence-level human

evaluation showed that the sentences have high clinical accuracy. Fu-

ture work includes deployment to a hospital, so that we can experi-

ment with larger datasets and other imaging modalities.
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