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In‑vivo lung fibrosis staging 
in a bleomycin‑mouse model: 
a new micro‑CT guided 
densitometric approach
Laura Mecozzi1, Martina Mambrini2, Francesca Ruscitti3, Erica Ferrini2, Roberta Ciccimarra2, 
Francesca Ravanetti2, Nicola Sverzellati1, Mario Silva1, Livia Ruffini4, Sasha Belenkov5, 
Maurizio Civelli3, Gino Villetti3 & Fabio Franco Stellari3*

Although increasing used in the preclinical testing of new anti‑fibrotic drugs, a thorough validation of 
micro‑computed tomography (CT) in pulmonary fibrosis models has not been performed. Moreover, 
no attempts have been made so far to define density thresholds to discriminate between aeration 
levels in lung parenchyma. In the present study, a histogram‑based analysis was performed in a 
mouse model of bleomycin (BLM)‑induced pulmonary fibrosis by micro‑CT, evaluating longitudinal 
density changes from 7 to 21 days after BLM challenge, a period representing the progression of 
fibrosis. Two discriminative densitometric indices (i.e. 40th and 70th percentiles) were extracted from 
Hounsfield Unit density distributions and selected for lung fibrosis staging. The strong correlation 
with histological findings  (rSpearman = 0.76, p < 0.01) confirmed that variations in 70th percentile could 
reflect a pathological lung condition and estimate the effect of antifibrotic treatments. This index 
was therefore used to define lung aeration levels in mice distinguishing in hyper‑inflated, normo‑, 
hypo‑ and non‑aerated pulmonary compartments. A retrospective analysis performed on a large 
cohort of mice confirmed the correlation between the proposed preclinical density thresholds and 
the histological outcomes  (rSpearman = 0.6, p < 0.01), strengthening their suitability for tracking disease 
progression and evaluating antifibrotic drug candidates.

Computed tomography (CT) imaging is now an invaluable tool for both qualitative and quantitative assessment of 
numerous lung disorders in clinical practice, as confirmed by the international diagnostic  guidelines1–3. Indeed, it 
is increasingly recognized that human observation has poor reproducibility in the quantification of the extent of 
diffuse lung  disease4. Owing to the linear relationship between X-ray attenuation and tissue density, lung densi-
tometry has been shown to be superior to visual assessment in several disorders: it is widely available, reproduc-
ible and much less time consuming than visual  scoring5. Histogram-based measurements refer to CT numbers 
frequency distribution (i.e. physical density distribution). Hence, information on aeration levels in specific lung 
regions (compartments) can be derived from lung density  histograms5–9. Variation in lung densitometry has 
been used as an endpoint of studies testing drug efficacy in the treatment of several lung  pathologies4,10,11. For 
instance, CT densitometry has been shown to be accurate in the assessment of emphysema-modifying  therapy12.

Micro-CT based quantitative tools have been used in several animal models to understand the pathogenesis 
of lung diseases, resulting in accurate longitudinal assessment of disease progression and compliance with the 3R 
rules (Refinement, Replacement, Reduction)13–17. Unfortunately, despite the strength and potential of this tech-
nology in preclinical research, there are still scarce data on CT number (i.e. Hounsfield Units-HU) distributions 
and no clear guidelines for animal  lungs17–19. In contrast to the large number of reports for human  lungs12,20–22, no 
cut-off densitometric values have been proposed so far for both identifying and quantifying lung abnormalities 
such as fibrosis and emphysema in animal models. To the best of our knowledge, the HU ranges used to define 
differently aerated lung compartments vary from investigator to investigator, depending on the animal species or 
on the disease (Table1)17,19,21,23–25. Nevertheless, standardized density thresholds for characterizing lung disorders 
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could be of critical importance when comparing different animal models or testing different treatments in drug 
discovery  processes18. In this study, we used a murine model of lung fibrosis [induced by bleomycin (BLM) 
 administration]25–28 to provide a complete mapping of lung density and quantitative densitometric metrics for 
the evaluation of disease progression and antifibrotic effect.

Methods
A total of 300 mice underwent imaging and image processing procedures, as detailed below, in 11 drug discovery 
studies conducted between 2017 and 2019. Since a drug efficacy study was not the purpose of the analysis, no 
mention of the specific compounds is made, except for Nintedanib (60 mg/kg/day by oral gavage), an FDA-
approved drug with demonstrated antifibrotic efficacy in the BLM mouse  model29.

Experimental animals. Female inbred C57Bl/6 (7- to 8-week old) mice were purchased from Envigo, Italy 
(San Pietro al Natisone, Udine, Italy). Prior to use, animals were acclimatized for at least 5 days to the local vivar-
ium conditions (room temperature: 20–24 °C; relative humidity: 40–70%; 12-h light–dark cycle), having free 
access to standard rodent chow and softened tap water. All animal experiments described herein were approved 
by the intramural animal-welfare committee for animal experimentation of Chiesi Farmaceutici under protocol 
449/2016-PR, and in compliance with European Directive 2010/63 UE, Italian D.Lgs 26/2014 and the revised 
“Guide for the Care and Use of Laboratory Animals”30.

Bleomycin administration. Animals were lightly anesthetized with 2.5% isoflurane delivered in a box and 
BLM hydrochloride [BAXTER (1 mg/kg) in 50 µl saline (0.9%) or vehicle (50 µl saline (0.9%)] was administered 
via oropharyngeal aspiration (OA) using a  micropipette31. Mice were positioned on the intubation platform, 
hanging them by their incisors placed on the wire. The tongue was pulled out and held with forceps, the liquid 
was placed onto the distal part of the oropharynx with a micropipette and the nose was gently closed until the 
liquid disappeared. Mice were monitored in cages until they had fully recovered. This procedure was performed 
on day 0 and 4 (25 μg/mouse for each instillation). On day 7, mice were divided into three groups: healthy saline 
(vehicle), pathological (BLM) and drug-treated. Each treatment used in this work (different unspecified com-
pounds) was started on day 7 (i.e. baseline), when fibrosis was well established, and lasted continued to day 21, 
when extensive fibrotic lesions were still evident. All the mice were orally treated daily for 2 weeks, either with 
the vehicle or the drug under investigation. The OA protocol was shown to give a uniform distribution of fibrotic 
lesions through the lung, allowing an easy detection of parenchymal  changes32. All mice were weighed daily from 
the beginning of the trial.

Histology. After sacrifice, the lungs were harvested. Lungs were removed and inflated with a cannula 
through the trachea by gentle infusion of 0.6 ml of 10% neutral-buffered formalin and fixed for 24 h. For histo-
logical assessment, the samples were dehydrated in a graded ethanol series, clarified in xylene and embedded in 
paraffin. Sections of 5 μm thickness were cut with a rotary microtome (Slee Cut 6062, Slee Medical, Mainz, Ger-
many). The sections were stained with Hematoxylin and Eosin (H&E) and Masson’s trichrome (TM), according 
to the manufacturer’s specifications (Histo-Line Laboratories). The whole-slide images (WSI) were acquired by 
the NanoZoomer S-60 Digital slide scanner (Hamamatsu, Japan) for analysis. Two independent researchers, 
with experience in animal models of lung fibrosis, performed blinded histological analyses of the specimens/
slides. Fibrotic modifications were assessed morphologically and semi-quantitatively graded according to the 
scale defined by Ashcroft et  al.33 and modified by Hübner et  al.34. Three sections for each lung sample were 
stained with Masson’s Trichrome, and scored on a scale of 0–8. The final score was expressed as a mean of indi-
vidual scores observed across all microscopic fields. In order to quantify the distribution of pulmonary fibrosis, 
the Ashcroft scores were graded in 3 classes of increasing values: ranging from 0–3 (mild), 4 (moderate) and ≥ 5 
(severe)35.

Table 1.  Hounsfield units (HU) ranges used to define aeration levels in lung tissue, for animal models 
describing different pathologies. IPF idiopathic pulmonary fibrosis, RA-ILD rheumatoid arthritis associated 
interstitial lung disease.

Authors Disease Low density Normal density High density Species

Johnson,  200723 Fibrosis X [− 1,000, − 500] HU [− 500, − 100] HU Rats

Reske,  201124 X [− 1,000, − 900]  HU [− 900,  − 500]  HU [− 100, + 100] HU Pigs/sheep

Saito,  201217 Radiation induced injury

< − 500 HU X [− 500,  − 200]  HU

MicePeak HU: peak of − 200 HU to − 800 HU

Number- 1,000: # px at − 1,000 HU

De Langhe,  201225 Fibrosis and emphysema Air; containing px<  − 383 HU Mice

Perez,  201719 Radiation induced injury X [− 900, − 400] HU Fibrotic: [− 200, + 200] 
HU Rats

Bell,  201821 RA-ILD Peak HU defining aerated and non-aerated: −  256 HU Mice
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Micro‑computed tomography acquisition protocol. Following anesthesia induction and mainte-
nance with 2% isoflurane, mice lungs were scanned with a Quantum GX Micro-CT (PerkinElmer, Inc. Waltham, 
MA) at 21 days. For time-course studies, lung imaging was also performed at day 7. The microfocus X-ray source 
in this scanner uses a Tungsten anode. A fixed filter of 0.5 mm Aluminium (Al) and 0.06 mm Copper (Cu) is 
placed in front of the exit port to remove low energy X-rays that contribute to dose but do not improve image 
quality. Images were acquired with a respiratory gated technique with the following parameters: X-ray tube 
voltage 90 KV, X-ray tube current 88 µA, total scan time of 4 min. A ring reduction correction was applied to 
the sinograms and the entire set of projection radiographs was input into a GPU-based filtered back-projection 
algorithm with a Ram-Lak  filter36. The retrospectively gated acquisition protocol in ‘high speed’ mode (acquiring 
projections without averaging in list-mode over a total angle of 360°), resulted in two 3D datasets with 50 μm iso-
tropic reconstructed voxel size, corresponding to the two different phases of the breathing cycle (i.e. inspiration 
and expiration). Data reported here refer to the end of expiration phase. The system is calibrated monthly with 
standard phantoms for noise, uniformity, low contrast and resolution (Micro-CT phantoms, Quality Assurance 
in Radiology and Medicine, Germany).

Image post‑processing: lung segmentation protocols and analysis. For each acquisition, a stack 
of 512 cross-sectional images stored in unsigned 16-bit file format was produced. The reconstructed datasets 
were imported and analyzed using Analyze software (Analyze 12.0; Copyright 1986–2017, Biomedical Imaging 
Resource, Mayo Clinic, Rochester, MN). A 5 × 5 × 5 kernel size median filter was always applied to image stacks. 
A conversion scale was used to express grey levels as CT numbers (Hounsfield Units—HU), setting -1,000 HU 
as the density of air and 0 HU as the density of water Fig. 1(d).

Pulmonary image analysis is based on the creation of a 3D segmentation map in which two main objects of 
interest must be included: airways and lungs.

A semi-automatic segmentation is always used to define airways: an object extractor tool enables the specifica-
tion of a seed point and a threshold range to properly detect the object in the volume. The accurate and precise 
segmentation of lungs boundaries is a critical step and it is essential for the extraction of densitometric  indices5. 
In drug screening, two basic approaches are usually employed to create the lung segmentation map (Fig. 1), 
depending on the aeration level of parenchyma (see Supplementary Video 1 and Supplementary Video 2):

• A semi-automatic segmentation is used to define the whole lung volume when the parenchyma is detectable 
and well defined by the threshold range (e.g. vehicles or mild and moderate lesions in pathological subjects) 
Fig. 1a, b. This approach was considered acceptable for the BLM-induced murine fibrosis model analyzed 
herein and it was used to define aeration levels in mice as detailed below.

• A manual segmentation is necessary to correctly identify lung regions that are not clearly detectable due to 
lack of aeration, absence of clear boundaries and jagged or severely damaged parenchyma (i.e. areas of mas-
sive fibrosis in pathological subjects)35 (Fig. 1c). The manual approach was required for only 2–3% of the 
mice that underwent the OA administration procedures described previously. In these cases, an alternative 
protocol based on a mathematical procedure was developed and proposed to avoid manual intervention 
when a large number of animals needs to be screened (see predictive lung volume method in the following 
section).

To characterize global changes in the lung during fibrosis progression and to evaluate the therapeutic effects 
of the compounds under investigation, we used the segmentation map to extract several micro-CT quantita-
tive parameters: lung volume  [mm3], mean lung density [HU], standard deviation of the mean, maximum and 
minimum HU values within the region-of-interest (ROI). In addition, the attenuation histograms were generated 
from lung ROIs using bins of 10HU width (range HU: [− 1,000, 0]; 100 bins), and the corresponding cumulative 
distributions were derived for each time point, as reported in Fig. 1e, f respectively.

Longitudinal HU changes, between the beginning and the end of the pharmacological treatment (7 and 
21 days), were used to identify a measurable read-out from lung density  histograms20. To test whether the derived 
quantitative densitometric indices were able to discriminate parenchymal changes between healthy, pathologi-
cal and drug-treated mice, their mean HU values for each group were extracted from cumulative distributions 
and compared.

Predictive lung volume method: an approximation rule. In fibrosis drug discovery we need to deal 
with several animal models, each experiment involving a large number of animals. Different degrees of fibrotic 
lesions can be revealed: mainly mild or moderate (as observed for the BLM model described herein) or more 
severe, as found for 2–3% of the analyzed animals. Denser and tissue-like regions, comparable to soft tissues 
such as thoracic wall, mediastinum or diaphragm, are closely associated with severe lung fibrotic damage. The 
HU distributions for animals with severe pathology (i.e. black curve in Fig. 1e) could include the fibrotic vol-
ume, showing HU values close to zero and requiring a manual segmentation. With the aim of reducing both the 
computation times and operator-dependent variability that are inherent to this approach, we defined a method 
to estimate total lung volumes, even with lesioned lungs for which the automatic segmentation is not able to give 
a reliable output. The approximation rule obtained, called `predictive lung volume method`, can be used to avoid 
manual segmentation procedures with acceptable risk of bias.

Pathological animals from BLM groups characterized by different levels of fibrotic lesions were manually 
segmented to extract lung ROIs and volumes, including (if any) the denser portions (n = 40). These groups 
consisted of fibrotic animals from both the above described OA model (2–3% of the mice) and an intratracheal 
administration-based model, formerly investigated by the  group28.
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Figure 2a shows the manual lung volume  (Vmanual) frequency distribution. As confirmed by a Kolmogo-
rov–Smirnov test with Dallal-Wilkinson-Lillie for P value (p > 0.1), the values are normally distributed. The main 
parameters of the distribution such as mean (µ), standard deviation (σ), first and third quartiles (25th and 75th 
percentiles) and 95% confidence interval (CI) were calculated. These parameters were combined as reported in 
Eq. (1), testing three different pairs of values: A = µ − σ and B = µ + σ, A = 25th percentile and B = 75th percentile, 
A = − 95% CI and B =  + 95% CI.

Our aim was to obtain a rule to predict the total lung volume for a screened animal  (Vpred), using the volume 
detected by the automatic segmentation  (Vauto), and avoiding the manual approach. The predicted total lung vol-
ume  Vpred should include, by definition, the severe undetectable lesions. We found that using the 25th percentile 
and 75th percentile in place of A and B respectively,  Vpred provided a robust estimate of the real lung volume. 
Therefore, we used these two parameters (namely A = 534  mm3 and B = 646  mm3) to derive  Vpred. Accordingly, 
the undetectable fibrotic volume, supposed to be lost using automatic segmentation, can be defined as:

(1)



















Vauto < A → Vpred = A

A< Vauto < B → Vpred = B

Vauto > B → Vpred = Vauto

Figure 1.  Lung segmentation protocols and analysis. (a, b) Semi-automatic segmentation for the extraction 
of lung parenchyma (green) and airways (red) in healthy subjects (a) or in mild lesioned pathological subjects 
(b); (c) manual segmentation applied in presence of severely damaged parenchyma. The undetectable volume 
is highlighted in grey. (d) The Hounsfield scale of CT numbers (HU). (e, f) Examples of HU density histograms 
(e) obtained from lung segmentation maps in vehicles (white) and BLM with mild and severe histological 
lesions (in grey and black, respectively), at 21 days. In (f) the cumulative frequency histograms for the same 
subjects. Analyze 12.0 (Mayo Clinic, Rochester, MN) was used for μCT data analyses, https ://www.analy zedir ect.
com. Figures were created using GraphPad Prism 8 (GraphPad Software, La Jolla, CA, USA), https ://www.graph 
pad.com.

https://www.analyzedirect.com
https://www.analyzedirect.com
https://www.graphpad.com
https://www.graphpad.com
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The QQ plot (Quantile–Quantile plot) in Fig. 2b shows that the residuals, calculated from manual and 
predicted volumes for about ninety animals (BLM and drug-treated groups), are normally distributed, as con-
firmed by Anderson–Darling (p = 0.88), D’Agostino-Pearson (p = 0.63), Shapiro–Wilk (p = 0.41) and Kolmogo-
rov–Smirnov (p > 0.1) tests. The differences between manual and predicted methods were calculated to be within 
10% of the real volume  (Vmanual) for about 80% of animals. As the differences did not exceed 20%, this result was 
considered acceptable for the purpose of this procedure.

The ‘predictive lung volume method’ has been applied in drug screening studies to give a fast quantification 
of those severe lesions that would otherwise be lost using semi-automatic segmentation. Further investigations, 
as reported in the Supplementary Information 1, led to the characterization of the aeration degrees within 
 Vundetectable(Fig. S1(a)). In addition, to confirm the suitability of our model, a retrospective analysis was performed 
comparing the results obtained using this mathematical rule to the corresponding histological outcomes. As 
shown in Fig. S1(b) for five independent BLM groups, no significant differences were found between the selected 
variables (Wilcoxon test, p > 0.05).

Statistical analysis. The GraphPad Prism 8 software was used for statistical analyses (GraphPad Software, 
La Jolla, CA, USA). Spearman correlation analysis was used to evaluate the relationship between the selected 
densitometric indices, histological parameters and micro-CT outcomes. For the comparison between groups in 
each drug efficacy study, one-way ANOVA with the Dunnett’s post-hoc test for multiple comparisons was used. 
A 1-tailed Steiger’s Z-test was used to compare dependent correlations. The alpha level of all tests was set at 0.05.

Results
Lung densitometry to derive quantitative indices. Lung density histograms were acquired for about 
100 animals from saline, BLM and Nintedanib-treated groups. The mean distributions for BLM and Nintedanib 
groups at day 7 and day 21 are reported in Fig. 3a, b, showing the HU longitudinal changes. The corresponding 
cumulative histograms were subsequently derived at the selected time points (see Fig. 3c, d).

Figure 3e describes the mean HU increase (∆HU) from 7 to 21 days, in each 5th percentile included in the 
10th–90th percentile range of lung density histograms for both BLM and Nintedanib-treated groups. The larg-
est HU density differences between groups were detected in the 40th and in the 70th percentiles (∆HU = 55, 
∆HU = 50, respectively), as highlighted by dotted red lines. As may be expected, no changes in HU density were 
observed for saline (data not shown).

Figure 4a, b shows the mean values for the 40th and 70th percentiles from an experiment where Nintedanib 
(i.e. drug A) was used as the reference drug. For both percentiles, statistically significant differences were found 
between saline and drug A groups compared to BLM (ANOVA followed by Dunnett’s test. **p < 0.01). Figure 4c, 
d refers to an experiment where the antifibrotic treatment (drug B) did not show any efficacy after examina-
tion of classical histological readouts. As expected, significant differences between saline and BLM groups were 
found for both percentiles, while no differences were found for drug B group when compared to BLM (ANOVA 
followed by Dunnett’s test. * p < 0.05).

(2)Vundetectable = Vpred − Vauto[mm3
]

Figure 2.  (a) Frequency distribution of lung volumes obtained by manual segmentation and used to build 
up the predicted volume rule (n = 40). A Kolmogorov–Smirnov test with Dallal-Wilkinson-Lillie for P value 
(p > 0.1) was used as normality test. Mean, standard deviation, 25th and 75th percentiles, lower and upper 95% 
confidence intervals (CI) were calculated. (b) QQ plot between manual and predicted volumes (n = 90). The 
normality of residuals is confirmed by Anderson–Darling (p = 0.88), D’Agostino-Pearson (p = 0.63), Shapiro–
Wilk (p = 0.41) and Kolmogorov–Smirnov (p > 0.1) tests. Data were plotted and analyzed using GraphPad Prism 
8 (GraphPad Software, La Jolla, CA, USA), https ://www.graph pad.com.

https://www.graphpad.com
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Figure 3.  (a, b) Mean lung density distributions for BLM and Nintedanib groups at 7 days (red curve) and 
21 days (blue curve). The longitudinal variations of the 70th percentile are highlighted (i.e. 50HU for BLM 
group and no changes for Nintedanib group). (c, d) Cumulative mean density histograms for BLM (b) and 
Nintedanib (c) groups at 7 days (red lines) and 21 days (blue lines). (e) Mean longitudinal HU changes (∆HU) 
of lung density histograms in the range 10th–90th percentile. As highlighted by dotted red lines, 40th and 70th 
percentiles show the largest differences between BLM and Nintedanib-treated groups. Figures were created 
using GraphPad Prism 8 (GraphPad Software, La Jolla, CA, USA), https ://www.graph pad.com.

https://www.graphpad.com
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Additionally, the relationship between densitometric and histopathological parameters (i.e. Ashcroft score) 
was evaluated (about n = 100). The Ashcroft score demonstrated a greater significant correlation with the 70th 
percentile (rSpearman = 0.76, p < 0.0001), as compared to the 40th percentile (rSpearman = 0.69, p < 0.0001), being these 
correlations with Ashcroft scores significantly different (Z = 4.219, p < 0.0001). This result further confirms the 
choice to focus on the 70th percentile, plotted against Ashcroft score in Fig. 4e. We considered three levels of 
fibrotic disease based on histopathological data: normal lungs with mild parenchymal changes were associated 
with an Ashcroft score of 0–3, while moderate and severe pathologic abnormalities reflected scores of 4 and 
5–8,  respectively37. As highlighted, 94% of healthy animals (white) (n = 47) are included in the mild range and 
77% of the pathological ones (black) in the moderate region (n = 57), whilst no severe scores (Ashcroft ≥ 5) 
were observed. This evidence suggests a strong alignment of the selected index with the histological findings, as 
further confirmed by the distribution of drug A (green) and drug B (blue) in the plot, with the reference drug 
almost completely confined to the mild region and the low efficacy compound totally confined to the moderate.

Definition of aerated lung regions: the new preclinical thresholds. As clearly shown in Fig. 4b, 
d and confirmed by the linear regression with Ashcroft score in Fig. 4e, the 70th percentile can discriminate 
between animals characterized by heterogeneous fibrotic pulmonary lesions. As a step forward, we used the 

Figure 4.  Box and Whiskers plots refer to two drug efficacy studies at 21 days testing drug A, the Nintedanib 
reference compound (green) (a, b) and drug B, a low efficacy candidate (blue) (c, d). The central line is the 
median and the box is defined by 25th and 75th percentiles. Changes in 40th and 70th percentiles for saline 
and drugs were compared to BLM groups using a one-way ANOVA followed by Dunnett’s test (*p < 0.05; 
**p < 0.01). The dotted red lines at – 435 HU in the 70th percentile plots represent the threshold value selected 
as upper limit for normo-aerated region. (e) Correlation between selected 70th percentile and Ashcroft score 
 (rSpearman = 0.76, p-value < 0.0001, ****) for vehicles (white) and BLM (black) at 21 days (about n = 100). Green 
points refer to Nintedanib and blue points refer to the low efficacy treatment used in (b) and (d), respectively. 
Data were plotted and analyzed using GraphPad Prism 8 (GraphPad Software, La Jolla, CA, USA), https ://www.
graph pad.com.

https://www.graphpad.com
https://www.graphpad.com
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value – 435 HU (red dotted lines in Fig. 4b, d), namely the mean between the lowest 70th percentile in BLM 
groups and the highest 70th percentile in saline groups (n = 100), to define lung aeration regions in mice.

The representative HU frequency distributions for saline and BLM with mild and severe histological lesions, 
are reported in Fig. 5. 70% of the AUC (area under curve) for the normal murine lung (white curve) is included 
in the range [− 1,000, − 435] HU. This supports the decision to fix the upper limit for the normo-aerated com-
partment at – 435 HU. The lower limit was set at – 860 HU, since only 0.02% of the AUC (mean value over 100 
subjects) was included in the interval [− 1,040, − 860] HU. Following the same procedure, the hypo-aerated 
region was defined by fixing its upper limit at – 121 HU, namely the highest HU value reached in lung density 
histograms using automatic segmentation (n = 100). Finally, to determine the external hyper-inflated (not consid-
ered in this work) and non-aerated compartments, we referred to Gattinoni et al.38 . We centered these regions at 
-950HU and at 0HU respectively, in order to reflect their theoretical air/tissue compositions: 95% air + 5% tissue 
for the first and 100% tissue for the latter. Consequently, we limited the hyper-inflated compartment to the range 
[− 1,040, − 860] HU and the non-aerated compartment to the range [− 121, + 121] HU.

The grey curve in Fig. 5 represents the HU frequency distribution for a BLM animal with mild/moderate 
fibrotic lesions and it is totally included in the range [− 860, − 121] HU. This justifies the use of the semi-auto-
matic segmentation for the OA experiments described herein. Indeed, when more severe fibrotic lesions are 
revealed (black curve), as experienced with 2–3% of the animals, the distribution spreads across three different 
compartments, ranging from – 860 HU to + 121 HU. In these cases, in order to detect the volume included in 
the non-aerated compartment, a manual segmentation is needed.  As described in “Methods”section, the pre-
dictive lung volume method represents an alternative rule to estimate, if any, the fibrotic volume in the region 
[− 121, + 121] HU. This method, applied to all the experimental groups we need to compare, can give a reliable 
quantification of the undetectable fibrotic volumes (see Supplementary Materials 1 for a detailed description of 
tissue aeration degrees within  Vundetectable).

As detailed above, the new preclinical ranges allow discrimination between different lung regions based on 
their air content. In order to test if these new thresholds could better describe the heterogeneity of lung fibrosis 
in mice compared to clinical  ones7, a retrospective analysis was performed on 250 mice from several independent 
experiments. A double thresholding procedure was carried out and micro-CT parameters were extracted and 
compared for all the screened animals.

The mean percentages of normo- and hypo-aerated tissue for healthy mice, obtained using both clinical and 
preclinical ranges, are reported in Fig. 6a. The introduction of new HU thresholds implies a mean increase of 15% 
in normo-aerated volume with respect to clinical ranges. Accordingly, applying preclinical density thresholds, 
physiological conditions are mimicked.

The antifibrotic effect evaluation in preclinical studies relies on invasive ex-vivo measurements, involving 
labor-intensive biochemical analysis and/or histological scoring. Although longitudinal studies are obviously 
precluded, this analysis is considered a gold standard procedure. On the other hand, in-vivo microtomographic 
readouts refer to the restoration of the normo-aerated region (i.e. increased normo-aerated volume) or to the 
reduction of the less aerated compartments (i.e. hypo-aerated and non-aerated volumes). Therefore, the volume 

Figure 5.  CT number frequency distributions describing a normal condition (saline-white points) and two 
pathological-fibrotic conditions, mild BLM (grey points) and severe BLM (black points). The lung aeration 
compartments defined by the new HU preclinical ranges are overlapped: in light blue the hyper-inflated [−  
1,040, − 860] HU, in blue the normo-aerated [− 860, − 435] HU, in red the hypo-aerated [− 435, − 121] HU and 
in grey the non-aerated [− 121, + 121] HU. Figure was created using GraphPad Prism 8 (GraphPad Software, La 
Jolla, CA, USA), https ://www.graph pad.com.

https://www.graphpad.com


9

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18735  | https://doi.org/10.1038/s41598-020-71293-3

www.nature.com/scientificreports/

of each compartment constituting the whole lung volume (i.e. hyper-, normo-, hypo- and non-aerated) impacts 
on drug efficacy evaluation by micro-CT. To verify the reliability and suitability of the preclinical density thresh-
olds, ex-vivo and in-vivo efficacy results were compared for a total of 250 mice from the above-mentioned drug 
discovery preclinical trials including saline, BLM and drug-treated groups (i.e. 13 antifibrotic candidates).

Normo-aerated, hypo-aerated and non-aerated tissues were evaluated by applying either preclinical or 
clinical ranges and the corresponding volumes correlated to total Ashcroft scores and moderate and severe 
fibrotic lesions (Fig. 6b, c). The correlation coefficients, compared to clinical ranges, showed an increase from 
 rSpearman = − 0.5 (p-value < 0.0001, ****) to  rSpearman = − 0.6 (p-value < 0.0001, ****) (Fig. 6b) and from  rSpearman = 0.5 
(p-value < 0.0001, ****) to  rSpearman = 0.6 (p-value < 0.0001, ****) (Fig. 6c).

As shown in Fig. S2a, b, higher correlation coefficients were observed focusing on healthy and pathological 
groups only and excluding the antifibrotic candidates from the analysis. The improvement using preclinical 
thresholds was confirmed (see Supplementary Information 1 for more details).

Discussion
Pulmonary CT imaging is widely used for diagnostic purposes, playing a crucial role in clinical  practice3. A huge 
community of physicians and radiologists is increasingly committed to the creation and deployment of novel 
tools, protocols and  algorithms39,40. In contrast, the critical mass is still missing and use is very fragmented in the 
preclinical setting. Micro-CT users, mostly from academic centers, usually deal with only a limited number of 
mice. In fibrosis drug discovery, however, micro-CT imaging needs to be applied to a large number of mice and 
deliver reliable data in a very short time to support the commitment to find the best anti-fibrotic drug candidates 
for clinical development. To date, a robust validation of micro-CT in pulmonary fibrosis drug discovery has not 
been performed, hence its application in this field has never been described. As detailed above, the validation 
process required the employment of fibrotic mice, the pathology being induced with a well standardized protocol 
and pharmacological treatment carried out including both standard reference drugs (i.e. Nintedanib) and non-
responsive compounds. Micro-CT imaging was always performed using established acquisition parameters and 
the samples for the histological examination were carefully examined by fully trained histopathologists. In this 

Figure 6.  (a) The mean percentages of normo- and hypo-aerated tissues for healthy mice (n = 23), using both 
clinical and preclinical lung aeration thresholds. The improvement in normo-aerated compartment with the new 
thresholds, from 64 to 79%, reflects physiological conditions (each variable is represented as mean ± s.e.m). Axial 
micro-CT images of the same healthy mouse show the differences between clinical and preclinical thresholds 
applied to the segmented lung. (b, c) Relationship between histological and micro-CT parameters, obtained 
using preclinical thresholds (n = 250). A good correlation was found comparing % normo-aerated tissue 
against Ashcroft score  (rSpearman = − 0.6 (p-value < 0.0001, ****)) and %hypo- and non-aerated tissues against the 
%moderate and severe lesions  (rSpearman = 0.6 (p-value < 0.0001, ****)). Analyze 12.0 (Mayo Clinic, Rochester, 
MN) was used to process μCT datasets, https ://www.analy zedir ect.com. Data were plotted and analyzed using 
GraphPad Prism 8 (GraphPad Software, La Jolla, CA, USA), https ://www.graph pad.com.

https://www.analyzedirect.com
https://www.graphpad.com


10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:18735  | https://doi.org/10.1038/s41598-020-71293-3

www.nature.com/scientificreports/

work, we evaluated the use of micro-CT density measurements in a murine model of BLM-induced lung fibrosis, 
defining reference values for the quantification of longitudinal changes in lung parenchyma.

Contrary to the clinical  setting4, the impossibility of revealing morphological features linked to fibrotic disease 
(such as ground glass and reticular opacities, honey-combing, consolidations)13,41, prevents the identification of 
any correspondence between high- or low-density parenchymal areas and texture abnormalities, thus excluding 
visual score determination. In addition, to the best of our knowledge, although micro-CT metrics such as aerated 
lung volume and tissue lung volume are recognized as primary outcomes in murine models of lung  diseases21, 
no attempts have been made so far to fix HU limits for lung aeration compartments. In clinical setting, most 
authors refer to four lung regions with different aeration distinguishing between hyper-inflated, normally-aerated, 
hypo-aerated and non-aerated  compartments7. Despite the use of these thresholds for microtomographic images 
 quantification24, the translation of clinical cut-off values to preclinical applications, could lead to misinterpre-
tation or improper results. The need for a preclinical characterization is evident when comparing human and 
mouse HU density histograms. As shown in Fig. 7, in normal patients at functional residual capacity (blue area), 
about 50% of the total lung volume is included in the compartment [− 800, − 600]  HU7. The grey area repre-
sents instead the average distribution over about 50 healthy mice at the end-expiration phase. The curve peaks 
at approximately -600HU, with a shift of about 100 units and a broader frequency component towards higher 
HU values compared to human healthy lung. Human CT acquisitions in fact, can be performed at total lung 
capacity (TLC) or at functional residual capacity (FRC)9,40 whereas, to address free breathing variabilities, mice 
imaged by micro-CT are always sedated and subjected to respiratory gating procedures. Anesthesia is a crucial 
factor influencing the quality of micro-CT scans. Although the anesthetic procedures are well standardized with 
a fixed time of induction and a constantly monitored breathing rate (100–120 breaths per minute)42, respiratory 
motion represents a challenge especially at the boundary between lung and diaphragm. Even in healthy mice, 
about 20% of total lung voxels show HU > -435 and are likely affected by either movement artifacts or noise, in 
contrast to human lung density distribution (Fig. 7). Taken together, these evidences prompt us to derive the 
best densitometric indices reflecting the fibrosis disease evolution in mice, deriving lung aeration levels suitable 
for developing preclinical density thresholds.

Preclinical density thresholds distinguish between four lung compartments with different air content, as 
reported by Gattinoni et al. for clinical  CT7. The new HU ranges allow the properly reproduction of physiologi-
cal conditions, given that the percentage of hypo-aerated tissue in saline is reduced compared to clinical ranges 
(Fig. 6a). This result is confirmed whatever the severity of the employed model. In fact, the cut-off value used as 
starting point to derive the preclinical thresholds (i.e. – 435 HU) (Fig. 4b–d), ensures their suitability for more 
severe fibrotic models. In addition, even if the hyperinflated compartment was not revealed in the BLM model 
described herein, this region could be useful for the detection of emphysema in  mice12.

The retrospective analysis, as expected, confirmed that preclinical thresholds are reliable for performing drug 
efficacy evaluations. To support this result, the comparison between histological scores and micro-CT parameters 
obtained by applying either preclinical or clinical ranges, underlined an improvement in correlation coefficients 
using new thresholds. The good correlation obtained, albeit comparing a 3D measurement with a 2D snapshot of 
the pathology (Fig. 6b, c), corroborated the pivotal role of micro-CT imaging in drug discovery. In fact, despite 
histology still represents the gold standard for evaluating lung fibrosis progression, the histological outcomes 
refer to less than 1% of the total lung volume. The comprehensive evaluation given by micro-CT analysis could 
then provide a more reliable estimate of antifibrotic drug efficacies, reducing the sample size planned in power 
analysis tests (see Supplementary Information 1). Furthermore, histology does not allow longitudinal studies 

Figure 7.  HU lung density distributions in normal conditions, for human at functional residual capacity (blue 
area) and anesthetized mouse at the end of expiration phase (grey area).
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and its time-consuming nature and vulnerability to operator-dependent errors make the technique unsuitable 
for handling a large number of animals. The agreement with histological findings, also confirmed that density 
changes in selected percentiles (40th and 70th percentiles) can reflect a pathological lung condition (Fig. 4e) 
and its evolution over time. These measurable readouts were obtained from HU density distributions, reflecting 
the longitudinal changes between 7 and 21 days. It is also noteworthy that the use of Nintedanib as a reference 
compound in the time-course study ensured the attainment of maxima differences compared to the pathologi-
cal group.

Two basic protocols were described to extract lung segmentation maps. Although the manual segmentation 
was used only for a negligible percentage of animals with severe fibrotic lesions, we developed a fast alternative 
mathematical method to predict lung volumes in drug screening. This procedure provides a rapid quantification 
of denser volumes, otherwise undetectable through the automatic approach. Despite not being an objective of 
this work, the ‘predictive lung volume method’ shows a great potential, especially considering that a drug discovery 
program may require about 800–1,000 animals/year to be screened, a number unmanageable using a manual 
procedure. Nevertheless, the integration of advanced algorithms of deep learning, computer vision or active 
shape models in image post-processing could open the way to a completely automatic densitometric investiga-
tion, where assessment of fibrosis and compounds evaluation will be fully guided by micro-CT.
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