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Chronic inflammation contributes to multiple ageing-related musculoskeletal and neurodegenerative diseases, cardiovascular
diseases, asthma, rheumatoid arthritis, and inflammatory bowel disease. More recently, chronic neuroinflammation has
been attributed to Parkinson’s and Alzheimer’s disease and autism-spectrum and obsessive-compulsive disorders. To date,
pharmacotherapy of inflammatory conditions is based mainly on nonsteroidal anti-inflammatory drugs which in contrast to
cytokine-suppressive anti-inflammatory drugs do not influence the production of cytokines such as tumour necrosis factor-
𝛼 or nitric oxide. However, their prolonged use can cause gastrointestinal toxicity and promote adverse events such as high
blood pressure, congestive heart failure, and thrombosis. Hence, there is a critical need to develop novel and safer nonsteroidal
anti-inflammatory drugs possessing alternate mechanism of action. In this study, plants used by the Dharawal Aboriginal
people in Australia for the treatment of inflammatory conditions, for example, asthma, arthritis, rheumatism, fever, oedema, eye
inflammation, and inflammation of bladder and related inflammatory diseases, were evaluated for their anti-inflammatory activity
in vitro. Ethanolic extracts from 17 Eucalyptus spp. (Myrtaceae) were assessed for their capacity to inhibit nitric oxide and tumor
necrosis factor-𝛼 production in RAW 264.7 macrophages. Eucalyptus benthamii showed the most potent nitric oxide inhibitory
effect (IC

50
5.57 ± 1.4 𝜇g/mL), whilst E. bosistoana, E. botryoides, E. saligna, E. smithii, E. umbra, and E. viminalis exhibited nitric

oxide inhibition values between 7.58 and 19.77 𝜇g/mL.

1. Introduction

Inflammation is an important biological process and is
essential to maintain the body’s homeostasis, to fight against
pathogens effectively, and to repair the damaged tissue [1].
Howeverwhenuncontrolled and chronic, inflammation gives
rise to a number of (often age related) diseases including
asthma, rheumatoid arthritis, inflammatory bowel disease,
Crohn’s disease, and tendonitis. Furthermore, a chronic
inflammatory response with accompanying oxidative stress
is a significant force driving the progression of peripheral
diseases like atherosclerosis, diabetes, and metabolic syn-
drome, as well as neurodegenerative diseases such asmultiple
sclerosis, Parkinson’s disease, and Alzheimer’s disease [2–5].

While some chronic/remitting neurological diseases,
such as multiple sclerosis, have long been recognized as

inflammatory, the term “neuroinflammation” is now applied
to chronic activation of microglia and astroglia that do not
reproduce the classic characteristics of inflammation in the
periphery but may cause neurodegeneration [6–8]. Some
examples of diseases characterized by neuroinflammation
are Alzheimer’s disease (AD) and Parkinson’s disease and
even autism-spectrum and obsessive-compulsive disorders
[9–12]. Microglial and astroglial activation, accompanied by
increased levels of proinflammatory mediators such as TNF-
𝛼, IL-1𝛽 and IL-6, prostaglandins, and reactive oxygen and
nitrogen species, as well as reactive carbonyl species and
advanced glycation end products, is observed in the AD
brain at all stages of the disease [13–18]. Genetic and phar-
macoepidemiological studies also point to the importance of
inflammation in AD. For example, three immune-relevant
genes were shown to be associated with an increased risk of
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AD; these are CLU (clusterin), CR1 (complement receptor 1),
and TREM2 (triggering receptor expressed on myeloid cells
2) [19].

Consequently, targeting chronic neuroinflammation, for
example, with plant-derived anti-inflammatory compounds,
has been suggested as a promising disease-modifying treat-
ment for many neurodegenerative diseases including AD
[12, 20–27].

At present, both steroidal and nonsteroidal anti-in-
flammatory drugs (NSAIDs) are used to treat inflammation.
NSAIDs in particular can cause severe side effects, most
importantly gastric ulcers. NSAIDs are specifically designed
as inhibitors of cyclooxygenase (COX) enzymes and, in
contrast to CSAIDs, do not influence the production of
proinflammatory cytokines such as TNF-𝛼 or free radicals
such as nitric oxide [28]. CSAIDs specifically target p38
MAPK and NF-𝜅B signalling pathways to inhibit cytokine-
mediated events with demonstrated efficacy in a range of
animal models [29, 30].

Activated inflammatory cells produce a variety of
chemokines and cytokines, reactive oxygen species (ROS),
reactive nitrogen species (RNS), free radicals, and prostagl-
andins [31–33] and cease to produce neuroprotective factors
such as glutathione [6, 7].

Excessive production of inflammatory cytokines and
reactive radical species can damage cellular biomolecules like
proteins, lipids, and carbohydrates as well as nucleic acids,
leading to cellular and tissue damage, which further perpet-
uates the inflammatory cascade. Therefore, pharmacological
compounds with the ability to attenuate the production of
these inflammatory molecules may have potential for the
treatment of many inflammatory diseases including AD [21,
22, 28, 34, 35].

The use of natural substances, especially those derived
from plants, in order to prevent, manage, or cure diseases
is a centuries-old practice which has led to the discovery of
many modern pharmaceuticals. In recent years, the search
for novel anti-inflammatory drugs from a wide range of
medicinal plant resources has been intensified, and a variety
of plant secondarymetabolites including apigenin, curcumin,
cinnamaldehyde, and resveratrol have already been found to
suppress inflammatory responses [21, 22, 28].

For example, turmeric (Curcuma longa) and its main
ingredient curcumin, which has long been used for treat-
ment of rheumatic disorders, exerts both anti-inflammatory
and antiatherosclerotic effects [23, 36]. Ginger extract (Zin-
giber zerumbet) and its main active compound, 3-O-methyl
kaempferol, significantly attenuated carrageenan-induced
mouse paw oedema in an in vivo model and were also
found to inhibit the production of nitric oxide (NO) and
prostaglandin E

2
(PGE
2
), as well as iNOS expression in a

cell culture model. Aqueous and hydroalcoholic as well as
ethanolic extracts from another ginger species (Zingiber offic-
inale) demonstrated significant anti-inflammatory activity
and its active constituent [6] gingerol again showed anti-
inflammatory activity by inhibiting the production ofNOand
PGE
2
[37] and was also successful in inhibiting carrageenan-

induced rat paw oedema [38].

Triterpenoid saponins, from the Australian desert tree
Acacia victoriae, have shown anti-inflammatory effects via
inhibiting activation of NF-𝜅B, by preventing its nuclear
localization and inhibiting its ability to bind to DNA [39].
Another Australian indigenous plant Tinospora smilacina
is claimed to possess long chain unsaturated fatty acids
which possess anti-inflammatory properties [40]. The fruits
of the Australian native Kakadu plum (Terminalia ferdi-
nandiana), Illawarra plum (Podocarpus elatus), and Native
currant (Acrotriche depressa) also exhibited significant anti-
inflammatory activity [41].

There is large scope to investigate Australian native plants
for their bioactivity and chemical constituents [42]. Tradi-
tionalmedicine is still practised by themany tribal Aboriginal
people, particularly in Central and Northern Australia and
this ethnomedicinal knowledge is recorded in some cases
[43]. The “Dharawal Pharmacopeia” written by botanist and
Aboriginal Elder Frances Bodkin (known as Aunty Fran) is a
compilation of the Aboriginal medicinal and ceremonial uses
(and corresponding taxonomic identification) of thousands
of nativeAustralian plants. Of interest to our research, a num-
ber of plant species described in the Dharawal pharmacopeia
have been claimed to possess anti-inflammatory activities
(Table 1) [44, 45]. Plants from Eucalyptus species have special
importance for the Dharawal indigenous people and are
used for their anti-inflammatory activity along with other
medicinal uses as well as for shelter and weapons. As stated in
theDharawal pharmacopeia, Eucalypts aremostly distributed
in Blue Mountains, Southern Highlands, Woronora Plateau,
and coastal area of New South Wales, Australia.

The aim of our research is to evaluate the anti-inflam-
matory activity of Australian native plants with ethnophar-
macological importance and subsequently characterise the
bioactive components. In this manuscript, dried extracts
from 17 Eucalyptus spp. were evaluated for anti-inflammatory
activity via the suppression of NO and TNF-𝛼 production
induced by lipopolysaccharide (LPS) and interferon gamma
(IFN-𝛾) in RAW264.7 cells. Cytotoxicity of the crude extracts
was also examined using an Alamar blue cell viability assay.

2. Materials and Methods

2.1. Plant Material. Plants known to be used by the Dharawal
people (also known as Tharawal) to treat inflammation and
related illnesses were selected under the guidance of botanist
and Aboriginal Elder Auntie Fran (Frances Bodkin) and
the Dharawal pharmacopeia. Leaf material of 17 Eucalyptus
spp. was collected in the month of August, 2015 from
the “Australian Botanic Gardens” at Mount Annan, NSW,
Australia (Table 1).

2.2. Chemicals and Reagents. Ethanol was purchased from
Chem-Supply (Gillman, SA, Australia); bovine serum albu-
min, lipopolysaccharide (E. coli serotype-0127:B8), EDTA,
N-(1-napthyl) ethylenediamine dihydrochloride, benzylpen-
icillin G sodium salt, resazurin sodium salt (10%), strepto-
mycin, sulphanilamide, 3,3󸀠,5,5󸀠-tetramethylbenzidine (TMB),
trypan blue, and Dulbecco’s Modified Eagle’s Medium
(DMEM) were purchased from Sigma-Aldrich (Castle Hill,



Evidence-Based Complementary and Alternative Medicine 3

Table 1: Plants collected for the study of anti-inflammatory activity.

Number Plant APNI name Family Voucher number
(1) Eucalyptus acmenoides Eucalyptus acmenoides Schauer Myrtaceae 961604
(2) Eucalyptus benthamii Eucalyptus benthamiiMaiden & Cambage Myrtaceae 832452
(3) Eucalyptus bosistoana Eucalyptus bosistoana F. Muell. Myrtaceae 20070782
(4) Eucalyptus botryoides Eucalyptus botryoides Sm. Myrtaceae 861776
(5) Eucalyptus eximia Eucalyptus eximia Schauer Myrtaceae 841857
(6) Eucalyptus globoidea Eucalyptus globoidea Blakely Myrtaceae 873240
(7) Eucalyptus gummifera Eucalyptus gummifera (Gaertn.) Hochr. Myrtaceae 892074
(8) Eucalyptus maculata Eucalyptus maculataHook. Myrtaceae 20070782
(9) Eucalyptus notabilis Eucalyptus notabilisMaiden Myrtaceae 20020217
(10) Eucalyptus paniculata Eucalyptus paniculata Sm. Myrtaceae 840775
(11) Eucalyptus pilularis Eucalyptus pilularis Sm. Myrtaceae 861796
(12) Eucalyptus punctata Eucalyptus punctata DC. Myrtaceae 861820
(13) Eucalyptus resinifera Eucalyptus resinifera Sm. Myrtaceae 911862
(14) Eucalyptus saligna Eucalyptus saligna Sm. Myrtaceae 872719
(15) Eucalyptus smithii Eucalyptus smithii R. T. Baker Myrtaceae 361827
(16) Eucalyptus umbra Eucalyptus umbra R. T. Baker Myrtaceae 900782
(17) Eucalyptus viminalis Eucalyptus viminalis Labill. Myrtaceae 861830

NSW, Australia). GIBCO, fetal bovine serum (FBS), and
glutaminewere purchased fromLife Technologies (Mulgrave,
VIC, Australia). Murine interferon-𝛾 (IFN-𝛾) and TNF-𝛼
ELISA kits were purchased from PeproTech Asia (Rehovot,
Israel). Citric acid and monosodium dihydrogen carbonate
(NaH

2
CO
3
) were from AJAX Chemicals (Auburn, NSW,

Australia). Tween-20 was fromAmresco (Solon, Ohio, USA).
Methanol, monosodium phosphate (NaH

2
PO
4
), disodium

phosphate (Na
2
HPO
4
), sodium chloride (NaCl), and sulfuric

acid (H
2
SO
4
) were from Merck (Darmstadt, Germany).

Sodium carbonate (Na
2
CO
3
) was BDH brand supplied by

Merck Pty. Ltd. (Kilsyth, VIC, Australia).

2.3. Extraction of Plants Leaves for Biological Assays andHPLC
and MS Analysis. Approximately 40 g of fresh leaf material
from each plant was extracted using absolute ethanol. The
leaves were first cut into small pieces with scissors and
then ground to a coarse powder using a hand blender. The
coarse powder was filled into the thimbles of an accelerated
solvent extraction system (Buchi B-811, Switzerland) and then
extracted under standard soxhlet mode (for 2 × 15 minutes
cycles). The volume of the extracts was reduced to ca. 2–4
mL using a rotary evaporator and then evaporated to dryness
with nitrogen gas for biological assays. Percentage yields
(g/g% fresh weight) are recorded in Table 2.

2.4.Maintenance and Preparation of RAW264.7Macrophages.
RAW 264.7 macrophages were grown in 175 cm2 culture
flasks on DMEM (Dulbecco’s Modified Eagle’s Medium)
containing 5% FBS (fetal bovine serum) that was supple-
mented with antibiotics (1%) and glutamine (1%). The cell
line was maintained in 5% CO

2
at 37∘C, with media being

replaced every 3-4 days. Once cells had grown to confluence
in the culture flask, they were removed using a rubber
policeman cell scraper, as opposed to using trypsin, which
can remove membrane-bound receptors such as RAGE. The

cell suspension was concentrated by centrifugation for 3 min
at 900 rpm and resuspended in a small volume of fresh
DMEM (with 1% antibiotics and 5% FBS). Cell densities
were estimated using a Neubauer counting chamber. Cell
concentration was adjusted with DMEM (with 1% antibiotics
and 5%FBS) to obtain 60000 cells/100𝜇L cell suspension.The
100 𝜇L cell suspensionwas then dispensed into the innerwells
of 96-well plates. Plates were incubated at 37∘C and 5% CO

2

for 18 h before the activation experiments were carried out.

2.5. Activation of RAW 264.7 Macrophages. From each well,
the media were removed and replaced with fresh DMEM
containing 0.1% FBS. For assays with extracts, a 90 𝜇L volume
of the dilutions in DMEM (with 0.1% FBS) was added an
hour prior to addition of the activator. Due to the often
inconsistent nature of LPS at activating cells, a combination of
LPS (10 𝜇g/mL) and IFN-𝛾 (10U/mL), both in DMEM (with
0.1% FBS), was used for activation. A maximum dose of the
extracts used is 900 𝜇g/mL and diluted serially by 50% up to
a minimum of 10 doses (900, 450, 225, 112.5, 56.25, 28.125,
14.062, 7.031, 3.515, 1.7578, and 0.8789𝜇g/mL in the wells,
resp.). After activation, the cells were incubated for 24 h at
37∘C and 5% CO

2
and then NO and TNF-𝛼 inhibition and

cell viability were determined. Cells with media alone were
used as negative control and activated cells used as positive
control.

2.6. Determination of Nitric Oxide Production by Griess Assay.
Nitric oxide was determined by Griess reagent quantification
of nitrite, one of its stable reaction products. Griess reagent
was freshlymade up of equal volumes of 1% sulfanilamide and
0.1% naphthylethylene-diamine in 5% HCl. In the presence
of nitrite this reagent forms a violet colour. From each
well, 50 𝜇L of supernatant was transferred to a fresh 96-
well plate and mixed with 50 𝜇L of Griess reagent, and the
colour produced was measured at 540 nm in a microplate
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reader (Bio-Rad, Australia).The remaining supernatant from
each well was used for a TNF-𝛼 assay using commercial
sandwich ELISA development kits (catalog number: 900-
K54; PeproTech, USA).

2.7. Determination of Cell Viability by Alamar Blue Assay. The
Alamar Blue assay is a colorimetric assay involving the cellu-
lar reduction of resazurin to resorufin. Alamar Blue solution
[100 𝜇L of 10% Alamar Blue (resazurin) in DMEM medium]
was added to each well and incubated at 37∘C for 1-2 h.
After incubation, fluorescence was measured (excitation at
530 nm and emission at 590 nm) using a POLARstar Omega
microplate reader (BMG Labtech, Mornington, Australia)
and expressed as a percentage of that in control wells after
background fluorescence was subtracted.

2.8. TNF-𝛼 Determination by ELISA. The supernatants ob-
tained from each well (remaining supernatant after 24 hours
of activation) were diluted 30 times using diluent (0.1%
w/v bovine serum albumin and 0.05% v/v tween-20 in PBS
[1.9mM NaH

2
PO
4
, 8.1mM Na

2
HPO
4
, and 154mM NaCl;

pH 7.4]) and were used for determination of TNF-𝛼 using
a commercial sandwich ELISA (catalog number: 900-K54;
Peprotech, USA) according to the manufacturer’s protocol.
Capture antibody was used at a concentration of 1.25 𝜇g/mL
inPBS. Tomake a standard curveTNF-𝛼 (10 ng/mL standard)
was diluted serially by 50% up to a minimum of 10 doses
(10, 5, 2.5, 1.25, 0.625, 0.312, 0.156, 0.078, 0.039, 0.019, and
0.0097 ng/mL in the wells, resp.) and was used as the internal
standard. TNF-𝛼 was detected with a biotinylated second
antibody and an avidin peroxidase conjugate with TMB as
detection reagent. After ∼30min, the reaction was stopped
using 0.5M sulfuric acid, and the absorbance was measured
at 450 nm of measurement filter with a 655 nm of reference
filter. The absorbance data was expressed as a percentage of
that in control wells after conversion of the concentrations
by using a standard curve constructed with defined con-
centrations of TNF-𝛼. Curve fitting of this standard curve
and extrapolation of experimental data were performed using
nonlinear regression analysis.

2.9. Data Presentation and Analysis. As the experiments were
done in triplicates, the results were expressed as the mean ±
SEM. In addition, linear relationships and significance tests of
these data sets were also conducted. GraphPad Prism version
6.01 (GraphPad Software Incorporated, USA) was used for
growth curve analysis in dose-dependent experiments and to
determine the IC

50
values for NO and TNF-𝛼 inhibition as

well as LC
50
.

3. Results and Discussion

In this study, leaves from 17 different Eucalyptus spp. were
collected in the month of August, 2015. Approximately 40 g
of leaves from each of Eucalyptus acmenoides, E. benthamii,
E. bosistoana, E. botryoides, E. eximia, E. globoidea, E. gum-
mifera, E. maculate, E. notabilis, E. paniculata, E. pilularis, E.
punctate, E. resinifera, E. saligna, E. smithii, E. umbra, and E.
viminalis were extracted using absolute ethanol (Table 2).

The RAW 264.7 murine macrophages release NO and
TNF-𝛼when exposed to bacterial LPS and IFN-𝛾 and on this
principle, has become an established experimental model to
evaluate in vitro anti-inflammatory activity of extracts [28].
For the purpose of interpretation, the IC

50
values of NO

inhibition are divided into three groups: extracts with IC
50
<

20𝜇g/mL are considered as highly potent extracts; a value
between 21 and 80 𝜇g/mL is considered as moderately potent,
and an IC

50
< 80 𝜇g/mL is considered as an extract with low

potency.
The highest concentration of ethanolic crude extract

tested in the anti-inflammatory assay was 900 𝜇g/mL with
0.5-fold serial dilutions. Eucalyptus benthamii, E. bosistoana,
E. botryoides, E. saligna, E. smithii, E. umbra, and E. viminalis
leaf extracts showed the highest activity for NO inhibition
with IC

50
values of 5.57, 7.58, 16.65, 19.77, 17.62, 17.69, and

8.0 𝜇g/mL, respectively (Table 3, Suppl. Figure 1).The extracts
from Eucalyptus acmenoides, E. eximia, E. notabilis, and
E. pilularis showed moderate inhibition of NO with IC

50

values of 56.93, 34.14, 53.84, and 76.17 𝜇g/mL, respectively.
Six other species, E. globoidea, E. gummifera, E. maculata,
E. paniculata, E. punctata, and E. resinifera, presented low
inhibition of NO with IC

50
values of 82.9, 108.17, 99.94, 130.7,

120.4, and 81.21𝜇g/mL, respectively (Suppl. Figure 1).
The plant extracts also showed promising TNF-𝛼

inhibitory activity (Table 3) with IC
50

values of 2.06, 8.53,
19.02, 3.41, 2.41, 10.2, and 16.68 𝜇g/mL for E. benthamii, E.
bosistoana, E. botryoides, E. saligna, E. smithii, E. umbra,
and E. viminalis, respectively, which are the same plants
in our highly potent NO inhibitor group. On the other
hand, the moderately potent extracts from E. acmenoides,
E. eximia, E. notabilis, and E pilularis showed TNF-𝛼 IC

50

values of 16.53, 4.82, 27.48, and 21.09 𝜇g/mL, respectively
(Suppl. Figure 1), whereas extracts from E. globoidea, E.
gummifera, E. maculata, E. paniculata, E. punctata, and E.
resinifera exhibited comparatively lower inhibition of TNF-𝛼
production with IC

50
values of 50.73, 82.73, 136.34, 334.86,

115.73, and 62.11𝜇g/mL, respectively, which are the plants in
our low potency group (Suppl. Figure 1).

The use of Alamar Blue (resazurin) to measure cytotoxic-
ity is an established technique [46].The results of cytotoxicity
(LD
50
) of our leaf extracts are shown in Table 3. The plants of

our highly potent group were also relatively toxic with LC
50

values of 22.34, 37.17, 108.40, 101.01, 38.96, 236.5, and 31.92 for
E. benthamii, E. bosistoana, E. botryoides, E. saligna, E. smithii,
E. umbra, and E. viminalis, respectively, whereas, plants of the
lower potency group showed lower toxicity with higher LD

50

values of 464.74, 313.45, 540.46, 268.59, 522.84, and 268.59
for E. globoidea, E. gummifera, E. maculata, E. paniculata, E.
punctata, and E. resinifera, respectively. Plants with moderate
potency showed a wide range of cytotoxicity with LD

50

values of 296.22, 64.14, 332.44, and 374.74 for E. acmenoides,
E. eximia, E. notabilis, and E. pilularis, respectively (Suppl.
Figure 1).

In future experiments, we will purify the most potent
extracts to identify the most active compounds. One major
candidate for carrying the anti-inflammatory activity could
be 1,8- cineole, the major monoterpene of eucalyptus oil,
as it can represent between 60 and 80% of the volatile oils
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Table 3: Anti-inflammatory activity and toxicity of extracts determined in RAW 264.7 macrophages.

Plant species Inhibition of NO production
(IC
50
in 𝜇g/mL)

Inhibition of TNF-𝛼 production
(IC
50
in 𝜇g/mL)

Cytotoxicity
(LC
50
in 𝜇g/mL)

Eucalyptus acmenoides 56.93 ± 11.8 16.53 ± 5.9 296.22 ± 189.3

Eucalyptus benthamii 5.57 ± 1.4 2.06 ± 0.7 22.34 ± 9.3

Eucalyptus bosistoana 7.58 ± 1.2 8.53 ± 3.4 37.17 ± 15.6

Eucalyptus botryoides 16.65 ± 2.2 19.02 ± 5.4 108.40 ± 44.9

Eucalyptus eximia 34.14 ± 7.1 4.82 ± 1.6 64.14 ± 23.6

Eucalyptus globoidea 82.9 ± 12.5 50.73 ± 24.0 464.74 ± 199.7

Eucalyptus gummifera 108.17 ± 10.5 82.73 ± 52.3 313.45 ± 125.9

Eucalyptus maculata 99.94 ± 12.1 136.34 ± 78.8 110.22 ± 41.1

Eucalyptus notabilis 53.84 ± 7.7 27.48 ± 14.9 332.44 ± 107.5

Eucalyptus paniculata 130.7 ± 11.6 334.86 ± 192.7 540.46 ± 172.5

Eucalyptus pilularis 76.17 ± 10.3 21.09 ± 9.7 374.74 ± 190.7

Eucalyptus punctata 120.4 ± 15.9 115.73 ± 58.4 522.84 ± 221.4

Eucalyptus resinifera 81.21 ± 13.4 62.11 ± 36.0 268.59 ± 131.6

Eucalyptus saligna 19.77 ± 2.3 3.41 ± 1.3 101.01 ± 36.8

Eucalyptus smithii 17.62 ± 3.5 2.41 ± 1.1 38.96 ± 14.1

Eucalyptus umbra 17.69 ± 2.3 10.2 ± 4.5 236.5 ± 144.3

Eucalyptus viminalis 8.0 ± 1.2 16.68 ± 9.9 31.92 ± 11.9

Note. Results represent the mean ± SEM of 3 experiments in triplicate for NO production and cytotoxicity whereas for TNF-𝛼 production it is 1 experiment in
triplicate.

derived from eucalyptus leaves depending on the species.
Therapeutic concentrations of 1,8-cineol (1.5𝜇g/mL = 10−5M)
inhibited significantly cytokine production in lymphocytes
and monocytes [47, 48]. It has to be noted that 1,8-cineol has
already gained market acceptance for its anti-inflammatory
properties in mouthwashes and cough suppressants or anti-
asthmatic medications [48, 49].

The plants studied here were chosen on the basis of
their traditional use to treat inflammatory conditions by
the Dharawal people of the Campbelltown region (South-
west Sydney Australia). All of the plants showed anti-
inflammatory activity and demonstrated inhibitory effect on
downregulation of NO and TNF-𝛼 production with varying
potencies, which supports their use in traditional Aboriginal
medicine. The content of the anti-inflammatory compounds
in the plants, according to traditional knowledge, is also
dependent on the plant’s environment. In Dharawal country,
what is most important when seeking particular medicines
from plants is where the plant is growing, that is, not
so much the soils, but the other plants that are growing
around the particular plant required. For instance, with the
Eucalypts, close proximity of an Ironbark (Muggago) and a
Ribbon bark (Kai’yeroo) is needed for the anti-inflammatory
medicine from the Burringoa (Eucalyptus tereticornis) to be
most effective. As another example, the Ironbark itself does
not need other Eucalypts close by, but it does need the
Einadia (one of the saltbushes) to be growing at its base.
In addition, if it had been struck by lightning (and this
can be confirmed by a line of interrupted bark running

from the top of the tree almost to its base), then the anti-
inflammatory medicine would be most effective, when using
the leaves of the Eucalypts as medicine, the leaves of the
trees younger than 7 years were placed on a low fire and the
smoke inhaled. However, when the tree is bearing the mature
leaves, the leaves were collected and boiled then allowed to
cool before being rubbed on the affected part of the body,
depending on the species. For the present screening study,
the plant material was provided by the Botanical Gardens
from random trees in the garden, but for future studies,
we will investigate if collection practice based on Dharawal
knowledge will improve the inherent activity and/or yield of
the anti-inflammatory compounds.

4. Conclusions

The present study suggests that most of the Eucalyptus
spp. potentially possess interesting anti-inflammatory com-
pounds with low toxicity and the in vitro activity appears
to support the traditional use. Eucalyptus benthamii, E.
bosistoana, E. botryoides, E. saligna, E. smithii, E. umbra, and
E. viminalis leaf extracts exhibited strong anti-inflammatory
activity by inhibiting NO and TNF-𝛼 production in LPS
and INF-𝛾 stimulated RAW 264.7 macrophages. Purification
and structure identification of the most these extracts are
currently underway.
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