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Abstract.
BACKGROUND: The prediction and evaluation of pilot workload is a key problem in human factor airworthiness of cockpit.
OBJECTIVE: A pilot traffic pattern task was designed in a flight simulation environment in order to carry out the pilot work-
load prediction and improve the evaluation method.
METHODS: The prediction of typical flight subtasks and dynamic workloads (cruise, approach, and landing) were built up
based on multiple resource theory, and a favorable validity was achieved by the correlation analysis verification between sensi-
tive physiological data and the predicted value.
RESULTS: Statistical analysis indicated that eye movement indices (fixation frequency, mean fixation time, saccade frequency,
mean saccade time, and mean pupil diameter), Electrocardiogram indices (mean normal-to-normal interval and the ratio be-
tween low frequency and sum of low frequency and high frequency), and Electrodermal Activity indices (mean tonic and mean
phasic) were all sensitive to typical workloads of subjects.
CONCLUSION: A multinominal logistic regression model based on combination of physiological indices (fixation frequency,
mean normal-to-normal interval, the ratio between low frequency and sum of low frequency and high frequency, and mean
tonic) was constructed, and the discriminate accuracy was comparatively ideal with a rate of 84.85%.
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1. Introduction

Research indicated that humans were the cause of more than 2/3 aviation accidents [1]. Based on this
information, to guarantee safety, Federal Aviation Administration (FAA) in Federal Aviation Regulation
(FAR) 25.771 and FAR 25.1523 stated the related requirements of pilot workload [2]. The promotion
and application of Head-Up Display (HUD) technique has been used to solve the allocation of attention
resource problems induced by the frequent alternation between head down display and head up to the
target outside the cockpit. But certain difficulties in ergonomics need to be further optimized and solved,
such as fatigue based on visual coding, confusion caused by vision overlay, and spatial orientation caused
by single color display [3,4]. Subjective assessment was the primary method for the certification of pilot
workload, and the physiological method can also be accepted for reference [3].
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Researchers claimed that during a flight task, the fixation and saccade behavior of eye movements are
closely related to pilot workload and attention allocation [5,6]. When dealing with a visual task the pilot’s
blinking pattern changes; the pupil dilation and cognitive workload in a human-computer interaction task
were closely connected [7,8]. The Low Frequency (LF) and High Frequency (HF) elements of Heart
Rate Variability (HRV) indicated the activation of sympathetic nerve and parasympathetic nerve system,
and in the actual flight task, the HF increased as the task difficulty increased [9]. The ratio between
LF and HF (LF/HF) decreased as the task difficulty increased, which reflects the balance between the
sympathetic nerve and parasympathetic nerve system [7,10]. The stimulation of the sympathetic nerve
system speeds up skin’s metabolism and the secretion of sweat glands, and the increase of perspiration
can lead to a higher Electrodermal Activity (EDA) response in a complicated flight task [11]. When
compared with assessments based on the single index, a comprehensive evaluation that combines eye
movement, Electrocardiogram (ECG) data, and other physiological measurements can achieve better
results [9,12].

The Timeline Analysis and Prediction (TLAP) method and McCrachen-Aldrich (M-A) prediction
technology [13] were two major prediction methods of task workload. The multiple resource theory [14]
was widely acknowledged in the prediction of workload, and a combination of them has been done in our
research to realize a theoretical prediction of workload. There were many research groups globally who
relied on mathematical modeling in order to discriminate the pilot workload status. The major work-
load models include discriminant analysis [15,16], regression analysis [17] and support vector machine
(SVM) model [18], but the modeling of dynamic flight task based on HUD simulation was relatively
rare. Nowadays, pilot discrimination models face several major setbacks, such as relatively stronger
subjective factors, the undesirable consequences of single or comprehensive physiological indices, and
the high expenses of physiological equipment [12]. From the perspective of principles and applications
of the model, discriminant analysis was based on the discrepancy of distance between output of models
and the center of category. Logistic regression responsible for classification of samples was based on
regression function values, and the maximum likelihood method was used to estimate the parameters of
the equation regression.

Focusing on the background, research was carried out on workload based on HUD to test the sub-
ject’s physiological response. To test the sensitivity of the physiological index to workload, a new index,
LF/LHF (the ratio between LF and sum of LF and HF), was attempted. And at last, a comprehensive
prediction and evaluation method of pilot workload based on the theoretical prediction of pilot workload
and the physiological discriminate method was put forward. Our study started with the basic duties and
pilot workload element in FAR 25 Appendix D [2], combined with relevant above flight task require-
ments in the flight manual to conduct a pilot traffic pattern task in flight simulation environment. That
was also a basis for TLAP and M-A technology, and used for the prediction of pilot workload. Then, a
statistical analysis was conducted to select sensitive physiological indices for mathematical modeling,
and a better discriminate result was obtained on multinomial logistic regression model. Our research
carried out a preliminary experiment study, which can offer a certain physiological basis for compliance
verification of the airworthiness terms relevant to human factor.

2. Prediction and evaluation method of workload

2.1. Prediction of workload

Wickens put forward a multiple resource theory where the visual, verbal, cognitive, and motion di-
mensions constituted the information processing resource of human beings [14]. When combined with
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the task timeline analysis method and the MaCrachen-Aldrich scale (M-A scale) evaluation method [13],
the multiple resource theory [14] introduced the time effect and task decomposition to typical flight tasks
to accomplish the dynamic workload prediction.

MW =

n∑
i=1

Ti ∗mwi (1)

Equation (1) calculated the total workload of flight phases. While MW represents the accumulated
workload value, T represents the duration of subtask, i represents the number of flight operation sub-
tasks, andmw represents the workload value of flight subtasks calculated by M-A scale which measured
based on the expert evaluation method, including visual, verbal, cognition and motion dimensions.

Table 1 shows the subtask duration and M-A scores. For example, take the approach phase with regards
to subtask 8, and the M-A scores were 7.1 points (visual: the recognition of altitude on HUD, 3.7 point;
verbal: no activity, 0 point; cognition: the next operation to speed controls, 1.2 point; motion: adjust
speed controls to 160 knots, 2.2 point). The accumulated workload was MWAP = 3× 7.7 + 2× 3.2 +
· · ·+87.09× 2 = 502.78, and the cruise and approach phases prediction value were 276.18 and 792.12
respectively, and it should be noted that the predicted workload values were all relative values.

2.2. Evaluation of workload

A further modeling for the three typical flight phases (cruise, approach and landing) was developed. To
build up the model with an eye for an uncertain practical category of typical workload and to the greatest
extent for the reduction of misjudgment, the multinomial logistic regression theory was selected. The
multinomial logistic regression was a natural expansion of regression analysis, which the independent
variables don’t have to fulfill the multivariate normal distribution hypothesis. The multinomial logistic
regression had the least assumption and the least strict criterion, therefore it can be employed if there
is uncertainty of whether all assumptions can be satisfied or whether there is an order of typical work-
loads [17].

Within a i classes multinomial logistic regression model, the i− 1 logit equations can be express as:

ln
(
P1

Pi

)
= α1 +

K∑
k=1

β1kxk

ln
(
P2

Pi

)
= α2 +
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. . .
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β(i−1)kxk (2)

and the final class (class i) was the reference one.

P1 + P2 + · · ·+ Pi = Pi

(
i−1∑
i=1

e
αi+

K∑
k=1

βixk

+ 1

)
= 1 (3)

NoteM1 = ln
(
P1

P3

)
,M2 = ln

(
P2

P3

)
, by means of P1 = P3×eM1 , P2 = P3×eM2 , P3 = 1(1+eM1 +

eM2) to make a comparison of P1, P2, P3 (define i = 3), and the maximum value was the predicted
class.
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Table 1
Design of flight simulation task and prediction of subtask workload

Phases No. Operations Detailed operations Concerned instrument (F
represented particularly
concerned instrument)

Duration M-A

Cruise 1 Monitor parameters on HUD Monitor primary flight
parameters on HUD

Altitude, airspeed, pitch
angle, roll angle, and
heading displayed on HUD

138.09 2

Approach 1 APP mode Search for position of glide
slope indicator on HUD

HUD glide slope indicator,
APP switch

3 7.7

2 Flaps down to 15 degree (Keyboard Operation in
“F7” 3 times), Flaps down

Flap position indicator 2 3.2

3 Altitude descend to 2000 ft Observe altitude on HUD HUD altitude F, altitude
selector

6 5

4 Flaps down to 35 degree (Keyboard operation “F7”
2 times), Flaps down

Flap position indicator 2 3.2

5 Adjust airspeed to 180 knots MCP panel adjustment
(mouse operation)

HUD airspeed F, speed
controls

5 7.1

6 Set auto-brake switch Auto-brake switch stage 2
(mouse operation)

Auto brake select switch 2 7.1

7 Altitude descend to 1500 ft Observe altitude on HUD HUD altitude F, altitude
selector

6 5

8 Adjust airspeed to 160 knots MCP panel adjustment
(mouse operation)

HUD airspeed F, speed
controls

5 7.1

9 Gear down (Keyboard operation “G”),
confirm landing gear

Landing gear panel F 3 8.2

10 Altitude descend to 1000 ft Observe altitude on HUD HUD altitude F, altitude
selector

6 5

11 Adjust airspeed to 140 knots MCP panel adjustment
(mouse operation)

HUD airspeed F, speed
controls

5 7.1

12 Arm spoilers (Keyboard operation
“shift+/”)

HUD altitude 2 4.2

13 Cut off autothrotte MCP panel adjustment
(mouse operation)

Command engage switch 2 4.4

14 Disconnect the auto-pilot (keyboard operation “Z”) Command engage switch F 3 13.4
15 Monitor parameter on HUD Instrument monitoring HUD flight parameters 87.09 2

Landing 1 Descend altitude placidly (Flying rocker operation) HUD altitude F, HUD
airspeed F

22 8.6

2 Throttle down (Flying rocker operation) Engine indication 5 8.6
3 Prepare to pull up (Flying rocker operation) HUD airspeed F, HUD

pitch angle F
12 18.2

4 Slow it down (Flying rocker operation) Information of airport
runway F

3 12.2

5 When touched the ground Decide according to
runway

HUD altitude F 8 11.6

6 Open the thrust reverser (Keyboard operation “F2”,
flying rocker operation)

Information of airport
runway F

5 10.3

7 Brake manually (Keyboard operation “. ”,
flying rocker operation)

HUD airspeed F 5 7.6

8 Close thrust reverser (Keyboard release “F2”) HUD airspeed F 44.36 2
9 Monitor parameters on HUD Instrument monitoring HUD flight parameters 22 8.6
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3. Materials and methods

3.1. Subjects

Fourteen male flying cadets were recruited in our study; two that crashed, one that ran out of the run-
way (since these subjects were unable to accomplish our experiment, and the data could not be recorded
for analysis), and eleven who had valid data. Each cadet had either one or two years of flight simulation
experience with in-depth knowledge of flight simulation operations from the Civil Aviation University
of China. Their ages ranged from 18–26, with the average age of 20.6. Each of them were right-handed
with normal or rectified vision and normal hearing. All subjects were required to refrain from drinking
caffeinated or alcoholic beverages, smoking, taking any medication, and strenuous exercise for twelve
hours prior to the experiment.

3.2. Apparatus

A Tobii TX300 with a 300 HZ sample rate was used to collect eye movement data; a five-point calibra-
tion was conducted before the formal test. KingFar International Inc provided a wireless photoelectric
pulse sensor with a 64 HZ sample rate which was used to gather the ECG data. Also, a wireless galvanic
skin sensor and wireless breathing sensor with a sample rate 64 HZ was provided by the same company.
An ErgoLab wireless received all digital radio frequency signals.

3.3. Experimental scenario

A vivid HUD flight environment (the primary flight information included airspeed, altitude, pitch, etc.)
was included in the HUD display, and a single green color was used for visual coding in a simulated
quiet environment for all subjects. The flying rocker, computer keyboard, and computer mouse were
used to accomplish a dynamic process of traffic pattern task which included take-off, climbing, cruise,
approach, and landing. The flight simulation task was conducted during the summer in Tianjin Binhai
international airport, and the aircraft was 737–700 NG. The take-off runway was 16R and the frequency
of localizer in instrument landing system was 110.9 MHZ. The left and right fuel tank was set at 25% of
total capacity, the center tank was set at 10%, and the other original settings were as follows: park the
aircraft on the runway when preparing for takeoff, switch the angle of view to interior 2D visual angle,
open no smoking, fasten seat belt switch, turn on taxiing, flag indicator and high frequency flare lights,
adjust the magnetic heading to 160, open flight director switch, set the speed hold 220 knots, set heading
hold 160, set altitude hold 3000ft, adjust the auto-brake to RTO position and lay down 5 degree flap.

3.4. Experimental design

A single factor within-subject design was applied in our experiment, the workload of typical flight
phases were the diverse experimental level. Each subject has certain aircraft and HUD display training
prior to the experiment. In order to be familiar with the procedures prior to the formal experiment, there
was a 30-minute adaptation training. The formal experiment lasts about 20 minutes; all subjects should
keep the task instructions to accomplish the experiment. HUD was used more frequently during the
approach and landing phases and used less frequently during the take-off and climbing phases (lasted
73.6 s and 73.9 s); it was taken after the cruising altitude was set as 3000 ft. Based on this, a reasonable
abstraction has be completed to flight operations, a reasonable abstraction has be completed to flight
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operations, and three typical flight phases (cruise, approach, and landing), which the mean durations
were 138.09 s, 139.09s , and 107.36 s respectively, were selected to conduct an analysis of physiological
indices in the dynamic full flight envelope task environment. Table 1 shows the operations of three
typical flight phases and concerned instruments, including particularly concerned instruments.

4. Experimental results and analysis

Eye movement data (fixation frequency, mean fixation time, saccade frequency, mean saccade time,
mean blink time, blink rate, and mean pupil diameter), ECG data (mean NN and LF element), and
EDA data (mean phasic and mean tonic) were recorded and analyzed for the statistical method. For the
analysis of the above data, repetitive measure analysis of variance (ANOVA) was employed. Sphericity is
the condition where the variances of the differences between all combinations of related groups (levels)
are equal, and the Mauchly’s test was used to test the sphericity of the data [19]. A Greenhouse-Geisser
test [20–22] will be used to correct for the lack of sphericity statistically in the case that the sphericity
cannot be fulfilled. The Post-hoc comparison was LSD method while the significance level was α =
0.05.

4.1. Eye movement

An analysis was conducted for the three basic eye movements: fixation, saccade, and blink. A declin-
ing trend was shown by the fixation frequency, and an increasing trend was shown by the mean fixation
time with the ongoing typical flight task, as shown in Fig. 1a and b, and the CR, AP, LA of x-coordinate
stands for cruise, approach and landing phases. As to typical phases of flight, the single-factor repeated
measure ANOVA showed fixation frequency has significant main effects of workload (F(2,20) = 28.291,
P < 0.001). Post-hoc comparison showed that the fixation frequency under landing was obviously lower
than that under cruise and approach (P < 0.05 and P < 0.05); there were no significant effects between
cruise and approach. The single-factor repeated measure ANOVA showed mean fixation time has a sig-
nificant (F(2,20) = 14.875, P < 0.001) effect on workload. Post-hoc comparison showed that the mean
fixation time under landing was obviously higher than that under cruise and approach (P < 0.05 and
P < 0.05); there was no significant effects between cruise and approach.

Figure 1c and d showed the average saccade frequencies and mean saccade times of the subjects
under different workloads. The One-way repeated measures ANOVA indicated significant main effect
of workload (F(2,20) = 20.354, P < 0.001) on saccade frequency. Post hoc tests showed that the saccade
frequency under landing was obviously lower than those under approach and cruise (P < 0.05, P <
0.05), no significant difference was found between approach and cruise. The main effect of workload
on mean saccade time was also significant (F(2,20) = 6.786, P = 0.006). This effect manifested as that
the saccade frequency to task difficulty under landing was obviously higher than those under approach
(P < 0.05).

With the increase of workload, mean blink time showed a decline trend, while the mean pupil diameter
showed an increase trend, as is showed in Fig. 1e and f. One-way repeated measures ANOVA showed
that the effect of workload on mean blink time was significant (F(2,20) = 14.186, P < 0.001). As the
workload changed from low, medium, to high, the mean blink times decreased accordingly. Post hoc
tests showed significant differences between the mean blink times under approach and landing (P <
0.05). Also, the main effect of workload on mean pupil diameter was significant (F(2,20) = 11.311, P =
0.001). The mean pupil diameter under cruise was obviously lower than under approach (P < 0.05) and
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Fig. 1. Analysis of physiological indices in typical workload.
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landing (P < 0.05), but no significant difference was found between approach and landing. According
to the blink behavior, subjects’ blink rate under cruise, approach and landing were 0.372 ± 0.214, 0.399
± 0.347, and 0.340 ± 0.444, respectively. The variance analysis indicated that the effect of workload on
blink rate was not significant.

4.2. ECG indices

Figure 1g and h showed the average values of NN interval – the time domain index of HRV and
LF/LHF – the frequency domain index of HRV under different workloads. The main effect of workload
on mean NN was significant (F(2,20) = 13.361, P < 0.001), and mean NN showed a decline trend of
variation with the increase of workload. The mean NN under cruise was obviously higher than that under
approach (P < 0.05) and landing (P < 0.05), no significant difference was found between approach
and landing. Meanwhile, LF/LHF showed a decline trend with the increase of workload. The variance
indicated that the effect of workload on LF/LHF was significant (F(2,20) = 7.2, P = 0.004), showing
that the LF/LHF was higher under cruise than under approach (P < 0.05) and landing (P < 0.05).The
difference between approach and landing failed to reach significance.

4.3. EDA

The mean phasic and mean tonic were presented in Fig. 1i and j, and both of them showed an in-
crease trend with the increase of workload. The main effect of workload on mean phasic was significant
(F(1.312,13.123) = 4.753, P = 0.040), showing that the mean phasic under cruise was obviously lower
than the ones under the other workloads (P < 0.05, P < 0.05). However, the difference between ap-
proach and landing was not significant. As for the index of mean tonic, the main effect of workload on it
was also significant (F(1.079,10.791) = 20.441, P = 0.001). The mean tonic under the landing phase was
significantly higher than that under approach (P < 0.05) and cruise (P < 0.05). The difference between
cruise and approach was also significant (P < 0.05).

4.4. Validation of workload prediction and correlation analysis between physiological indices

A protocol modeling the average pilot was used to analyze the correlation between the predictions
and the measurement indices by Wickens [23,24], and it was also used in our study for model validation
purpose. The predicted value of the three typical flight subtasks (“the adjustment of airspeed”, “discon-
nected the auto-pilot”, “prepare to pull up”) quantified by workload prediction method, were 7.1, 13.4,
and 18.2, respectively. When taking into consideration the differences among operation times of the
subjects, a Pearson correlation analysis between predicted values of flight subtask and mean value of
physiological indices was carried out to the validation of workload prediction method [24]. Conclusions
showed that the predicted values had a highly positive correlation with mean pupil diameter (r = 0.941,
P = 0.219), mean skin conductance (r = 0.952, P = 0.197), and mean fixation time (r = 0.843, P =
0.361); They also concluded that the predicted values had a highly negative correlation with fixation
frequency (r = −0.931, P = 0.237), saccade frequency (r = −0.975, P = 0.142), and mean saccade
time (r = −0.917, P = 0.262), as well as a moderate negative correlation with blink rate (r = −0.781,
P = 0.429). The validation results claimed that the workload prediction method on the prediction of
typical flight subtask workload values had favorable prediction efficiency.

A correlation analysis between the mean value of physiological indices and the predicted value during
typical workload phase was completed; the results claimed that the physiological indices and predicted
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Table 2
Correlation between predicted MW values and physiological indices

Fixation Mean Saccade Mean Mean pupil Mean LF/ Mean Mean
frequency/ fixation frequency/ Saccade blink diameter/ NN/ LHF/ phasic/ tonic/

(N/S) time/ms % time/s time/% mm msec % µs µs
MW

r −0.664∗∗ −0.529∗∗ −0.435∗ −0.319 −0.466∗∗ −0.276 −0.300 −0.558∗∗ −0.344 0.391∗

P < 0.001 0.002 0.011 0.070 0.006 0.120 0.090 0.001 0.050 0.025
∗Correlation is significant at the 0.05 level (2-tailed); ∗∗Correlation is significant at the 0.01 level (2-tailed).

value had a high correlation (|r| > 0.8), while the mean saccade time and predicted value had a mod-
erate negative correlation (r = −0.706). Subsequently, a further correlation analysis between predicted
value of the dynamic workload phase and physiological data of all subjects was completed, as shown in
Table 2. The predicted value was negatively correlated with the fixation frequency (r = −0.664, P <
0.001), mean fixation time (r = −0.529, P = 0.002), mean blink time (r = −0.466, P = 0.006), and
LF/LHF (r = −0.558, P = 0.001) at the significance level of α = 0.01; results indicated a favorable
prediction of workload prediction method.

The correlation analysis among physiological indices was also completed. At α = 0.05 significance
level, LF/LHF was positively correlated with fixation frequency and mean NN (r = 0.366, P = 0.036;
r = 0.401, P = 0.021), mean blink time was positive correlated with mean phasic (r = 0.420, P =
0.015). At α = 0.01 significance level, fixation frequency was negatively correlated with mean fixation
time (r = −0.769, P < 0.001), and positively correlated with saccade frequency, mean saccade time,
and mean blink time (r = 0.637, P < 0.001; r = 0.494, P < 0.001; r = 0.609, P < 0.001). Mean
fixation time was negatively correlated with saccade frequency (r = −0.884, P < 0.001) and mean
blink time (r = −0.704, P < 0.001), saccade frequency was positively correlated with mean blink time
(r = 0.776, P < 0.001) and mean NN (r = 0.460, P = 0.007), and mean blink time was also positively
correlated with mean NN (r = 0.507, P = 0.001). Mean phasic had a positive correlation with mean
tonic (r = −0.500, P = 0.003), and there was no obvious correlation between the other physiological
indices.

The correlation among physiological indices can provide a reference for further selection of pilot
physiological indices. According to the analysis results, it can be concluded that the eye movement
indices (blink rate excluded) were sensitive to various inflight workloads; the mean NN and LF/LHF of
HRV, the tonic and the phasic data of EDA were also sensitive to various typical workload environments.
The information concluded in our experiment can provided physiological support for pilot workload
evaluation and real flight environment attempts.

5. Multinomial logistic regression of pilot workload

The analysis of variance confirmed the sensitive physiological indices. A reference indices can be
selected for the model when combined with the correlation analysis. The fixation frequency of eye
movement, mean NN and LF/LHF of ECG, and mean tonic of EDA were applied for mathematical
modeling. The fixation frequency (x1), mean NN (x2), LF/LHF (x3), and mean tonic (x4) were inputted
for multinomial logistic regression:

Ln
(
P1

P3

)
= 12.587x1 + 0.025x2 + 0.294x3 − 1.205x4 − 54.086 (4)
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Table 3
Results of Predicted accuracy

Phases Predicted number Accuracy
Cruise Approach Landing

Cruise 10 1 0 90.91%
Approach 1 9 1 81.82%
Landing 0 2 9 81.82%
Percentage 33.33% 36.36% 30.30% 84.85%

Ln
(
P2

P3

)
= 8.135x1 + 0.004x2 + 0.046x3 − 0.759x4 − 13.425 (5)

P1 + P2 + P3 = 1 (6)

Table 3 shows the classification of prediction results after the computation. There was a regression
forecasting to the primitive data; results showed that the correct discrimination of cruise, approach, and
landing were 90.91%, 81.82%, 81.82% respectively. The average accuracy was more than 80%, which
stated that the model had an ideal effect for workload discrimination.

6. Discussion

Due to the application of HUD in our cockpit display environment, the subjects can monitor the flight
parameters during the approach and landing phases with a head up status, and certain changes occurred
with the behavior of eye movements, which was reflected by the variation of pilot workloads. Fixation
frequency was defined as the fixation number divided by fixation time. The vision workload level can be
characterized by the fixation frequency to a great extent. In comparison to cruise, the fixation frequency
decreased during landing, indicating the enhancement of arousal level. Due to a higher monitoring task,
the fixation frequency increased during cruise, also indicating higher visual information and a higher
efficiency of information processing [25]. The mean fixation time was defined as the mean fixation dura-
tion every single point of fixation behavior. The longer the fixation duration, the deeper the information
processing. Among all phases, the landing phase has the longest fixation duration. The fixation duration
during landing phase decreased with the augment of saccade operations, which also shows that more
saccade operations are needed for the preparation of the final landing.

Saccade frequency is the ratio of saccade number to single total task time. During the approach phase,
it is vital to adjust and supervise the altitude and airspeed, while controlling the altitude is vital during the
landing phase. The discrepancy that the saccade frequency decreased during landing in comparison with
real flight missions can be explained by the lack of landing experience equipped with HUD. Therefore,
more research is needed to explore the nature of HUD before promotion. Mean saccade time is the ratio
of total saccade time and total saccade number. It described the saccade distance on the HUD display
and reflected the difficulty level of visual information acquisition. Mean blink time is the ratio of total
blink time and total blink number. It decreased gradually in the typical workload task and was consistent
with previous research, which indicated that during visual stimulation tasks, the blink duration decreased
as the workload during visual stimulation task increased [26]. At first, the mean saccade time increased
and then decreased during the typical workload task. Both mean saccade time and mean blink time was
correlated with depth of attention, and a further elaborated workload experiment was needed to observe
the accurate variations. Blink rate decreased with the increase of visual processing requirements [27].
It claimed that the blink rate can characterize the workload of information presentation styles to some
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Table 4
Results of predicted accuracy

Physiological indices Predicted accuracy (%)
Cruise Approach Landing Mean

Fixation frequency 63.64 45.45 72.73 60.61
Mean NN + LF/LHF 72.73 36.36 63.64 57.58
Mean tonic 63.64 18.18 54.55 45.45
Fixation frequency + mean NN + LF/LHF 81.82 63.64 72.73 72.73
Fixation frequency + mean tonic 63.64 54.55 81.82 66.67
Mean NN + LF/LHF + mean tonic 81.82 36.36 72.73 63.64
Multidimensional 90.91 81.82 81.82 84.85

extent, but there was no significant changes observed during complicated workload operations, this was
consistent with the basic theory that no external message was seized during blink behavior. Mean pupil
diameter was sensitive to workload, and it increased gradually with the increase of workload. It indicated
that a further resource was needed to deal with the increase of workload [28].

The function relationship between NN interval and time was built up by the time domain analysis, and
a statistical property was extracted. The contiguous R waveform duration was also called NN interval.
During the approach and landing phases, mean NN decreased with the aggravation of tension and ac-
tivity. During the tracking task, the mean NN of fighter-pilot was greater than that of the counterwork
task [9]. The Fourier transform transformed the HRV time domain into HRV frequency signals, and then
the HRV frequency band was obtained via power spectral density analysis. The HRV signal was refined
as Ultra-Low Frequency (ULF 0–0.0033 HZ), Very Low Frequency (VLF 0.0033–0.04 HZ), Low Fre-
quency (LF 0.04–0.015), and High Frequency (HF 0.15–0.4 HZ) in frequency domain. A large number
of studies have shown that the LF ingredient of HRV frequency spectrum can characterize the sympa-
thetic nerve activity; consistent with prior research, during landing LF/LHF significantly decreased with
the increase of workload [26].

The original EDA signals can be divided into tonic data and phasic data. Tonic data revealed the
galavanic skin level of the task, and the event-related potential in two seconds after a stable stimulation
was claimed by phasic data [29]. When a person is in an awake, excited, or nervous state, the sympathetic
nerve system will accelerate the skin’s metabolism, increasing the temperature of the skin relevant sweat
gland secretion. EDA was sensitive to mental workload, and a fierce EDA response was founded during
take-off, go around, and landing in Visual Flight Rules (VFR) [11]. The variation of tonic data and phasic
data was triggered by the verbal stimulation and fierce external visual environment in the approach and
landing phases. The mean phasic had a better evaluation efficiency in our experiment [29].

A correlation analysis was both used in our work and the research of Liang et al. [13]. They laid em-
phasis on the validation to subjective indices, while what we focused on were the physiological metrics,
both of us achieved acceptable results. The conclusion can be made when the single index was used for
modeling, eye response (followed by ECG and EDA) has the best discriminant effect. As for combina-
tion of two physiological indices, the combination of eye response and ECG has a better effect than the
others, which was consistent with the study of Hogervorst [30]. It is presented that when dealing with
vision-related workload, better results were achieved by eye response than any other external measure-
ments (ECG, EDA, and respiration), and EEG combined with eye response has a better result than single
EEG and eye response [30]. Table 4 claimed that the combination of two physiological measurements
(“eye response and ECG”, “eye response and EDA”, and “ECG and EDA”) was better than the single
one, and combining three of them achieved the best results (84.85%) [16]. For the discriminate accu-
racy, a multinomial logistic regression model was a little lower than the comprehensive Bayes discrim-
ination model (89.58%) indexed by respond time, accuracy, NASA-TLX scores, and SDNN. However,
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compared to the combination of subjective, performance, and physiological indices, the subjective post
analysis was avoided in the multinomial logistic regression model, which might provide certain ideas
for online detection. The lack of abundant physiological data in flight was the weakness of this model.

7. Conclusion

This research had three different aspects compared to others. At first, the HUD was used as the major
visual coding display to test the human errors in our research; the relevant physiological results can be
a reference for others. Additionally, a new physiological index-LF/LHF which showed a higher sensi-
tivity to pilot workload was raised and analyzed in the research. Lastly, and most importantly, was the
prediction and evaluation method of pilot workload, which included the multiple resource theoretical
prediction and multinominal logistic regression model based on combination of physiological indices.
Considering the difference between our subject and the real pilot and the difference between the flight
simulation environment and real flight circumstances, there were some defects in our work; the experi-
mental results can offer a certain reference and still need more tests in complicated conditions.

Several conclusions can be made based on the result analyzed above:
(1) Based on multiple resource in dynamic flight task and a correlation analysis, a workload prediction

has been completed. Predicted by workload prediction method, it claimed that the variation of
physiological indices in typical flight subtasks and workload status could be preferable. The results
indicated that the comprehensive prediction and evaluation method of workload that the dynamic
predict method combined with objective physiological measurement had a favorable effect.

(2) Analysis of variance stated that eye movement, ECG indices, and EDA indices were all sensitive
to typical workload. In typical HUD workload status, LF/LHF and fixation frequency were pos-
itively correlated; mean phasic and mean blink time were positively correlated; there was also a
correlation between fixation, saccade, and blink behavior of eye response; mean NN was positively
correlated with saccade frequency and mean blink time; and there mean pupil diameter and other
physiological indices has no significant correlation.

(3) The comprehensive model in combination with eye movement, ECG, and EDA had a better dis-
criminate result than the combination of any two or single physiological index. Based on the com-
bination of physiological indices (fixation frequency, mean NN, LF/LHF, and mean tonic), the
multinominal logistic regression model had a favorable discriminate accuracy (reaches 84.85%),
which can provide a certain reference for pilot workload evaluation.
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