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Abstract

Introduction

Interpretation of the extent of perfusion deficits in stroke MRI is highly dependent on the

method used for analyzing the perfusion-weighted signal intensity time-series after gadolin-

ium injection. In this study, we introduce a new model-free standardized method of temporal

similarity perfusion (TSP) mapping for perfusion deficit detection and test its ability and reli-

ability in acute ischemia.

Materials and methods

Forty patients with an ischemic stroke or transient ischemic attack were included. Two

blinded readers compared real-time generated interactive maps and automatically gener-

ated TSP maps to traditional TTP/MTT maps for presence of perfusion deficits. Lesion vol-

umes were compared for volumetric inter-rater reliability, spatial concordance between

perfusion deficits and healthy tissue and contrast-to-noise ratio (CNR).

Results

Perfusion deficits were correctly detected in all patients with acute ischemia. Inter-rater reli-

ability was higher for TSP when compared to TTP/MTT maps and there was a high similarity

between the lesion volumes depicted on TSP and TTP/MTT (r(18) = 0.73). The Pearson’s

correlation between lesions calculated on TSP and traditional maps was high (r(18) = 0.73,

p<0.0003), however the effective CNR was greater for TSP compared to TTP (352.3 vs

283.5, t(19) = 2.6, p<0.03.) and MTT (228.3, t(19) = 2.8, p<0.03).
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Discussion

TSP maps provide a reliable and robust model-free method for accurate perfusion deficit

detection and improve lesion delineation compared to traditional methods. This simple

method is also computationally faster and more easily automated than model-based meth-

ods. This method can potentially improve the speed and accuracy in perfusion deficit detec-

tion for acute stroke treatment and clinical trial inclusion decision-making.

Introduction

Magnetic resonance imaging (MRI) perfusion imaging is increasingly being used to diagnose

and characterize acute ischemia. It has been shown to detect early ischemic changes and large-

artery occlusions and differentiate ischemia from stroke mimics [1–3]. In combination with

diffusion-weighted imaging (DWI), MRI perfusion imaging has been proposed as a method to

identify penumbra in order to select patients who may benefit from revascularization therapy

[4]. The amount of tissue that may be salvaged is evaluated by detecting the amount of irre-

versible ischemic damage with DWI within the area of decreased cerebral perfusion. Although

this area of DWI/PWI mismatch does not precisely correlate with the physiological penumbra,

several studies have shown that it provides a good estimate of the amount of tissue at risk for

infarction [5–7].

Based on the susceptibility effects of an intravenous injected gadolinium based contrast

agent, dynamic susceptibility contrast (DSC) perfusion-weighted imaging (PWI) is presently

the most used method for detecting perfusion deficits for MRI [8]. Brain tissue with normal

perfusion will show an initial steep drop in signal as the contrast agent flows into the brain tis-

sue followed by signal recovery as the contrast agent is diluted. Compared to healthy tissue,

under perfused brain tissue will have a signal intensity time-series that is delayed, dispersed

and/or decreased [9]. Typically, perfusion deficits are detected and delineated on various

parametric maps that are derived from the DSC-PWI images, such as time-to-peak (TTP) and

mean-transit time (MTT) [10–13].

The parametric maps are calculations from the raw arterial and tissue enhancement curves

through specific mathematical models [14, 15]. TTP is the most straightforward to calculate by

identifying the time at which signal intensity reached its minimum, but can be affected by

physiological variability in the parenchymal delivery of the contrast bolus. This variability can

be corrected by using deconvolution-based algorithms; however, this approach requires selec-

tion of an arterial input function. The approach may be problematic in practice since selecting

a major artery may not reflect the response at the microvascular level because of differences in

collateral flow [16]. Overall, varying contrast injection rates, bolus dispersion, and varying

arterial transit times due to reduced cardiac output and flow limiting lesions in the brain feed-

ing arteries can highly affect resultant parametric maps. Ultimately, varying assumptions

within models result in wide variability in penumbral calculations and in the prediction of

infarcts [12, 14, 17].

With the goal of developing a model-free method for detecting abnormal cerebral perfu-

sion, we explored a different approach that analyzed temporal similarity between signal inten-

sity time-series across the whole brain in each patient. The rationale behind this analysis

method was that signal intensity time-series from healthy brain tissue would show high simi-

larity with signal intensity time-series in all other healthy brain tissue, while signal intensity

time-series from perfusion lesions would show low similarity with all the healthy brain tissue.
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The method is model-free and results in scaled and standardized values, with values of perfu-

sion deficit in every patient normalized in relation to their own healthy brain tissue. The aim

of this study was to introduce the concept of temporal similarity perfusion (TSP) mapping and

to test the ability and reliability of TSP mapping methods to detect and delineate perfusion def-

icits in acute ischemia.

Materials and methods

Study population

This is a retrospective analysis of 20 patients with acute ischemic stroke and 20 patients with

transient ischemic attack (TIA). Patients were retrospectively identified from a database of

patients admitted and evaluated by the NIH stroke team at MedStar Washington Hospital

Center (WHC) in Washington, DC during a two-year period. Data reported in this manuscript

was obtained under NIH OHSR Determination (#13285) of Not Human Subjects Research

based on “Research Involving Coded Private Information or Biological Specimens” (OHRP,

revised Oct 16, 2008) and Guidance on Engagement of Institutions in Human Subjects

Research (Oct 16, 2008); was stripped of identifiers and assigned a code prior to analysis.

A vascular neurologist or fellow clinically evaluated all patients. Criteria for inclusion in

this analysis were: 1) Acute ischemic patients with baseline pre-treatment MRI with subse-

quent treatment with standard IV tPA; 2) TIA patients with clinical diagnosis of imaging nega-

tive TIA with symptoms resolving within 24 hours of clinical presentation and no treatment

with any acute intervention. An equal number of patients based on left versus right vascular

territory were selected for the ischemic stroke group. Patients enrolled into a clinical trial were

excluded from both groups.

Imaging protocol

Patients were imaged with a 3 Tesla (Philips Medical Systems, Cleveland, OH) MRI system

equipped with an 8-channel coil and using a standardized protocol as part of a clinical pathway

for evaluating patients with suspected stroke. The standard clinical imaging protocol included

DWI, T2-FLAIR and DSC perfusion imaging, included in this project, along with time-of-

flight magnetic resonance angiography (MRA) of the Circle of Willis, T2�-weighted gradient

recalled echo for detection of hemorrhage, microbleeds, and thrombi. The duration of the

exam was approximately 13 minutes.

Images (excluding MRA) were acquired with FOV = 240, contiguous but interleaved axial-

oblique slices aligned with the anterior-posterior commissures using vendor specific technolo-

gist supervised auto-align prescription of center and rotation. Slice position was co-localized

across DWI, GRE, T2-FLAIR and DSC. For detection of acute ischemia (stroke), a diffusion

tensor sequence was used to generate trace-weighted “isotropic” DWI and apparent diffusion

coefficient maps. The relevant parameters are as follows; TR/TE = 4400/62 ms, b = 1000

15-direction with one b = 0 image, NEX = 2, FA = 90, 120x120 acquisition matrix, and 40–

3.5mm thick slices. For sub-acute ischemia, hyperintense vessel detection, edema, and infarc-

tion, T2-FLAIR were acquired with TR/TE/TI = 9000/120/2600 ms, NEX = 1, FA = 90,

240x205 matrix and 40–3.5mm thick slices. Perfusion weighted DSC images were acquired

with an echo-planar T2� gradient echo sequence. A single weight-adjusted intravenous dose of

0.1 mmol/kg of gadobutrol (Gd-BT-DO3A, Gadovist, Bayer Healthcare Pharmaceuticals,

Wayne, NJ) was administered at 5ml/sec. The scan parameters were: TR/TE = 1000/24 ms,

NEX = 1, FA = 70, 80x80 matrix, 20-7mm thick slices, and 80 dynamics.

The TTP and MTT images were calculated using the vendor’s standard perfusion software

(R3.2 Release, Philips Healthcare, Cleveland, OH) on the scanner console. An arterial input
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function (AIF) was identified by sampling multiple points in arteries proximal to the hypoper-

fused vascular territory based on visual inspection of the dynamic enhancement curves. The

mean AIF was used along with circular deconvolution. Temporal and spatial smoothing was

applied using the vendor’s software setting of “weak” smoothing for both.

Temporal similarity mapping

TSP maps were calculated from the raw DSC-PWI images based on a similarity index (the

Pearson product-moment correlation coefficient, Pearson’s R). The signal intensity time-series

curve for each brain tissue voxel was compared with the other voxels throughout the brain.

This method is based on the premise that healthy brain tissue has a uniform perfusion curve

and would show high correlation with a Pearson’s R-value close to 1, while under-perfused

brain tissue would have an altered signal intensity after contrast injection and thus poor corre-

lation in comparison to healthy tissue. For this method, TSP maps were constructed both with

a real-time user-interface as well as automatically through an iterative segmentation process

with automatic delineation of the perfusion lesion. Realignment and all the TSP analyses were

performed using AFNI (Analysis of Functional NeuroImages).

Real-time user-interface for TSP mapping. The AFNI (Analysis of Functional NeuroI-

mages) software package was used for real-time TSP mapping by the user (Fig 1A) [18, 19].

This interface generated in real-time (<<1s) a map of Pearson’s correlation between every

brain voxel’s perfusion time series and that of a seed voxel. The seed voxel was set interactively

through selecting (clicking on) a voxel with the mouse cursor or dragging the cursor over the

image for dynamic generation of similarity maps.

Automated TSP maps. An unattended, iterative process was used to automatically gener-

ate the average signal intensity time-series in all voxels of healthy tissue and a single resulting

Pearson’s correlation map. The steps were as follows: 1) DSC perfusion volumes were aligned

to the initial volume in order to correct for head motion; 2) a whole brain mask was created

that excluded areas of signal loss (calculated from the first pre-contrast perfusion scan) and

excluded ventricles (from the isotropic scan); 3) the average signal intensity time-series was

calculated for all brain voxels in the whole brain mask; 4) a brain map was calculated as the

Pearson’s R correlation at every voxel in the brain with this average signal intensity time-series;

Fig 1. Example of real-time TSP maps in an ischemic stroke patient with a right-sided perfusion

deficit. The left panel shows the cursor placed within presumed healthy tissue showing uniform values

approaching 1.0 for most of the brain except for focal, heterogeneous perfusion deficit lesions. The right panel

shows the seeding voxel within the perfusion deficit. Note that these maps will change in real-time as the

investigator moves the cursor around the brain to select a new seeding voxel.

https://doi.org/10.1371/journal.pone.0185552.g001
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5) a new mask was calculated that only included voxels with Pearson’s R>0.6 and a new aver-

age signal time-series was calculated for all voxels in this new mask; 6) steps 4 and 5 were

repeated twice with the final similarity map representing the TSP map for every patient. Addi-

tional automated TSP maps were calculated at various threshold limits to assess the sensitivity

of this threshold (R>0.5, 0.7, 0.8 and 0.9). The entire processing pipeline took <25 seconds

per patient on a 64-bit GNU/Linux machine (Intel Xeon CPU E5-2640 6-Core).

Detection of perfusion deficits

Two experienced stroke image readers (ME, SS) blinded to clinical information read the

images. Each reader assessed each TSP, TTP and MTT map by itself in random order to deter-

mine the presence of a perfusion deficit. The reader had access to the DWI and FLAIR images.

A consensus reading was held for disagreements about the presence of a perfusion deficit. The

readers used publicly available software to view the images (MIPAV™, NIH, Bethesda, Mary-

land) and could adjust for window level, contrast, color scheme and magnification of the

images. To determine whether a perfusion deficit was present on TSP, the readers evaluated

both the automatically generated iterative correlation maps and the real-time generated maps.

For the last, the user could freely select and reposition the seed voxel in order determine the

presence of a perfusion deficit.

Quantitative perfusion deficit analysis

Two other expert readers (ML, TB) segmented the perfusion deficits on the MTT and TTP

and automatically generated TSP maps with MIPAV™. The lesions were semi-automatically

segmented on a slice-by-slice basis followed by user-driven editing of the lesion areas. The

readers scored each map independently from the other maps. To reduce recall bias, the TSP,

MTT and automated TTP images were segmented in separate sessions on different days, each

session separated by two weeks. Regions of non-brain tissue, areas of signal loss, and ventricles

were identically excluded from all associated TTP, MTT and automatically generated TSP vol-

umes. Automated segmentation was performed using AFNI.

Inter-rater reliability and bias between lesion volumes generated by the two readers (R1

and R2) was compared for automated TSP and TTP and MTT maps. To compare lesion vol-

umes as delineated on TSP maps to those of TTP maps, the lesion segmentations as delineated

for each patient by two readers was combined across readers, such that both readers’ assess-

ments were considered. We also compared the spatial overlap between the different delineated

lesions TSP and TTP maps.

The CNR was determined on TSP and TTP and MTT maps within the healthy tissue and

perfusion deficit. Tissue was defined as being within the perfusion deficit if it was included

on at least 4 of 6 hand-drawn masks (R1 and R2 on TSP, TTP and MTT maps). This was

termed the unbiased perfusion lesion. CNR was defined as: (|Mean signal lesion–Mean signal

normal|) / SD signal normal. Effective CNR was calculated as the CNR multiplied by the

square root of the number voxels within the unbiased perfusion lesion) with each voxel occu-

pying 0.9375x0.9375x7 mm3 of brain volume. Effective CNR values consider that larger

lesions require a smaller CNR to be detectable above the Rose criterion.

Statistical analysis

Paired t-tests (two-tailed) were used to compare TTP and traditional (TTP and MTT) values

and were considered significant at p<0.05. Bonferroni correction was applied to correct for

multiple comparisons as indicated. Pearson’s correlations were used to relate TTP and TSP
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values and were considered significant at p<0.05. Mean values are reported as mean +/-SD

unless otherwise indicated. Figures plot mean +/-SE unless otherwise indicated.

Results

Twenty ischemic stroke treated with IV tPA and 20 TIA imaging-negative patients were

included. Patients were imaged at a median of 74 minutes from symptom onset (IQR, 41–137

min). The demographics and clinical characteristics are shown in Table 1. The NIHSS score

was higher for the patients with an ischemic stroke than with a TIA (NIHSS 15 vs 1, p<0.001).

There were no significant differences in age, sex, or time-from-onset (defined by last seen nor-

mal) to MR imaging between the ischemic stroke and TIA groups.

Detection of perfusion deficits

Figs 1 and 2 demonstrate real-time and automated TSP maps in an ischemic stroke patient

with a right-sided perfusion deficit. The two expert readers correctly detected all the perfusion

deficits in the ischemic stroke patients and were able to differentiate TIA imaging-negative

from stroke patients using both real-time TSP mapping and automated TSP maps. No perfu-

sion lesions were detected in the TIA imaging-negative patients. Visually, the real-time TSP

maps appeared uniform over most of the brain with values near 1.0 and reduced and negative

values within the perfusion deficit (Fig 1, left panel). Real-time TSP maps were robust to seed

placement. Seeds placed in healthy tissue showed high correlation with non-lesion areas while

seeds placed inside of the perfusion deficit inverted the similarity maps (Fig 1, right panel).

The automated TSP maps were virtually indistinguishable from real-time TSP maps when

the seed placement was within presumed healthy tissue (Fig 2). In the TIA imaging-negative

patients, automated TSP maps were uniform with values approaching 1.0 over the whole brain

(Fig 3). Fig 4 shows the automated TSP for all patients. The images are uniform with values

approaching 1.0, except for the area within the perfusion deficit.

Quantitative perfusion deficit analysis

Inter-rater reliability for TSP and traditional TTP and MTT map–based lesion volumes are

shown with the Bland-Altman plots (Fig 5). The 95% limits of agreement were narrower for

TSP (-41.2–96.4 cm3) than for TTP (-98.9–213.1 cm3) and MTT (-135.7–227.8 cm3) map–

based lesion volumes.

Inter-rater bias measures for TSP were lower when compared to TTP and MTT map-based

lesion volumes, however they did not differ significantly (p>0.4) (Fig 6A). The Pearson’s cor-

relation between TSP and TTP-based methods was high (r(18) = 0.73, p<0.0003; Fig 6B); how-

ever, the effective CNR was greater for TSP (352.3) compared to TTP maps (283.5, t(19) = 2.6,

Table 1. Demographic and clinical characteristics of the study groups.

All patients

(n = 40)

Ischemic Stroke group

(n = 20)

Imaging-negative TIA group

(n = 20)

Significance (p-

value)

Age (years ± SD) 68.4 (±14) 71.6 (±15) 65.2 (±14) 0.140

Sex (n / % female) 27 / 68% 12 / 60% 15 / 75% 0.324

Admit NIHSS [IQR25-75] 5 [1–17] 15 [7–21] 1 [0–1] <0.001*

Onset (minutes), median [IQR] 74 [41–137] 88 [49–133] 63 [40–148] 0.735

Onset to MRI start time (minutes), median

[IQR]

139 [93–205] 150 [93–191] 135 [94–234] 0.776

* significance level of p<0.05

https://doi.org/10.1371/journal.pone.0185552.t001
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p<0.03.) and MTT maps (228.3, t(19) = 2.8, p<0.03) within the unbiased perfusion deficit

(identified in at least 4 of the 6 total drawn lesion masks) (Fig 6C).

The average perfusion lesion volume was 150.9+/-77.9 cm3 for TSP, 261.4+/-144.2 cm3 for

MTT and 279.2+/-147.8 cm3 for TTP. On average, 142.3±78.4 cm3 of lesion maps were spa-

tially overlapping between the TSP and TTP maps. Of the non-overlapping areas, 8.5±9.0 cm3

Fig 2. Example of the automated TSP maps in an ischemic stroke patient with a right-sided perfusion deficit.

The images were generated using an iterative method that first calculated an average time-series of healthy tissue

(top left) to generate a Pearson’s correlation map of all voxels in the brain based on correlation with the average time-

series of healthy tissue (top right). Signal intensity time-series for voxels in healthy and under perfused tissue are in

the bottom panel. Voxels in healthy tissue demonstrate a signal intensity time-series that is like the average signal

intensity time-series for all healthy tissue, while a voxel in the perfusion deficit will have a signal intensity time-series

that is delayed, dispersed and/or decreased.

https://doi.org/10.1371/journal.pone.0185552.g002
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of the perfusion lesion were only identified on TSP scans and 136.9±102.3 cm3 of the perfusion

lesions were only identified on TTP maps. Hence, within the total lesion volume defined by

either rater on any one of the maps, 50.8±6.8% spatially overlapped on both TSP and the tradi-

tional TTP maps while 4.0±5.1% was only defined on TSP-based masks, and 45.2±17.1% was

only defined on TTP masks (Fig 7).

Finally, robustness of automated TSP maps was evaluated for sensitivity to different Pear-

son’s R correlation thresholds during the iterative process. No visual differences were found

between TSP maps constructed with these different thresholds (Fig 8). The mean signal values

in the perfusion deficit and healthy tissue showed relatively stable TSP values within TSP maps

(Fig 8, left panel) demonstrating robustness. However, the mean difference in signal between

healthy and perfusion tissue increased slightly (by ~0.03 in the 0.9 map compared to the 0.6

map) if TSP maps were constructed with differing thresholds (Fig 8, right panel).

Fig 3. TSP maps in the 20 TIA imaging-negative patients. The TSP maps were uniform with values approaching 1.0 for the whole brain.

The color scale for all TSP maps runs from <0 to 1, blue to red.

https://doi.org/10.1371/journal.pone.0185552.g003
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Fig 4. An overview of the automatically generated TSP and TTP maps for all 20 ischemic stroke

patients. The slice-of-interest is shown for the mid segment of perfusion deficit. The top row for each patient

delineates the TSP map with a Similarity Index (Pearson’s r), color scale from�0 to 1 (blue to red). Below the
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numbered TSP, the corresponding TTP map was individually windowed for each patient. This was done since

TTP values are non-standardized in general and can be affected by factors such as speed of bolus injection.

https://doi.org/10.1371/journal.pone.0185552.g004

Fig 5. Bland-Altman plots of the inter-rater reliability between the two readers for TSP, TTP and MTT map-based lesion

volumes.

https://doi.org/10.1371/journal.pone.0185552.g005

Fig 6. Panel A shows the inter-rater bias measures for TSP, TTP or MTT map-based lesion volumes. Panel B shows that

the Pearson’s correlation between TSP and TTP map-based lesion volumes was high (r(18) = 0.73, p<0.0003). Panel C

shows that the effective CNR was greater for TSP (352.3) compared to TTP (p<0.03) and MTT maps (p<0.03).

https://doi.org/10.1371/journal.pone.0185552.g006
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Discussion

We compared a new method based on temporal similarity to analyze DSC scans and found

TSP mapping was as reliable as TTP mapping for detecting perfusion deficits in acute ische-

mia. The perfusion lesion volumes segmented in TSP and TTP maps were highly correlated

and spatially overlapping. TSP mapping was furthermore found to be more reliable than

the traditional TTP method for lesion volume segmentation. This is demonstrated by both

increased inter-rater reliability as well as higher CNR ratio for identified lesions. Finally,

TSP mapping was found to be robust to different parameters implemented during

calculation.

In TTP maps, the absolute values are influenced by factors unrelated to cerebral perfusion,

such as speed of contrast agent injection and individual differences in cardiac function and

vasculature [14, 16]. The absolute TTP values are therefore highly variable, dependent on the

temporal resolution and user driven window leveling is required to detect the perfusion deficit.

In contrast, TSP maps are scaled and standardized to the healthy tissue, with a value of approx-

imately 1.0 in all healthy tissue. Tissue with abnormal perfusion will show a lack of correlation

Fig 7. Figure comparing the spatial overlap between lesion volumes drawn on TSP and TTP maps for

each patient. Overlap from lesion volumes from each rater was analyzed separately and averaged for each

patient.

https://doi.org/10.1371/journal.pone.0185552.g007
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and thus a TSP value closer to 0. Hence, in TSP maps, these absolute values are useful metrics

that are indicative of healthy versus under-perfused tissue. Deconvolution-based analysis

methods also offer scaled and standardized values, such as MTT and CBF, but require model-

based parameterizations. Specification of a model requires the selection of an AIF to correct

for dispersion effect and nonlinear effects of the tracers in tissue versus bulk blood [20]. The

selection of the AIF is however challenging and widely debated [21]. Deconvolution further-

more requires an a priori selection of a deconvolution algorithm to derive a scaled residue

Fig 8. Example of TSP maps with varying Pearson’s R correlation thresholds in a patient with a right-sided perfusion deficit. The red encircled

map shows the threshold used for the automated lesion detection. No visual differences were found between TSP maps constructed with these different

thresholds (B) Mean signal values for lesion and healthy tissue (based on the unbiased perfusion lesion) showed relatively stable TSP values within TSP

maps for healthy and lesion tissue demonstrating robustness. (C) The mean difference in signal between healthy and perfusion tissue increased slightly

(by ~0.03 in the 0.9 map compared to the 0.6 map) in TSP values.

https://doi.org/10.1371/journal.pone.0185552.g008
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function [12]. If the scan duration is very short, and/or bolus arrival is highly delayed, the pas-

sage of the bolus may be inadequately sampled, and calculated CBF and MTT values will be

artifactually low and noisy [22]. In contrast, TSP analysis is model-free and based on simple

metrics of time-series similarity, in this study, Pearson’s correlation coefficients. A priori

assumptions or selection of an AIF are therefore unnecessary.

Currently, the accepted standard for detecting perfusion deficits in acute ischemic stroke is

by means of deconvolution-based approaches. Other methods, such as (k-means) clustering

and cross-correlation analysis have previously been investigated for automated analyses and

segmentation purposes. While predominately it is used to analyze DCE perfusion images with

patients with renal and pulmonary disease [23–25], Wissmuller et al also presented a method

based on neural network clustering that was shown to be able to identify groups of voxels shar-

ing common properties of signal dynamics and delineate perfusion deficits in stroke [26].

Using a similar cross-correlation analysis, Ingrish et al, compared the signal time course of

DCE-MRI images in healthy volunteers to automatically segment abnormal lung tissue [27].

In line with these methods, we present an alternative, non-deconvolution based approach and

applied it for perfusion deficit detection.

The scaled, standardized, model-free and computationally simple characteristics of TSP

mapping allow for automated and rapid lesion segmentation. Clinically, ‘core’ lesions of dead

brain tissue are identified on the isotropic DWI scan. The ‘penumbra’ region represents

under-perfused but viable tissue that can be potentially salvaged with reperfusion is identified

by the PWI/DWI mismatch. TSP and TSP-derived maps along with DWI maps may be

employed for automated volumetric and spatial determination of the core versus penumbra in

ischemic stroke. Compared to deconvolution, TSP mappings may provide more robust mea-

surements of the perfusion deficits, as it is less dependent on complex post-processing algo-

rithms [12, 14, 17]. With user-driven seed points, the viewer can interactively evaluate the

brain tissue and better appreciate subtleties in the data.

This study has limitations. The randomly selected ischemic stroke patients had relatively

larger perfusion deficits on average. Therefore, the results cannot be generalized to smaller

perfusion deficits, and further research is needed to investigate its use in a generalized popula-

tion of patients with ischemic stroke. Our study indicates that TSP mapping can be used to

detect perfusion deficits in small samples of imaging positive ischemic stroke patients; how-

ever, we have not yet investigated whether this method can be used clinically for establishing if

a patient subsequently reperfuses after revascularization therapy. Furthermore, in our study

we did not investigate whether TSP mapping can differentiate hypoperfused tissue from irre-

versibly damaged tissue.

Conclusions

Perfusion deficits can be reliably detected in acute ischemia by analyzing the temporal simi-

larity between signal intensity time-series across the whole brain in perfusion-weighted imag-

ing. Temporal similarity perfusion (TSP) mapping is a model-free standardized method for

perfusion deficit detection and can reliably detect and delineate perfusion deficits in acute

ischemia. Because of its improved speed and accuracy in perfusion deficit detection, this

method can potentially be used for acute stroke treatment decision-making and clinical trial

inclusion.
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