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Abstract
Monogenic forms of diabetes represent an uncommon but very heterogeneous subset of the disease, with variable associated 
clinical features and key differences in treatment options. In this review, we discuss how advances in precision medicine and 
genomic sequencing have enhanced our understanding of the aetiology and clinical variability of monogenic diabetes. We 
highlight current global challenges, including the over-representation of individuals of European genetic ancestry in research 
studies, which complicates diagnosis in non-European populations, and national disparities in genetic testing strategies, 
which influence diagnostic accuracy. Additionally, we address issues in variant interpretation stemming from the increased 
understanding of variable penetrance in monogenic diabetes and the need to expand current reference datasets to exclude 
common genetic variation. Finally, we explore future directions, including the potential benefits of ongoing genetic studies 
for under-represented populations, the benefits and potential pitfalls of newborn screening programmes, and the potential 
of stem cell-derived islet transplantation and glucagon-like peptide- 1 receptor agonists as treatments for some forms of 
monogenic diabetes.
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Introduction

In the last 15 years, the study of monogenic diabetes sub-
types, specifically neonatal diabetes and MODY, has increas-
ingly become a global field (Fig. 1), strongly contributing to 
the understanding, diagnosis and management of individuals 
affected by these uncommon conditions. However, global 
challenges remain, including the identification of individuals 
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who should be referred for genetic testing, testing strategies, 
gene discovery and genetic interpretation. In this review, we 
explore recent advances and future challenges in monogenic 
diabetes from a global perspective.

Overview of the main monogenic diabetes 
subtypes

Neonatal diabetes

Clinical features of neonatal diabetes  Neonatal diabetes 
mellitus (NDM) is defined as diabetes with onset in the first 
6 months of life (see Text box, Summary of main monogenic 
diabetes subtypes). This clear diagnostic criterion is based 
on two studies showing that diabetes diagnosed before 6 
months of age is most likely to have a monogenic cause 
rather than being due to polygenic autoimmunity [1, 2].

Summary of main monogenic 
diabetes subtypes

• Neonatal diabetes (NDM) is diagnosed before the 
age of 6 months. This very early onset means that 
it almost always has a monogenic aetiology.

• Some NDM genetic subtypes are responsive to 
targeted treatments that reduce or remove the need 
for insulin treatment, making a genetic diagnosis 
vital for optimal treatment.

• MODY is a form of monogenic diabetes with onset 
typically before 25 years of age, but it can occur 
later. Based on age of onset it is often 
misdiagnosed as type 1 or type 2 diabetes.

• Some MODY subtypes do not require insulin 
treatment and can be treated with sulfonylureas 
alone, and some do not require any medical 
intervention.

Clinically, NDM is categorised into three main types 
based on diabetes progression and additional extra-pancre-
atic features: permanent neonatal diabetes mellitus (PNDM), 
transient neonatal diabetes mellitus (TNDM) and syndromic 
neonatal diabetes [3]. Isolated PNDM is the most common 
type and requires lifelong therapy. TNDM is characterised 
by a period of remission in infancy, during which no treat-
ment is required, but often relapses later in childhood or ado-
lescence. Syndromic neonatal diabetes includes a range of 

conditions in which NDM is one of several clinical features, 
reflecting a broader systemic involvement [3]. Examples of 
syndromic NDM subtypes include pancreatic agenesis, clini-
cally defined as NDM and exocrine pancreatic insufficiency 
[4], and IPEX (immune dysregulation, polyendocrinopathy, 
enteropathy, X-linked) syndrome, characterised by NDM, 
enteropathy and eczema [5].

Neonatal diabetes genetic testing  The International Society 
for Pediatric and Adolescent Diabetes (ISPAD) guidelines 
recommend genetic testing for all individuals diagnosed with 
diabetes in the first 6 months of life [6]. To date, 43 differ-
ent genetic causes of NDM have been described, includ-
ing autosomal dominant, autosomal recessive and X-linked 
variants, as well as an imprinting disorder and a form of 
aneuploidy [7].

Neonatal diabetes treatment  Identification of the genetic 
cause in individuals with NDM can result in improved treat-
ment, highlighting the importance of precision medicine in 
the context of this disease (see Text box, Summary of main 
monogenic diabetes subtypes). Activating disease-causing 
variants in the genes encoding the ATP-dependent potas-
sium (KATP) channel, KCNJ11 and ABCC8, are the most 
common cause of NDM [8]. Individuals with these variants 
often respond to treatment with sulfonylureas such as glib-
enclamide [9, 10] rather than insulin, leading to improved 
management of glucose levels [11]. When insulin treatment 
for NDM is required, advanced insulin delivery technologies 
such as insulin pumps and hybrid closed-loop systems have 
been shown to be safe and effective and can lead to improved 
management of glucose levels over standard insulin injec-
tions [12]. However, because of the cost of these therapies, 
they may not frequently be an option for individuals with 
NDM.

Beyond diabetes management, a genetic diagnosis of 
NDM can improve treatment for extra-pancreatic features. 
In the case of individuals with NDM caused by KATP chan-
nel gene variants, timely intervention with glibenclamide 
can significantly improve neurodevelopmental outcomes 
[11] with early treatment in affected individuals associated 
with reduced neurodevelopmental impairment and greater 
independence in later life [13].

MODY

Clinical features of MODY  In contrast to NDM, there is no 
single defining criterion for diagnosis of MODY. Tradi-
tionally, MODY has been defined as a subtype of diabetes 
characterised by a strong family history and early age of 
onset (typically <25 years of age). However, heterozygous 
MODY-causing variants can occur de novo and so a family 
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history of diabetes may not always be present. There is also 
increasing evidence from population databases and genetic 
testing of family members that onset of MODY after 25 
years of age is not uncommon [14, 15]. Based on age at 
diagnosis, individuals with MODY are frequently misdiag-
nosed with either type 1 or type 2 diabetes [16] (see Text 
box, Summary of main monogenic diabetes subtypes).

MODY genetic testing  ISPAD guidelines recommend consid-
ering genetic testing for MODY in people with a family history 
of diabetes whose clinical features do not clearly align with 
classical type 1 or type 2 diabetes [6]. Additional indicators 
include low levels or absence of islet autoantibodies, preserved 
C-peptide levels years after diagnosis and features suggestive 

of specific MODY subtypes (e.g. mild stable fasting hypergly-
caemia that does not progress in GCK-MODY, renal cysts in 
HNF1B-MODY or macrosomia in HNF4A-MODY) [17]. To 
aid the decision-making process around when MODY genetic 
testing is appropriate, MODY probability calculators based on 
family history of diabetes and clinical features are available 
[18, 19]. Strategies to identify individuals to refer for MODY 
testing have been reviewed elsewhere [17].

Monoallelic pathogenic variants in 11 genes are currently 
accepted as causative for MODY [20]. However, genetic test-
ing panels for individuals with MODY will often include other 
genes, including those causing syndromic diseases that can 
include diabetes, such as Wolfram syndrome and mitochon-
drial maternally inherited diabetes and deafness (MIDD).
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Fig. 1   Number of scientific journal articles matching the terms 
‘monogenic diabetes’, ‘maturity-onset diabetes of the young’ or ‘neo-
natal diabetes’ (and variations of these terms) in the Scopus database 
(https://​www.​scopus.​com) up to 2000 (a) and from 2000 onwards (b) 
by country (based on all named author affiliations). Authors from 114 
different countries have published research on monogenic diabetes 

since 2000 compared with authors from 41 countries prior to 2000, 
illustrating how, similar to other diseases, the study of monogenic 
diabetes has become an increasingly global field and why global per-
spectives on this disease are important. This figure is available as a 
downl​oadab​le slide 

https://www.scopus.com
https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-025-06495-3/MediaObjects/125_2025_6495_MOESM1_ESM.pptx
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MODY treatment  Similarly to NDM, a genetic diagnosis of 
MODY is essential to ensure optimal clinical management, with 
the most common genetic subtypes not requiring insulin treat-
ment [20] (see Text box, Summary of main monogenic diabetes 
subtypes). Individuals with pathogenic variants in the HNF1A 
and HNF4A genes usually respond well to sulfonylurea therapy, 
although requirement for insulin treatment later in life has been 
reported in some cases [21], while individuals with dominant 
GCK variants have mild fasting hyperglycaemia from birth that 
does not require any treatment and it is not associated with long-
term complications [22, 23]. Some forms of MODY include 
additional extra-pancreatic features, such as those caused by 
monoallelic pathogenic variants in HNF1B, which cause renal 
cysts [24]. It is important that individuals with syndromic forms 
of diabetes receive a genetic diagnosis to ensure proper manage-
ment of the extra-pancreatic features of the disease.

Frequency of monogenic diabetes 
in different countries

Traditionally, NDM has been reported to affect 1 in 100,000 
live births, while MODY is reported to affect 1 in 10,000 adults 
and 1 in 23,000 children (https://​www.​orpha.​net/, accessed 5 
Jun 2025). However, true disease prevalence can be difficult to 
accurately estimate, particularly in the case of NDM, where the 
genetic cause strongly influences life expectancy. Furthermore, 
the reported frequency of both diseases varies greatly in differ-
ent populations. There are two primary explanations for this: 
population-specific differences in the frequencies of disease-
causing variants and biases in clinical referrals for monogenic 
diabetes genetic testing [8, 25] (see Text box, Summary of 
frequency differences in monogenic diabetes).

Population‑specific differences in disease incidence

The reported incidence of NDM ranges from as low as 1 
in 476,000 (0.00021%) births in the USA to as high as 1 
in 22,938 (0.0044%) in Qatar and 1 in 20,833 (0.0048%) 
in Sudan [26–28]. The biggest driver of this observed dif-
ference is the rate of consanguineous marriages; 27 of 43 
known genetic causes of NDM are recessively acting [29] 
and are therefore more likely to occur in countries in which 
consanguineous marriage is common. Consistent with this, 
in countries with higher rates of consanguineous marriage 
the most common NDM subtypes are primarily recessive. 
For example, among some Arabic populations where the rate 
of consanguineous marriage is 40–60%, the most common 
genetic subtype of NDM is Wolcott–Rallison syndrome, 
caused by biallelic variants in the EIF2AK3 gene [28, 30]. 
Conversely, in countries with low rates of consanguineous 
marriage the most common NDM subtypes have autoso-
mal dominant inheritance, with heterozygous variants in 
KCNJ11, ABCC8 and INS accounting for more than 50% of 
NDM cases in the USA and Europe [31, 32].

Biases in referral rates

Biases in referral rates for monogenic diabetes testing are 
a key driver of the observed differences in the frequency 
of monogenic diabetes between countries. This is espe-
cially the case for MODY, where clinical overlap between 
MODY and type 1 and type 2 diabetes as well as a lack of 
awareness of the disease can lead to misdiagnosis and thus 
large variation in the reported frequency [25]. Within the 
UK it has been estimated that as many as 77% of MODY 
cases remain undiagnosed, with an estimated true case 
rate of 248 per million (0.025%) based on the prevalence 
in south-west England and Scotland, where disease aware-
ness is high and similar prevalences have been reported 
[33]. A lower estimated prevalence has been reported in 
other European populations, such as the Netherlands (30 
per million, 0.003% [34]) and Norway (92 per million, 
0.0092% [35]), suggesting that similarly high proportions 
of cases may be undiagnosed.

To date, most studies on prevalence, genetics and clinical 
features of MODY have been conducted in European cohorts 
[25]. As a result, the prevalence of MODY in many non-
European populations is currently unclear. This is further 
complicated by our current incomplete understanding of the 
differences in clinical features and genetic causes of MODY 
in non-European individuals, which impairs our ability to 
recognise the disease. Consequently, even within countries 
with higher referral rates such as the UK, significantly fewer 
non-European individuals are referred for MODY testing 
than would be expected based on the prevalence of diabetes 
in these groups [36].

Summary of frequency 
differences in monogenic 

diabetes

• The incidence of both NDM and MODY varies 
hugely between countries.

• Much of the variation in incidence observed for 
NDM is due to differences in the frequency of 
consanguineous marriage between populations, 
with autosomal recessive diseases more common 
in populations with high rates of consanguineous 
marriage.

• MODY is often underdiagnosed because of its 
clinical overlap with type 1 and type 2 diabetes, lack 
of awareness and insufficient genetic testing, 
resulting in wide variations in reported prevalence.

https://www.orpha.net/
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Genetic testing for monogenic diabetes

Approaches to genetic testing

Traditionally, Sanger sequencing [37] of specific genes was 
used as the primary means of genetic testing for monogenic 
diabetes [8]. The development of next-generation sequencing 
and the discovery of more monogenic diabetes genes have led 
to replacement of this approach with methods that simulta-
neously test for all known genetic causes. However, Sanger 
sequencing is still the most affordable approach, especially 
for targeted testing in individuals with specific phenotypes 
(e.g. in cases of syndromic NDM) and as a first line of inves-
tigation to rapidly diagnose common genetic subtypes of 
monogenic diabetes that could result in treatment change.

Targeted next-generation sequencing (TNGS) of gene 
panels [38] enables sequencing of all genes and non-cod-
ing regions known to contain monogenic diabetes-causing 
genetic variants in a single assay [8] (see Text box, Summary 
of genetic testing in monogenic diabetes). The reduced cost 
of the assay compared with genome and exome sequencing, 
as well as the reduced data storage and processing costs, 
mean that TNGS has become one of the most popular meth-
ods for performing monogenic diabetes genetic testing world-
wide. However, TNGS panels need to be constantly updated 
and redesigned as novel genetic aetiologies are identified.

Summary of genetic testing in 
monogenic diabetes

• Today, most monogenic diabetes genetic testing is 
performed using next-generation sequencing 
(NGS) methodologies.

• Testing strategy and choice of genes tested can 
heavily influence the ability of laboratories to 
identify the cause of an individual’s monogenic 
diabetes.

• Variant interpretation poses a significant challenge 
in monogenic diabetes diagnosis, with the 
increasing output from NGS resulting in increasing 
numbers of variants of uncertain significance.

• International variant interpretation guidelines, such 
as the American College of Medical Genetics and 
Genomics guidelines [44], are essential to 
standardise reporting of variants in monogenic 
disease, including monogenic diabetes.

• Variant interpretation is hampered by unequal 
representation of different global populations in 
genetic databases.

Analysis of known monogenic diabetes genes can be per-
formed through exome (capturing all protein-coding genes) 
and genome (capturing nearly all the genome) sequencing 
[39]. Genome sequencing is the most comprehensive option 
for analysis of known genes and reanalysis of data when new 
aetiologies are identified, without the need for additional 
samples and laboratory work. However, the approximately 
100-fold increase in number of variants observed in genome 
sequencing compared with exome sequencing makes the 
processing and prioritisation of variants more complex [40]. 
These complexities combined with the increased sequencing 
and data storage costs mean that genome sequencing is cur-
rently not frequently used for monogenic diabetes diagnostic 
testing.

National differences in testing strategies

Different countries have adopted distinct testing strategies 
for monogenic diabetes based on healthcare infrastructure, 
funding and local expertise. While some countries have rou-
tine access to clinical exome or genome sequencing, oth-
ers rely on more cost-effective approaches such as Sanger 
sequencing or TNGS. When local testing is not available, 
genetic analysis may sometimes be performed abroad at 
laboratories that accept international testing referrals, such 
as the Exeter Genomics Laboratory (https://​www.​diabe​tesge​
nes.​org, accessed 5 Jun 2025), with charitable donations 
covering the costs of genetic testing of NDM when patients 
and their referring healthcare systems are unable to cover 
them. However, fewer funding opportunities exist for indi-
viduals with MODY from low-income countries.

The genetic testing strategy used heavily influences the 
rates of genetic diagnoses. When testing uses only Sanger 
sequencing or TNGS, the choice of genes tested is essential, 
as only variants in genes included in the test can be detected. 
Some genetic panels for MODY do not include genes caus-
ing syndromic forms of diabetes, such as WFS1 (Wolfram 
syndrome 1) and CISD2 (Wolfram syndrome 2) or the 
mitochondrial m.3243A>G variant causing MIDD, which 
may lead to missed diagnoses in cases where diabetes is the 
first manifestation of a syndrome [41]. Ideally, a consensus 
should be reached on the genes to be tested for all forms 
of monogenic diabetes. Similarly, the use of off-the-shelf 
exome sequencing assays that do not include non-coding 
regions can lead to missed diagnoses, as several non-coding 
regions have been implicated in monogenic diabetes [42]. 
This is a significant problem for individuals with NDM in 
countries such as Turkey, where non-coding variants in a 
distal regulatory element of the PTF1A gene are one of the 
leading causes of the disease [43].

https://www.diabetesgenes.org
https://www.diabetesgenes.org
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The challenges of variant interpretation 
in the genomics era

As next-generation sequencing techniques have enabled 
examination of increasingly large amounts of genetic var-
iation in individuals with disease, variant interpretation 
has become more complex. While the implementation of 
guidelines from bodies such as the American College of 
Medical Genetics and Genomics [44] has been instrumen-
tal in moving the field towards a standardised method for 
variant assessment, huge challenges remain, with different 
laboratories often classifying variants differently, leaving 
clinicians and patients without clear guidance while wait-
ing for more definitive answers. At worst, misinterpre-
tation of a variant of uncertain significance can lead to 
unnecessary medical interventions or the failure to treat 
a disease properly. The use of resources such as ClinVar 
[45], which provides information on variant classification 
from different laboratories that have identified variants 
previously, is essential to improve consistency in variant 
classification.

A key piece of evidence used in variant interpretation 
is the frequency of a variant in affected and unaffected 
populations. As population databases of genetic variation 
are over-represented for individuals of European genetic 
ancestry [46], variant interpretation is more challenging in 
individuals of non-European genetic ancestry. This issue 
is actively being addressed, with several projects aimed 
at sequencing under-represented populations and global 
biobank initiatives currently under way (summarised in 
Table 1). Integration of genetic variation data from these 
projects into variant interpretation pipelines has the poten-
tial to vastly improve our ability to interpret rare variation 
in individuals of non-European genetic ancestry.

Penetrance of monogenic diabetes 
and the monogenic–polygenic diabetes 
continuum

Identification and implications of variable 
penetrance in monogenic diabetes subtypes

Increased understanding of the genetics underlying mono-
genic diabetes has highlighted the variability in penetrance 
of some genetic subtypes (see Text box, Summary of pen-
etrance in monogenic diabetes). Understanding the mech-
anisms underlying this variability is important to guide 
genetic counselling.

Summary of penetrance in 
monogenic diabetes

• There is increasing evidence for variable 
penetrance in monogenic diabetes.

• Variable penetrance has been reported in multiple 
subtypes of MODY but is uncommon in NDM.

• Some of this variable penetrance is due to an 
interplay between monogenic diabetes variants and 
polygenic risk.

• The observation of variable penetrance has key 
implications for unaffected family member testing 
and genetic screening programmes.

Variable penetrance has been especially well documented 
in MODY, with dominant RFX6 loss-of-function vari-
ants and the hypomorphic HNF4A p.(Arg114Trp) variant 
reported to cause MODY with incomplete penetrance and 
variable expressivity [47, 48]. Recently, a study investigating 
the presence of disease-causing HNF1A and HNF4A variants 

Table 1   Overview of large-scale sequencing projects currently under way in different populations

Project Targeted group(s) Projected sample size Technology Source

All of Us Research Program Under-represented groups in 
the USA

>500,000 Array genotyping, genome 
sequencing

[79], https://​allof​us.​nih.​gov

OurDNA Indigenous and non-
European individuals in 
Australia

>7000 Genome sequencing https://​www.​ourdna.​org.​au

Genes & Health South Asian individuals in 
the UK

Up to 100,000 Array genotyping, exome 
sequencing

https://​www.​genes​andhe​
alth.​org

Qatar Biobank General Qatari population 60,000 Genome sequencing [80]
Mexican Biobank General Mexican population 6144 Array genotyping [81]
Taiwan Biobank General Taiwanese popula-

tion
>150,000 Array genotyping [82]

https://allofus.nih.gov
https://www.ourdna.org.au
https://www.genesandhealth.org
https://www.genesandhealth.org
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in large non-clinically selected cohorts showed that pene-
trance of monogenic diabetes is overestimated based on data 
in clinically selected cohorts [49]. Variation in penetrance 
and expressivity of disease-causing variants adds additional 
complexity to the diagnosis of MODY, as it can lead to a 
weaker family history of diabetes and increased challenges 
in classifying possible disease variants, as they may still be 
present in population databases [37].

Variable penetrance appears to be less extreme in NDM, 
with disease-causing NDM variants being largely absent or 
ultra-rare in population databases. However, variability in 
age at diagnosis and disease features has been reported for 
some NDM subtypes. This could be variant dependent, as is 
the case for KATP variants, where the phenotypic spectrum 
depends on the severity of the variant effect on the channel 
[50, 51] or be due to stochastic variation, for example for 
GATA6 variants, which have been reported to cause a wide 
spectrum of disease, from syndromic NDM to isolated adult-
onset diabetes, even within the same family [52].

Variants within the mitochondrial genome add an addi-
tional layer of complexity to penetrance assessment and 
variant interpretation because multiple copies of the mito-
chondrial genome exist in every cell, ranging from hundreds 
to thousands of copies depending on the tissue [53]. This 
means that a mitochondrial variant can be present at variable 
levels, a phenomenon called heteroplasmy. The mitochon-
drial variant most commonly linked to monogenic diabe-
tes is the m.3243A>G variant causing MIDD. The same 
variant, however, is also known to cause the more severe 
phenotype of mitochondrial encephalomyopathy with lac-
tic acidosis and stroke-like episodes (MELAS) [54]. The 
level of heteroplasmy in the m.3243A>G variant has been 
shown to directly influence the phenotype [55]. A recent 
study observed that, in clinically unselected populations, 
mitochondrial variants, including m.3243A>G, are often 
present at low heteroplasmy levels. These variants were 
found to frequently have low penetrance, and penetrance 
and expressivity were highly correlated with the level of 
heteroplasmy [56].

Polygenic contributions to monogenic diabetes 
penetrance and expressivity

Emerging evidence suggests that common polygenic risk 
alleles can modulate the expression and severity of mono-
genic disease [57]. This observation highlights the possibil-
ity of a continuum between strictly monogenic and polygenic 
diabetes, in which both rare, highly penetrant variants and 
more common, lower penetrance variants interact to shape 
the clinical phenotype. Preliminary evidence from studies 
using the UK Biobank and US BioMe biobank have shown 
significant associations between polygenic risk for type 2 
diabetes and phenotype in individuals with rare monogenic 

diabetes variants, supporting a role for polygenic background 
in the penetrance and expressivity of MODY [58, 59].

An interplay between polygenic risk and monogenic 
diabetes has also been reported in monogenic autoimmune 
forms of diabetes, including subtypes presenting as NDM. 
Individuals with diabetes caused by pathogenic variants 
in the AIRE, FOXP3, IL2RA, LRBA, STAT3 and TNFAIP3 
genes were found to have significantly higher type 1 diabetes 
genetic risk scores than healthy population-matched control 
individuals, while still having significantly lower scores than 
individuals with type 1 diabetes [60]. The mechanism by 
which the elevated risk influences development of autoim-
mune diabetes in individuals with these genetic subtypes is 
not yet understood.

Implications of screening unaffected individuals

The variable penetrance of certain monogenic diabetes sub-
types has key implications for the genetic counselling of 
individuals with disease-causing variants and their families. 
Furthermore, it draws into question the appropriateness of 
testing asymptomatic family members, as well as the gen-
eral population (e.g. as part of the newborn screening pro-
gramme being undertaken in the UK [61]), as individuals 
harbouring variable penetrance disease-causing variants may 
not develop the disease. A more complete understanding 
of the penetrance and features of different monogenic dia-
betes subtypes will be vital to reach a consensus on when 
to report disease-causing variants in unaffected individuals. 
This is essential to negate the risk of unnecessary treatments, 
while maximising the potential benefits of treating the dis-
ease before the onset of severe or potentially life-threatening 
complications.

Future directions

Improving equitability in access to genetic testing 
for monogenic diabetes

Despite improvements in the cost and availability of next-
generation sequencing, global access to genetic testing 
remains highly inequitable. Two primary barriers are the 
availability of genetic testing facilities and a lack of aware-
ness of monogenic diabetes among clinical staff in some 
areas. Education will play a key role in addressing these 
issues.

Online training courses in monogenic diabetes, such as 
those offered by the Royal Devon University Healthcare 
NHS Foundation Trust (https://​www.​diabe​tesge​nes.​org/​
train​ing/), have already been highly successful in raising 
awareness [33] and attract attendees from around the world. 

https://www.diabetesgenes.org/training/
https://www.diabetesgenes.org/training/
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However, their reach remains limited by language barriers 
and internet access. Expanding these courses to include in-
person teaching in regions with lower awareness is vital to 
broadening their impact. Previously, the African Genomic 
Medicine Training Initiative [62] has successfully built a 
network of local trainers across Africa and trained thousands 
of doctors, nurses and scientists in genomic medicine. Rep-
licating this model for monogenic diabetes training world-
wide could greatly improve diagnostic equity. In addition to 
enhancing recognition of monogenic diabetes, such courses 
could also clarify options for genetic testing, including low-
cost methods and available funding schemes.

Simplifying DNA sample collection could also signifi-
cantly improve access to genetic testing. At present, DNA is 
primarily extracted from venous blood samples collected by 
primary healthcare workers; a process that can pose a major 
challenge for patients in remote regions, where the nearest 
clinic may be hours or even days away. This is additionally 
complicated by the need for DNA to be extracted within 
7 days from venous blood sample collection. Optimising 
next-generation sequencing methods to use DNA from 
finger-prick capillary blood or saliva (akin to commercial 
direct-to-consumer genetic tests) would alleviate this bar-
rier, as collection kits could be mailed directly to patients 
without requiring a healthcare worker’s attendance. Saliva 
samples have already been shown to produce sufficient DNA 
for genome sequencing in most cases [63] and preliminary 
data on capillary blood shows a similar success rate [64].

One of the greatest barriers to equitable monogenic dia-
betes testing is the limited understanding of its presenta-
tion in non-European populations [65]. This gap is espe-
cially problematic for conditions such as MODY, which are 
challenging to distinguish from type 1 and type 2 diabetes. 
Conducting more research in understudied populations is 
essential to characterise phenotypic differences and refine 
disease classification. This can be achieved through the 
establishment of large biobanks integrating genotypic and 
phenotypic information in non-European populations [66] 
and by publication of case reports of monogenic diabetes in 
these populations. Such insights should then be integrated 
into decision-support tools that are easily accessible by pri-
mary healthcare providers, such as the MODY calculator, 
which simplify the choice of when to pursue genetic testing 
but which currently underperform in individuals of non-
European genetic ancestry [67].

Undiagnosed individuals: gene discovery 
and polygenic phenocopies

Identifying the genetic causes of monogenic diabetes is 
essential to provide a genetic diagnosis and reveals essen-
tial information about the pathways that govern pancreatic 
beta cell development and function. By examining these 

pathways, we can gain insights that impact individuals with 
all forms of diabetes.

Despite comprehensive genetic testing, some individuals 
still lack a genetic diagnosis. At present, approximately 85% 
of individuals referred for NDM testing [68] and 25% of 
individuals referred for MODY genetic testing [36] receive 
a genetic diagnosis. Ongoing research seeks to discover 
additional disease genes and identify cases that represent 
polygenic or environmental phenocopies.

Polygenic type 1 and type 2 diabetes is likely to be the 
underlying diagnosis for some individuals referred for NDM 
and MODY testing. Extreme early-onset type 1 diabetes has 
been proposed as being responsible for approximately 4% of 
NDM cases [69]. The difficulty in distinguishing type 1 and 
type 2 diabetes from MODY means that many referred but 
genetically undiagnosed individuals may instead have poly-
genic diabetes. Calculation of the type 1 diabetes genetic risk 
score has been shown to be effective in discriminating mono-
genic and type 1 diabetes [70]. However, methods to exclude 
type 2 diabetes based on genetic/polygenic risk remain far 
from perfect, with known genetic variation explaining only 
approximately 20% of type 2 diabetes heritability [71].

The ability to sequence the complete exomes and 
genomes of individuals with monogenic diabetes using 
next-generation sequencing has facilitated a paradigm shift 
in gene discovery, moving from a candidate gene-based 
approach to one that is entirely gene agnostic [72]. This 
means that researchers no longer need large family trees or 
prior knowledge of specific genes to pinpoint pathogenic 
variants. This has led to the discovery of at least 16 new 
genetic causes of NDM and MODY, marking a significant 
expansion in our understanding of these diseases (Table 2). 
Further genetic causes are likely to remain unidentified, with 
the main challenge now being the identification of the con-
tribution of variants in the non-coding genome.

Novel monogenic diabetes treatments

In recent years, several new treatments for different forms of 
monogenic diabetes have been proposed. In MODY, gluca-
gon-like peptide-1 receptor agonists (GLP-1 RAs) such as 
dulaglutide and semaglutide have been highlighted as hav-
ing strong therapeutic potential, with successful treatment 
reported in cases of HNF1A-, HNF4A- and ABCC8-MODY 
[73–75]. Early reports have also suggested that GLP-1 RAs 
may be effective for notoriously hard-to-treat syndromic 
forms of monogenic diabetes, such as HNF1B-MODY [76, 
77]. These drugs, which have been shown to improve man-
agement of glucose levels and promote weight loss, are a 
promising new treatment for forms of monogenic diabetes 
in which some beta cell function is retained and are likely 
to continue to be trialled in different forms of monogenic 
diabetes.



2370	 Diabetologia (2025) 68:2362–2373

When monogenic diabetes results from complete beta cell 
loss, transplantation of stem cell-derived islets is a promis-
ing new treatment option. The first successful application 
of this approach was recently reported in an individual with 
type 1 diabetes, with complete control of glucose levels from 
purely endogenous insulin detected at 75 days and no safety 
concerns after 1 year [78]. This exciting result highlights the 
potential of stem cell-derived islet transplantation to restore 
natural control of glucose levels and to revolutionise the 
treatment of subtypes of monogenic diabetes that currently 
can be treated only with exogenous insulin injections.

Final remarks

Monogenic diabetes spans a broad spectrum of disorders 
presenting at various stages of life with diverse clinical fea-
tures and treatment needs. While advances in genetic testing 
have improved our understanding of the genetic basis of the 
disease, challenges remain in distinguishing monogenic dia-
betes from the more common polygenic forms, particularly 
given incomplete penetrance, referral biases and the influ-
ence of polygenic risk alleles on monogenic disease pres-
entation. The increased use of next-generation sequencing 
for genetic testing and the generation of large-scale genome 
data in non-clinical populations will be critical to further 
understand the genetic causes of monogenic diabetes, dis-
cover factors underlying variable penetrance and improve 

variant classification. These efforts are essential to ensure 
more accurate diagnoses, reduce misclassification and opti-
mise care for individuals with these complex and uncommon 
forms of diabetes.
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