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Abstract

Original Article

IntroductIon

Conventional mammography is often used for the early 
detection of cancer, despite its limitations of tissue overlapping 
in dense breasts.[1-4] The sensitivity for this technique is about 
85% and it reduces to 47.8-64.4% for dense breasts.[5] Breast 
computed tomography (CT) has been an active area of research 
with promising outcomes that can reduce the structural overlap 
of mammography.[6-10] Boone et al.[11] showed that the dose 
received from breast CT was comparable to that for two-view 
mammography for 5-cm thickness compressed breasts. Breast 
CT systems usually consist of a cone-beam geometry and flat 
panel detectors.

Due to the recent advances in detector technology, these 
integrating flat panel detectors can now be replaced by 
photon-counting detectors. These detectors are capable 
of counting discrete photon interactions, and multiple 
monoenergetic images can be obtained with single image 
acquisition. Several studies have been conducted with 

multi-energy CT[12-14] and include K-edge imaging using 
contrast agents.[9,15] These contrast images can be used for 
tissue differentiation or quantification and proved to be useful 
in multiple studies.[16-18] There occurs a sharp increase in the 
contrast between the iodinated malignant and glandular tissue 
slightly above the absorption edge of iodine.

Conventional integrating detectors weigh each photon by its 
energy, and therefore, more weight is given to the higher energies. 
The contribution of lower energies is less and substandard 
contrast is achieved since the contrast between materials is the 
best at lower energies. Photon-counting detectors assign equal 
weight to all the photons, and optimal weighting schemes can 
be developed to maximize the contrast-to-noise ratio (CNR).

Context: Photon-counting detectors and breast computed tomography imaging have been an active area of research. With these detectors, 
photons are assigned an equal weight and weighting schemes can be enabled. More weight can be assigned to lower energies, resulting in an 
increase in the contrast-to-noise ratio (CNR). Aims: The aim of this study is to develop and evaluate an energy weighting imaging technique 
to improve the CNR of simulated breast phantoms and to improve tumour detection. Materials and Methods: Breast phantoms consisting 
of adipose, glandular, malignant tissues and iodine contrast were constructed with BreastSimulator software. The phantoms were used in 
egs_cbct simulations for energies ranging between 20 and 65 keV from which multiple images were reconstructed. A new CNR-based image 
weighting method was proposed based on the CNR values obtained from the images. This method improves on previous methods and can be 
applied to complicated phantoms since no structural information is needed. Results: An increase in the CNR can be seen for lower energies. 
A sharp increase in the CNR is seen just above the K-edge for the phantoms with the iodine contrast. The CNR-based image weighting leads 
to a 68.47% (1.68-fold) increase in the CNR for the malignant tissue without iodine. For the malignant tissue with iodine contrast, the increase 
in the CNR was 96.14% (1.96-fold). Conclusions: The new proposed CNR-based image weighting scheme is easy to implement and can be 
used for complicated phantoms with varying structures. A large increase in the CNR is seen with or without the use of iodine contrast.
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Breast tumour contrast is higher at lower energies due to 
linear attenuation coefficient properties of breast tissue.[19] 
Higher energies will lead to a decrease in the contrast between 
glandular breast tissue and malignant tissue. However, using a 
low kV setting for image acquisition will not be feasible since 
it will lead to an increase in image noise. Energy spectrums 
usually consist of a small fraction of low-energy photons 
that is insufficient for image acquisition and will lead to high 
statistical variances. Therefore, additional information from 
higher energies with more photons and better statistics is 
needed for adequate images.

Energy weighting can be used to weigh the different energies 
to obtain an image with the best contrast possible. X-ray beam 
energy intervals are divided into several bins, depending on the 
capabilities of the photon-counting detector. These weighting 
schemes entail giving different energy bins different weights 
producing a combined image with a maximum CNR.

CNR improvement with X-ray weighting was first proposed 
in 1985 by Tapiovaara and Wagner.[20] Further studies 
included a simulation study by Giersch et al.,[21] and the 
practical feasibility was investigated by Niederlöhner et al.[22] 
Shikhaliev[23,24] conducted several studies that included the 
effect of energy weighting on beam hardening and the use 
of a tilted angle cadmium zinc telluride detector. In 2008, he 
found an increase in the CNR for breast tissues of 1.16–1.36 
when using energy weighting CT.[10] These results show that 
weighted energy-resolved data are a further improvement on 
photon-counting detectors and aid in constructing an image 
with the highest CNR achievable.[25]

The projection data of each energy bin can be weighted 
before image reconstruction, or each reconstructed image 
can be weighted and then combined to form a final image. 
Niederlöhner et al.[26] first proposed an image-based energy 
weighting scheme and found a reduction in the cupping effect 
by applying the weighting after reconstruction and also an 
increase in the image quality. The Downhill-Simplex method is 
applied after the first step of the reconstruction process and uses 
a trial algorithm to find the optimum weighting function.[27]

Schmidt[28] used an analytical method to determine the 
weights that will yield an image with a maximum CNR. 
Their study included a projection-based and image-based 
energy weighting scheme. The length of the contrast material 
is used during the projection-based energy weighting, and 
the image-based energy weighting uses the reconstructed 
attenuation coefficients of the image. These parameters are 
easy to obtain when using a simple phantom with known 
inserts. However, it is not always feasible when phantoms are 
based on clinical data with varying structures. The length and 
shape of each structure can vary for the different projections, 
making it difficult to obtain specific parameter information. 
Depending on the reconstruction algorithm used and the 
processing of the images, the pixel values in the images may 
not represent the attenuation coefficients at all. In another 
study by Le Huy et al.,[29] a spectral model and the effective 

attenuation coefficients were used for the determination of the 
weighting factors. Both these studies are limited to phantom 
studies with simple geometries but are difficult to apply to 
other more complex geometries, such as the breast phantoms 
found in this study.

In this study, image-based energy weighting was explored 
with weights based on the CNRs of the different energy bin 
images. No structural information is needed before using this 
weighting method, making it more suitable for complex cases. 
This method is an improvement on previous studies and is 
easier to implement.

MaterIals and Methods

Breast phantom modeling
The  BreastSimulator software package by Bliznakova et al.[30,31] 
was used to model a breast phantom. The phantom consisted of 
ducts and Cooper’s ligaments that formed the glandular tissue. 
Malignant tissue was embedded in the glandular tissue, and the 
rest of the breast consisted out of adipose tissue. One of the 
malignant tumours contained 8 mg/mL iodine that is frequently 
used as a contrast agent to improve the contrast during imaging 
with a K-edge peak at 33.2 keV. The elemental composition of 
all the tissues was obtained from the International Commission 
on Radiation Units and Measurements report 44, and the 
malignant tissue was assumed to be equivalent to pork muscle, 
as reported by previous studies.[32-35]

Monte Carlo simulations and image reconstruction
The egs_cbct code was used for the simulation of the breast 
phantom. It is an EGSnrc[36] user code written in C++ by 
Mainegra-Hing and Kawrakow[37,38] and was released in March 
2013 with EGSnrc V4 2.4.0. The egs_cbct code can simulate 
a complete cone-beam CT (CBCT) imaging system and is 
mainly used for the fast estimation of the scatter contribution 
as seen in previous studies.[39-42] It has also recently been used 
in the simulation of a fan-beam geometry.[43] Several variance 
reduction techniques together with a denoising algorithm are 
used by this code to improve scatter simulation efficiency. 
These techniques are described in one of the original papers[37] 
and also in a further paper by Thing and Mainegra-Hing.[39]

A cone-beam geometry was used with a cadmium telluride 
(CdTe) detector. The X-ray beam energy spectrum was 
subdivided into 10 energies ranging between 20 and 65 keV 
in 5 keV increments and was used to obtain reconstructed 
images of the breast phantom, each obtained for a certain 
beam energy interval. The width of the bins was chosen to 
include the K-edge of the iodine contrast agent to minimize 
the effects of photon starvation due to the high attenuation of 
the iodine.[44,45] Projection images were taken over a 360° arc 
with 1 billion histories per projection, resulting in a statistical 
variance below 1%. The simulations were performed on a 
high-performance computer unit consisting of 1520 cores 
and 28 nodes. Each node consists of random access memory 
between 96 and 128 GB, and the network used is quad data 
rate with 40 GB/s throughput and low latency.
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The XCOM photon cross-section compilation[46] was used 
during the simulations. Rayleigh scattering and Compton 
scattering with binding corrections were implemented. The 
photon cut-off energy and electron cut-off energy (ECUT) 
values were 0.001 and 1.000 MeV, respectively. Electron 
transport was avoided by choosing a very high value for 
ECUT.

The simulations were performed with a point source and 
rectangular collimation with a source-to-axis distance of 55 cm 
and a source-to-detector distance of 100 cm. A 28 cm × 16 cm 
CdTe detector was used with a density of 5.85 g/cm3 and voxel 
sizes of 0.08 cm. The egs_cbct simulation geometry is shown 
in Figure 1.

A log transformation with a blank (air) scan is done in order 
to obtain a projection image as seen below.

Projection image = -log(raw detector data)÷blank scan data

The Feldkamp–Davis–Kress filtered back-projection algorithm 
was used for the reconstruction of the images using the  Open 
Source Cone-beam Reconstructor (OSCaR) software from 
the American Association of Physicists in Medicine.[47] The 
software consists of a graphical user interface and a MATLAB 
code for image reconstruction and processing. Images were 
reconstructed with a 0.05 cm voxel size using a Shepp-Logan 
filter.

Contrast‑to‑noise ratio determination
The CNR for the images was obtained with the aid of an 
in-house developed interactive data language code. The code 
assigns segments to the structures through the Canny edge 
detection algorithm.[48] Thereafter, the region of interest (ROI) 
is selected for the adipose, glandular, and malignant tissues on 
all the images. Equation (1) was used to determine the CNR 
for each reconstructed image.

CNR
M G

B
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where SM and SG are the signals in the malignant and glandular 
tissue, respectively. The background standard deviation, σB, is 
taken in the uniform adipose tissue.

Energy weighting and its application
The weighting factor wi for each energy i was defined as its 
normalized CNRi value using Equation (2).
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where CNRmax is the highest CNR obtained. The energy with 
the highest CNRi will have a weighting factor of 1.

The image-based energy weighting was done after the 
reconstruction of the images. A schematic of the process is 
presented in Figure 2. Weighting factors were used to scale 
the different images (and after summation) formed a final 
energy-weighted image. Each reconstructed image (at energy 
bin i) is multiplied by its weighting factor and then added 
together to form the final image.

The combined CNR, CNRtot, is calculated as:[28]
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where Ci is the absolute contrast between the malignant tissue 
and glandular tissue in each image.

The standard deviation in the background of the images is given 
by σb, and the weighting factor (calculated with Equation [2]) 
for each energy bin is wi.

results

Slices through the actual breast model obtained with the 
BreastSimulator software are presented in Figure 3.

These projection images were reconstructed with OSCaR 
employing a Shepp-Logan filter with a voxel size of 0.05 cm. 

Figure 1: The egs_cbct simulation set‑up of the various breast phantoms

Figure 2: A schematic of the resulting image (bottom) obtained by 
weighing each image (top row) first and then adding them up. Here, for 
example, five images were used representing five energy bins
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Figure 4 shows the same image slice but reconstructed 
at energies between 20 and 65 keV. Figure 5 shows a 
reconstructed breast slice at the various energies with 8 mg/mL 
iodine contrast agent.

The Canny edge detection algorithm[48] was used to determine 
the ROIs for the different images. The edge detection image 
was superimposed onto the reconstructed image as shown in 
Figure 6.

The CNRs were calculated for each energy with Equation (1) 
as shown in Figure 7.

In Figure 7, the CNR values decrease at higher energy since the 
probability for photoelectric events reduces at higher photon 
energy. Albeit, Compton scattering increases with increasing 
energy and depends on the relative electron density of the 
tumour and the background soft tissue. A sharp increase in 
contrast is seen when the tumour absorbs iodine, as shown 
in Figure 8. The effect of iodination increases the CNR value 

Figure 3: Slices through the breast phantom consisting out of glandular, 
adipose, and malignant tissue. The top image contained the 8 mg/mL 
iodine contrast agent

Figure 4: The reconstructed images from 20 to 65 keV of a slice through 
the breast phantom. The malignant tissue does not contain any iodine 
contrast agent

Figure 5: The reconstructed images from 20 to 65 keV. The malignant 
tissue contained 8 mg/mL iodine contrast agent and is seen as a white 
dot in the images

Figure 6: The Canny edge detection algorithm superimposed onto the 
reconstructed image to determine the regions of interest. The smaller 
images is a magnification of the area consisting of the malignant tissue
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nearly tenfold beyond the absorption edge of 33.2 keV. The 
difference in the two data sets, Figures 7 and 8 suggests that 
low photon energy is more desirable for good CNR whereas 
optimal energy of 35 keV would result in the best CNR value 
for iodinated tumours.

From Equation (2), the weights were determined for the 
different energy levels.

A comparison between the highest CNR and the CNRs 
obtained with the weighting factors is presented in Figure 9. 
The highest CNR for the iodine contrast is obtained at 35 keV 
and for the mass without iodine at 20 keV. The CNR with the 
weighting factors is calculated with Equation (3) for each mass.

In Figure 10, a profile comparison can be seen for the 
iodinated malignant mass at the energy of 20 and 35 keV, 
respectively. There occurs an increase in the malignant mass 
signal, and the shape is also more defined as with the energy 
of 20 keV. The increase in the background noise for the 
20 keV is also evident.

In Figure 11, a profile comparison is seen between two images 
obtained with different weighting methods. A CNR-weighted 
image was obtained using the weights calculated with 
Equation (3), and the profile is seen with a solid line in 
Figure 11. A second image was obtained representing that of 
a photon-counting detector with weighting factors of 1 for 
each energy bin.

It can be seen from Figure 11 that the difference between the 
malignant tissue signal and the surrounding structures increases 
when the weights are applied. This will result in an increase 
in the CNR.

In Figure 12, the increase in the CNR can be seen when the 
weighting is applied. For the malignant mass without any 
contrast, the CNR increase is 68.47% in comparison with 
20 keV. For the malignant mass with the iodine contrast, the 
increase in the CNR is 96.14% in comparison with 35 keV.

An increase of 35.55% and 25.54% can be seen, without and 
with iodine contrast, respectively, when using image-based 

Figure 7: Calculated contrast‑to‑noise ratio at different energy levels for 
the malignant mass without iodine

Figure 9: The weighting factors for the different energies based on the 
contrast‑to‑noise ratios seen in Figures 7 and 8

Figure 10: The profile comparison between 20 and 35 keV energy bin 
for the iodinated malignant mass

Figure 8: A sharp increase in contrast‑to‑noise ratio is related to iodinated 
malignant tissue slightly above the absorption edge of iodine
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energy weighting instead of a photon-counting detector with 
equal weights.

dIscussIon

An alternative method for image-based energy weighting 
was explored using the CNR values of the different energy 
bins. For the CNR-based image weighting, the increase in 
the CNR for the malignant tissue without the iodine was 
68.47% (1.68-fold), and for the malignant tissue with iodine 
contrast, the increase in the CNR was 96.14% (1.96-fold).

In Figures 10 and 11, profiles through the reconstructed image 
can be seen. In Figure 10, the effect of the iodine contrast on 
the signal can be seen between 20 and 35 keV. There occurs an 
increase in the iodine contrast signal at energy slightly above 
the absorption peak at 35 keV. There is also a decrease in the 
background noise when using 35 keV, due to the increase in the 
number of photons that leads to better statistics. In Figure 11, 
there is an increase in the difference between the malignant and 
glandular tissue signals when applying the energy weighting 
scheme with different weights. This will lead to an increase 
in CNR and better tumour detection.

The methods used in this study are an improvement on those 
of previous studies. The weights are based on the CNRs of 
the images and not on the structural information or linear 
attenuation coefficients. This method can be applied to simple 
phantoms and to complex phantoms based on clinical data. 
The method proposed in this study is not limited to breast 
tissue and can be applied to any image dataset if the CNRs 
are known.

conclusIons

It was found that the maximum CNR is found at the lower 
energies such as 20 keV. The CNR decreases as the energy 
increases. For the malignant tissue with the iodine contrast, the 
maximum CNR is found slightly above the K-edge at 35 keV.

The image-based energy weighting leads to an improvement 
in the CNR and is a valuable method to use. Previous studies 
showed improvements in the CNRs with factors of 1.31 and 1.16 
for image-based weighting and projection-based weighting, 
respectively.[28] This is lower than the 1.68 and 1.96 found in 
this study with and without iodine contrast.

The method proved to be effective for the improvement in 
the CNRs of breast images acquired with a photon-counting 
detector without the need for structural information.
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