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Abstract
Using classroom activities to motivate the teaching and learning of Bayes’ theo-
rem is not new. However, many of the textbook exercises and published simula-
tions gloss over how the requisite probabilities are determined. In our case study, 
Able Construction is a fictional company hoping to exploit historical bidding data 
to inform its own bidding strategy on a municipal construction project. Unlike most 
other classroom activities, we challenge students to calculate the necessary prob-
abilities directly from a given dataset. In our experience with implementing this case 
in introductory business analytics courses at the undergraduate- and graduate-level, 
we find that this spreadsheet activity gives students the opportunity to exercise their 
own judgement regarding data manipulation and definition of states of nature. This 
autonomy in analysis develops in students a deeper appreciation for practical skills 
required for possible analytics careers after graduation, and leads to engaging dis-
cussions of the applicability of Bayes’ theorem in practice.

Keywords Bayesian · Excel · Decision trees · Analytics · Case study

1  Introduction and Motivation

Foundational probability concepts, as taught in undergraduate statistics or busi-
ness analytics courses, begin with sets, unions, and intersections, move next to 
union, joint, and conditional probabilities, and then to addition and multiplica-
tion laws. While a probability and statistics course will no doubt cover many 
more topics, such as expectation, variance, and discrete and continuous distribu-
tions, the introduction to probability typically culminates with Bayes’ theorem as 
it encapsulates many of the previous concepts. In most undergraduate statistics 
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and analytics textbooks [1–7], Bayes’ theorem exercises are presented as word 
problems with numerical information sprinkled throughout, leaving students to 
perform the necessary calculations to obtain posterior probabilities. To assist in 
learning, decision trees are used as a visual tool to organize information, as well 
as to indicate when new information is revealed and how it will impact prior esti-
mates. To situate the usefulness of Bayes’ rule, textbook examples are usually 
centered on efficiency of prediction reports, or sensitivity and specificity of medi-
cal tests.

Where many students tend to struggle is in the initial steps of correctly iden-
tifying prior and conditional probabilities and then distinguishing their meanings 
from the posteriors that they calculate. Rouder and Morey [8] advocate for pre-
senting Bayes’ formula as a ratio where posterior belief relative to prior belief 
equals the conditional probability of data relative to the marginal probability 
of data. Those authors reason that this ratio format better represents how prior 
probabilities are updated and the role that statistical evidence plays on posterior 
likelihoods.

Still, these concepts can be abstract for a novice Bayesian, so it is no surprise 
that several approaches have been developed to assist student learning and to 
make statistics tangible and (more) fun. Eadie et  al. [9] and Bayley et  al. [10] 
use forms of active and game-based learning to engage students in their quest 
for determining posterior probabilities. Chen [11] developed an interactive poker 
game to reinforce Bayes’ rule, providing a more relatable context for students 
than traditional textbook problems. Similarly, a web simulator based on the disap-
pearance of a nuclear submarine shows a practical application of Bayesian prob-
ability [12]. Johnson et al. [13] integrate Bayesian and Markov methods in their 
project life cycle management case study, emphasizing the role of these concepts 
in a marketing and brand loyalty context.

As analytics creeps into nearly every job sector and as machine learning 
and artificial intelligence are becoming more commonplace, the access to vast 
amounts of data will be at employees’ fingertips. While determining likelihoods 
directly from this data is possible, we rarely provide students with this opportu-
nity before they enter the workplace [14]; even in classroom activities, the origin 
of prior and conditional probabilities is still a mystery as students do not collect 
or analyze this raw data for themselves.

We attempt to address this gap through our Bayesian updating case study that 
includes a reasonably sized dataset, suitable for analysis in Excel. Students are 
expected to model the problem with a decision tree and calculate all necessary 
likelihoods from historical data provided. No probabilities are given outright, but 
rather, we ask students to determine an appropriate way to organize and analyze 
the data in order to update prior beliefs.

In this article, we will describe in more detail the case study and its learning 
objectives, followed by an overview of its classroom implementation. We con-
clude with a brief discussion regarding the applicability of Bayes’ rule outside 
undergraduate academics and the importance of gaining analytical skills to pre-
pare students for their careers.
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2  Case Description

Municipal infrastructure projects such as roads, bridges, sidewalks, or sewers are 
usually contracted out through a tendering process [15]. Construction companies 
submit their “sealed bids” and the company submitting the lowest bid that meets the 
municipality’s eligibility criteria wins the contract. Our case examines Able Con-
struction, a company that is deciding upon a bidding strategy for a new bridge con-
struction project. The cost to prepare a proposal and estimated construction costs for 
the upcoming project are given. The full case problem is detailed in Appendix 1.

The case problem can be presented as a decision tree where Able Construction is 
aiming to balance its expected profit with its chance of winning the bid (Fig. 1).

However, in contrast to the common approach in teaching decision-making using 
decision trees, our case does not provide the corresponding probabilities explicitly. 
Instead, the case presents 310 past construction tenders on various project types, 
such as bridges, roads, and highways (Fig. 2). For each project, we provide the esti-
mated project cost, the amount of the winning bid (which could be from Able or a 
competitor), and whether Able won the tender (or did not bid at all). Able Construc-
tion can exploit this historical data to predict how stiff its competition will be for this 
new bridge project, helping to inform their bidding strategy. Furthermore, a market 

Fig. 1  Decision tree representing the case problem

Fig. 2  Excerpt of case problem data
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research firm with a known track record approaches Able Construction and offers to 
forecast the competitiveness of construction tenders for a fee.

It is possible to estimate the winning bid distribution and estimate the chance of 
winning with a specific bid amount through regression analysis. However, to make 
this analysis suitable for an undergraduate-level introductory business analytics 
course, our case proposes an alternate approach and provides two specific bidding 
strategies based on target profit margins to choose from: (i) a conservative bidding 
strategy (C) with a 25% profit margin, which has a lower chance of winning but 
higher payoff; or (ii) an aggressive bidding strategy (A) with a 15% profit margin, 
which has a higher chance of winning but lower payoff. Students will use the histori-
cal data to estimate the probability of winning under each strategy (i.e., prior prob-
abilities like P(C Win) or P(A Lose)), and then identify the strategy that provides the 
highest expected payoff. Students can also investigate factors that might affect these 
probabilities, including the type of construction project and the estimated project 
cost.

To provide a venue to study marginal and posterior probability, the case provides 
the historical track record of a market research firm that predicts competitiveness 
of tenders for construction projects as High Competition or Low Competition (last 
column in Fig. 2, abbreviated “High Comp” and “Low Comp” henceforth). Students 
first estimate the marginal probability of each prediction (i.e., P(High Comp) or 
P(Low Comp)), then revise the probability of winning under each bidding strategy 
conditioned on the prediction of the competitiveness of the project (i.e., posterior 
probabilities such as P(C Win|High Comp) or P(A Lose|Low Comp)) directly from 
the historical data.

To further students’ understanding of Bayesian inference, the instructor may ask 
students to calculate the historical accuracy of the market research firm prediction 
(i.e., conditional probabilities, such as P(High Comp|A Win)). Students can calcu-
late corresponding prior, conditional, marginal, and posterior probabilities and ver-
ify that Bayes’ rule holds. Finally, students should determine which of the two bid-
ding strategies, conservative or aggressive, is a better choice by using their updated 
decision tree.

3  Classroom Implementation

This case is suitable for an undergraduate or graduate course in business decision  
models, analytics, or statistics. All three of the authors have taught this case in an 
undergraduate course on business decision models, where the topic of Bayesian  
updating is part of a module on decision-making under uncertainty. In this context,  
we recommend using this case in the 3rd or 4th 80-min class in a series on probabil-
ity and decision trees. We include the suggested time allocation in the teaching note 
(Appendix 2). Earlier sessions can introduce decision-making with payoff tables,  
decision trees, and Bayes’ rule. In a graduate course on business analytics, this case  
can stand alone to support a 3-hour class on decision-making with probability and trees.

Our initial experience with teaching this case is that students who are not used to 
participating in quantitative cases rarely come to class with prepared calculations, 
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or are not inclined to contribute their unchecked work. This naturally leads to an 
instructor-led exploration of the case, essentially a “chalk-and-talk” approach. While 
that approach can still be effective, it does not have the benefits of active learn-
ing approaches [16–19]. To increase student engagement without sacrificing stu-
dent learning, instructors could gamify portions of this case, as discussed in [10]. 
Breaking interim calculations down into more manageable pieces, allowing students 
unlimited attempts to achieve the desired result, and promoting teamwork is a gami-
fied problem-based learning approach that adds variety to traditional lecture-based 
sessions.

Either way, we recommend that instructors prepare an “entrance quiz” (available 
up to a week ahead of time and due the day before class) to encourage (or require) 
that students do some initial analysis on the data before coming to class. Simple 
numeric questions such as “What is the average winning profit margin as a percent-
age?” or “What percentage of the time has the consulting firm predicted ‘High’ 
competition?” will ensure students are familiar with the dataset and develop their 
knowledge of Excel syntax.

Whether an entrance quiz is used or not, the instructor can demonstrate the key 
outcomes of the case. These include how to calculate the conditionals, priors, mar-
ginals, and posteriors in Excel using functions or pivot tables, and carefully explain-
ing how to recognize each of the probabilities in the context of the case. The instruc-
tor can also illustrate how to use the conditionals and priors to calculate the marginal 
and posterior probabilities, demonstrating Bayes’ rule in action: we like to do this 
part on a whiteboard, to distinguish the mathematical approach from the data-driven 
approach.

4  Teachable Moments

Students may be concerned that the sum of the prior probabilities of winning with 
an aggressive bid and winning with a conservative bid is more than 1. This happens 
because the probability of winning with a conservative bid is a subset of winning 
with an aggressive one. Our teaching note (Appendix 2) identifies three states of 
nature (winning with both bidding policies, winning with only the aggressive pol-
icy, losing with both policies), although instructors could approach this as two sets 
of priors (winning and losing) for the two different strategies (conservative bid and 
aggressive bid). Either way, this provides the instructor with a great opportunity to 
discuss the importance of defining mutually exclusive “states of nature” independent 
of decision alternatives.

5  Evaluation of Effectiveness

As part of our Assessment of Learning process, we regularly review student grades 
on particular exam questions and use those grades as a proxy for how well the 
students have learned and applied key topics. Every year since at least 2014, we 
have included a question on decision trees and Bayesian updating on an exam in a 
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second-year undergraduate course in business decision modelling. The question is 
different every year, but we carefully tune the difficulty and use a consistent marking 
rubric to try and maintain parity across years.

We introduced the Able Construction teaching case in 2019. Student scores on 
the decision tree with Bayesian updating question are collected in Table 1. The stu-
dents scored very well on the relevant question in 2019, the first year that we used 
the teaching case.

The question used in 2019 was similar to the question used in 2017, and we 
believe that some of the improvement in student scores can be attributed to the 
teaching method. Subjectively, we think the question used in 2018 was a little easier 
than the other 2 years, so we propose the comparison between 2017 and 2019 is the 
most relevant.

We must acknowledge that these results are not from an experiment, and are sub-
ject to uncontrolled factors including: the students are not from the same cohort; the 
exam questions are different year to year; and marking standards cannot be strictly 
controlled year to year. Nevertheless, these preliminary results are in line with our 
hypothesis that most students benefit from this data-driven approach.

We plan to formally test this data-driven case approach in a carefully designed 
classroom experiment that runs semester-long. For a given class session and 
topic, students in the control group will learn through traditional lecturing while 
the experiment group will be exposed to the data-driven case (or activity). At the 
end of the session, we will gather anonymized perceptions of student learning as 
well as student performance on assessments related to the session’s topic. Similar 
to [10], we will offer multiple activities throughout the term and alternate which 
participants are in the control and experiment groups so that by the end of the term, 
each student will have experienced at least one traditional lecture and one data-
driven case.

6  Discussion and Conclusion

The course in which we use this case does not cover as much depth as an undergrad-
uate Bayesian statistics course. Still, instead of just going through the mechanics of 
Bayesian updating, we posit that students benefit from having “a solid understanding 
of the entire statistical investigation process [and] not just conducting the data analy-
sis step of that process” [20]. Working directly with source data can provide valu-
able insight for students to better appreciate the process of cleaning, analyzing, and 
interpreting statistical data, and demystify those prior and conditional probabilities 
that appear in textbook problems.

Table 1  Student scores on a 
decision tree with Bayesian 
updating exam question

Year Average Standard deviation Students

2017 66.2% 30.7% 580
2018 79.9% 23.7% 670
2019 84.5% 22.0% 670
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There is a small risk that this case undermines the role of Bayes’ rule in practice. 
Students might wonder why they need Bayes’ rule if they have access to datasets 
like this one. The instructor can clarify that Bayes’ rule is still useful in situations 
where the dataset is incomplete, or in evaluating claims made by third parties where 
access to individual records is not available. For example, medical tests reporting 
test specificity and sensitivity rates are presenting conditional probabilities. An indi-
vidual interested in knowing their chance of actually having a disease after receiving 
a positive or negative test result needs to calculate the associated posterior prob-
abilities. A recent New York Times article walks the reader through this process for 
evaluating COVID-19 test results [21], emphasizing throughout the practicality of 
Bayes’ theorem.

Even if we do have complete records, it is important to understand the differ-
ence between conditional and posterior probabilities. In contrast to the Bayesian 
classroom activities we reviewed above, these probabilities are not explicitly given. 
With our case, students are taught how to identify and calculate them in a manage-
able dataset, then properly use the posteriors to update a decision tree. We believe 
these techniques are increasingly relevant as demand for data analytics skills grows 
throughout the business world.

Appendix 1 Able Construction — Case Study

Michelle Duarte, CEO of Able Construction, just received confirmation of a munici-
pal tender for a new bridge construction project. She now had to prepare a bidding 
strategy for the contract.

Construction Tenders

Municipal and provincial governments that are funding new infrastructure pro-
jects (roads, bridges, sidewalks, sewers, etc.) rarely do the construction themselves. 
Instead, they contract out the work by asking private construction companies to bid 
on the project through a tendering process. The process is carried out by “sealed 
bid,” where all bidders must submit project proposals with private bids by 4:00 p.m. 
on the day the tender closes.

The lowest bid that meets the eligibility criteria laid out in the tender wins the 
contract, and the government pays the lowest bid amount to the winning construc-
tion firm. The government then expects the construction firm to complete the project 
on time and to specification.

The winning construction firm will receive their bid as revenue when the project 
is completed. The construction firm is also responsible for all incurred costs dur-
ing construction. For example, if the winning bid is $500,000 on a road project, the 
government will pay the winning construction company $500,000. The construction 
company might incur $400,000 in costs, and thus earn $100,000 in profit after com-
pleting the road.
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Able Construction

Able Construction (Able) is a privately owned construction firm that bids on 
municipal and provincial infrastructure projects, especially constructing new roads, 
highway expansions, and bridges. Over the past few years, Able had done well by 
bidding only for construction contracts at a good price. It was important to bid high 
enough on contracts not only to ensure Able could both cover costs and secure 
a good profit but to also bid low enough that they stood a good chance of win-
ning the bid. The large size of infrastructure projects hinders new and smaller size 
companies to enter the competition. Therefore, Duarte believes she can maintain a 
good track record for Able by continuing to make intelligent bids that balance the 
expected profit and her chance of winning the bid.

Since the bidding data on past tenders is disclosed to the public, Able maintained 
a file summarizing the last 310 construction tenders, the winning bid, and Able’s 
result (if they have placed a bid).

Preparing the Bid for the Upcoming Auction

The next tender was for a bridge contract that was due in a few weeks. The Construction 
Manager estimated the cost for Able to complete the bridge project was $1,324,000.

The first task was to prepare the proposal and bid for the next tender. Preparing 
a proposal and bid costs Able about $5000, regardless of the size of the bid. After 
discussing multiple scenarios with the Chief Financial Officer of Able, Duarte came 
up with two final options to choose from: (i) bid conservatively at 125% of the esti-
mated cost of the project, with lower chance of winning but higher payoff; (ii) bid 
aggressively at 115% of the estimated cost of the project, with higher chance of win-
ning but lower payoff.

Market Research

While contemplating her options, Duarte received an offer from AuctPred, a mar- 
ket research firm specialized in forecasting the competitiveness of construction ten-
ders. AuctPred was requesting $10,000 to study the project, and provide exclusive 
consult to Able. To show their record of excellence, AuctPred has submitted a list of 
their predictions (“high” or “low” competition) for previous projects provided to dif-
ferent firms. Duarte is now wondering if she should consult AuctPred before final-
izing her decision.

Appendix 2 Able Construction — Teaching Note

Basic Issue

Michelle Duarte, CEO of Able Construction, just received confirmation of a munici-
pal tender for a new bridge construction project. She now has to prepare a bidding 
strategy for the contract.
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Techniques and Concepts

Concepts: calculating prior and posterior probabilities from historical data, Bayesian 
updating, decision analysis.

Tools: Spreadsheets, Pivot tables.

Learning Objectives

By the end of this case, students will be able to.

1. Understand prior, marginal, conditional, and posterior probabilities
2. Use Excel functions, such as IF, COUNTIF, and AVERAGEIF, to estimate dif-

ferent probabilities from past observations
3. Perform a decision tree analysis by computing expected payoffs for various bid-

ding strategies and identifying the most profitable strategy
4. Calculate expected value of expert information

Suggested Discussion Questions

1. How can you estimate the probability of winning the bid for an aggressive or a 
conservative bidding strategy?

2. How much should Able Construction rely on the prediction of Market Research 
firm?

3. What is an appropriate criterion for determining a bid amount?
4. What factors may affect the probability of winning of a specific strategy?

Classroom Time Allocation

For an 80-min undergraduate class:

– 5 min: Introduction
– 10 min: Build payoff table without probabilities
– 10 min: Compute prior probabilities and update payoff table
– 10 min: Build initial decision tree
– 15 min: Calculate conditionals, marginals, and posteriors in Excel
– 10 min: Verify Bayes’ rule
– 10 min: Expand decision tree
– 10 min: Calculate EVSI & conclusion

A2.1 Analysis with “No Market Test” including all property types

Payoff Table

Develop the payoff table using the given information:

Page 9 of 18    4Operations Research Forum (2022) 3: 4



1 3

– Estimated project cost = $1,324,000
– Cost of $5000 to submit bid regardless of bid amount
– Conservative bid is 125% of estimated cost, so you make 25% in revenue =  

$331,000
– Aggressive bid is 115% of estimated cost, so you make 15% in revenue =  

$198,600

The state of nature should be defined based on the best competitors’ bid. Specifi-
cally, if the best competitor’s offer is below 115% of the project cost, Able will not 
be able to win the bid under either conservative or aggressive bidding strategies. If 
the best competitors’ offer is between 115 and 125% of project cost, only the aggres-
sive bidding strategy can win, and if the best competitor’s offer is above 125% of 
project cost, both bidding strategies win. The instructor can also discuss the case 
“only conservative wins” and why it is not considered in the table.

Cleaning Data

Before trying to estimate prior probabilities, students should note that the win-
ning bid amount is not necessarily equivalent to the best competitor’s offer. Spe-
cifically, for the contracts won by Able, they do not have access to the runner-up 
amount. In other words, if Able has won using an aggressive bidding strategy, they 
cannot determine if a conservative bid could have won or not. Therefore, students 
should first clean the dataset by removing rows corresponding to contracts won by 
Able.

This would be an excellent teaching opportunity for the instructor to discuss han-
dling censored and/or missing data.

Estimating Prior Probabilities

To estimate prior probabilities from the past data, create the following columns in 
the data spreadsheet:

• Column G: Find the ratio of the best competitor’s bid to the estimated cost: C/B
• Column H: Indicate if both strategies lose: IF(G < 1.15,1,0)
• Column I: Indicate if only aggressive strategy wins: IF(AND(G >  = 1.15, 

G < 1.25),1,0)
• Column J: Indicate if both strategies win: IF(G >  = 1.25,1,0)
  Averaging over column H gives P(both lose) = 0.256, over column I gives 

P(only aggressive wins) = 0.432, and over column J gives P(both win) = 0.312.
  This will lead to a discussion on estimating prior probabilities of winning and 

losing. It is not surprising that the bidding strategy does impact the likelihood of 
winning or losing. Therefore, for a conservative bid, students should consider:

• P(C Lose) = P(only aggressive wins) + P(both lose) = 0.432 + 0.256 = 0.688
• P(C Win) = P(both win) = 0.312
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  Similarly, for an aggressive bid:
• P(A Lose) = P(both lose) = 0.256
• P(A Win) = P(only aggressive wins) + P(both win) = 0.432 + 0.312 = 0.744
  Note that students can directly estimate prior probabilities of winning by a 

conservative or an aggressive bid from the data as below:
• Column K: Indicate whether a conservative bid would win or not: IF(G>1.25,1,0)
• Column L: Indicate whether an aggressive bid would win or not: IF(G>1.15,1,0)

P(C Win) = AVERAGE(K:K) = 0.312 → P(C Lose) = 1 − P(C Win) = 0.688.
P(A Win) = AVERAGE(L:L) = 0.744 → P(A Lose) = 1 − P(A Win) = 0.256.
While it is easier to calculate prior probabilities (and posteriors, as discussed in 

the next section) with this approach, students should be aware that, unlike the states 
of nature defined in Table 2, these two events are not mutually exclusive.

Decision Tree for “No Market Test”

Figure 3 shows the decision tree with “No Market Test” and the expected value for 
the correct decision: Aggressive Bid, $142,758.40.

Table 2  Payoff table

Best competitor’s offer 
below 115% of project 
cost

Best competitor’s offer 
between 115 and 125% of 
project cost

Best competitor’s offer 
above 125% of project 
cost

Conservative (C)  − 5000  − 5000 326000
Aggressive (A)  − 5000 193600 193600
Prior probabilities ? ? ?

Fig. 3  Decision tree with “No Market Test”
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A2.2 Analysis with “Market Test” Including All Property Types

Students can begin by drawing the decision tree with the market test. This will lead 
to a discussion regarding the probabilities we are missing: marginal and posterior 
probabilities. While there are many approaches for estimating these probabilities, 
two methods are detailed:

Option 1: COUNTIF and AVERAGEIF

Marginal Probabilities

For marginal probabilities, find the proportion of projects identified as having High 
(or Low) competition.

• P(High comp) = COUNTIF(F2:F251,"High")/COUNTA(F2:F251) = 0.456
• P(Low comp) = 1 − P(High comp) = 0.544

Posterior Probabilities

For posterior probabilities, we average over the number of events given that the pro-
ject was identified as having High competition:

• P(both lose|High comp) = AVERAGEIF(F2:F251,"High",H2:H251) = 0.3246
• P(only A wins|High comp) = AVERAGEIF(F2:F251,"High",G2:G251) = 0.5877
• P(both win|High comp) = AVERAGEIF(F2:F251,"High",G2:G251) = 0.0877
  Now, we can revise posterior probabilities for each bidding strategy:
• P(C wins|High comp) = P(both win|High comp) = 0.0877
• P(A wins|High comp) = P(both win|High comp) + P(only A wins|High 

comp) = 0.6754

Therefore, P(C loses|High comp) = 0.9123 and P(A loses|High comp) = 0.3246.
Similarly, we can revise posterior probabilities under Low competition to find.

• P(C wins|Low comp) = 0.5000; P(C loses|Low comp) = 0.5000
• P(A wins|Low comp) = 0.8015; P(A loses|Low comp) = 0.1985

Option 2: PivotTable

Select data in columns A:J and Insert PivotTable in same worksheet. Organizing 
the PivotTable according to Fig. 4a will produce the output in Fig. 4b. Students 
can then compute proportion of high and low competition, as well as the posterior 
probabilities from the PivotTable.
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Verify Bayesian Updating Rule

The instructor can ask students to verify Bayes’ theorem by estimating pos-
terior probabilities through the record of the market research firm predic-
tion. Students have already estimated prior probabilities P(both lose), P(only 
A wins), P(both win) directly from the historical data. To calculate posterior 
probabilities using Bayes’ rule, students just need to calculate conditional 
probabilities.

• P(High comp| both lose) = COUNTIFS(F2:F251,"High",H2:H251,1)/COUNTIF 
(H2:H251,1) = 0.5781

• P(High comp| Only A wins) = COUNTIFS(F2:F251,"High",I2:I251,1)/COUNTIF 
(I2:I251,1) = 0.6204

• P(High comp| both win) = COUNTIFS(F2:F251,"High",J2:J251,1)/COUNTIF 
(J2:J251,1) = 0.1282

Following from above, the remaining conditional probabilities are P(Low 
comp | both lose) = 0.4219, P(Low comp | Only A wins) = 0.3796; P(Low comp| 
both win) = 0.8718.

Using prior and conditional probabilities, they estimate the posterior ones. 
For “High” competition prediction, we have.

Fig. 4  PivotTable options and output
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State i P(State i) P(High comp | 
State i)

P(High comp & 
State i)

P (State i | 
High comp)

Both lose 0.2560 0.5781 0.1480 0.3246
Only A wins 0.4320 0.6204 0.2680 0.5877
Both win 0.3120 0.1282 0.0400 0.0877
P(High) 0.4560

And for “Low” competition prediction, we have

State i P(State i) P(Low comp| State 
i)

P(Low comp & 
State i)

P (State i | 
Low comp)

Both lose 0.2560 0.4219 0.1080 0.1985
Only A wins 0.4320 0.3796 0.1640 0.3015
Both win 0.3120 0.8718 0.2720 0.5000
P(Low) 0.5440

Now we find the probabilities needed for the decision tree:

• P(C wins | High comp) = P(both win | High comp) = 0.0877
• P(A wins | High comp) = P(both win | High comp) + P(only A wins | High 

comp) = 0.0877 + 0.5877 = 0.6754
• P(C wins | Low comp) = P(both win | Low comp) = 0.5
• P(A wins | Low comp) = P(both win | Low comp) + P(only A wins | Low 

comp) = 0.5 + 0.3015 = 0.8015

Which are identical to posterior probabilities estimated directly from histori-
cal data and verifies Bayes’ theorem.

Decision Tree for “Market Test”

Figure 5 shows the decision tree with “Market Test” and its expected value of 
$146,201. If the competition is predicted to be Low, the best decision is to bid 
conservatively (EV = $160,500). If the competition is predicted to be High, the 
best decision is to bid aggressively (EV = $129,412).

Note that the cost of the market test is not included here. We consider it next.

Computing EVSI

To determine the highest cost Able is willing to pay for AuctPred’s analysis, we 
compute the Expected Value of Sample Information:
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• EVSI = EV with Sample Info − EV without Sample Info = $146,201 − $142,578.
40 = $3,622.60

  Since EVSI < $10,000 cost of AuctPred’s market test, Able should not choose 
their analysis.

Conclusion

Based on our analysis so far, the correct decision would be “No Market 
Test” → “Aggressive Bid,” with an EV = 142,578.40.

Fig. 5  Decision tree with “Market Test”
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A2.3 Filtering by Project Type

Since the next bid is for a bridge, the steps outlined in the decision tree analysis 
with and without the market test can be repeated to consider only “Bridge” pro-
jects and provide more specific probabilities. For example:

• P(both lose) = AVERAGEIF(E2:E251,"Bridge",H2:H251)
• P(both lose|High comp) = AVERAGEIFS(H2:H251,E2:E251,"Bridge",F2:F251,

"High").

The same can be accomplished with PivotTable by adding the field “Type” into 
the “Rows” area (Fig. 6a) to produce the output in Fig. 6b.

The updated decision tree with probabilities filtered by “Bridge” is shown in 
Fig. 7.

We find that EVSI = $157,347.62 − $141,585.71 = $15,761.91.
Now, it is worth getting the market test and to only bid aggressively if the com-

petition prediction is High.

Fig. 6  PivotTable with project types
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