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Computer-based assessments provide new insights into cognitive processes related

to task completion that cannot be easily observed using paper-based instruments.

In particular, such new insights may be revealed by time-tamped actions, which

are recorded as computer log-files in the assessments. These actions, nested in

individual level, are logically interconnected. This interdependency can be modeled

straightforwardly in a multi-level framework. This study draws on process data recorded

in one of complex problem-solving tasks (Traffic CP007Q02) in Program for International

Student Assessment (PISA) 2012 and proposes a modified Multilevel Mixture IRT model

(MMixIRT) to explore the problem-solving strategies. It was found that the model can not

only explore whether the latent classes differ in their response strategies at the process

level, but provide ability estimates at both the process level and the student level. The

two level abilities are different across latent classes, and they are related to operational

variables such as the number of resets or clicks. The proposed method may allow for

better exploration of students’ specific strategies for solving a problem, and the strengths

and weaknesses of the strategies. Such findings may be further used to design targeted

instructional interventions.

Keywords: computer-based problem solving, PISA2012, process data, the modified multilevel mixture IRT model,

the process level, the student level

INTRODUCTION

The problem-solving competence is defined as the capacity to engage in cognitive processing
to understand and resolve problem situations where a solution is not immediately obvious. It
includes the willingness to engage in these situations in order to achieve one’s potential as a
constructive and reflective citizen (OECD, 2014; Kurniati and Annizar, 2017). Problem solving can
be conceptualized as a sequential process where the problem solver must understand the problem,
devise a plan, carry out the plan, and monitor the progress in relation to the goal (Garofalo and
Lester, 1985; OECD, 2013). These problem-solving skills are key to success in all pursuits, and
they can be developed in school through curricular subjects. Therefore, it is no surprise that
the problem-solving competency is increasingly becoming the focus of many testing programs
worldwide.

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2018.01372
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2018.01372&domain=pdf&date_stamp=2018-08-03
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lmj182@163.com
https://doi.org/10.3389/fpsyg.2018.01372
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.01372/full
http://loop.frontiersin.org/people/8989/overview
http://loop.frontiersin.org/people/526138/overview
http://loop.frontiersin.org/people/436263/overview


Liu et al. Analysis of Problem-Solving Process Data

Advances in technology have expanded opportunities for
educational measurement. Computer-based assessments, such as
simulation-, scenario-, and game-based assessments, constantly
change item design, item delivery, and data collection (DiCerbo
and Behrens, 2012; Mislevy et al., 2014). These assessments
usually provide an interactive environment in which students
can solve a problem through choosing among a set of available
actions and taking one or more steps to complete a task.
All student actions are automatically recorded in system logs
as coded and time-stamped strings (Kerr et al., 2011). These
strings can be used for instant feedback to students, or for
diagnostic and scoring purposes at a later time (DiCerbo
and Behrens, 2012). And they are called process data. For
example, the problem solving assessment of PISA 2012, which
is computer-based, used simulated real-life problem situations,
such as a malfunctioning electronic device, to analyze students’
reasoning skills, problem-solving ability, and problem-solving
strategies. The computer-based assessment of problem solving
not only ascertains whether students produce correct responses
for their items, but also records a large amount of process
data on answering these items. These data make it possible
to understand students’ strategies to the solution. So far,
to evaluate students’ higher order thinking, more and more
large-scale assessments of problem solving become computer-
based.

Recent research has focused on characterizing and scoring
process data and using them to measure individual student’s
abilities. Characterizing process data can be conducted via a
variety of approaches, including visualization, clustering, and
classification (Romero and Ventura, 2010). DiCerbo et al. (2011)
used diagraphs to visualize and analyze sequential process data
from assessments. Bergner et al. (2014) used cluster analysis to
classify similar behaving groups. Some other researchers used
decision trees, neural networks, and Bayesian belief networks
(BBNs) (Romero et al., 2008; Desmarais and Baker, 2012; Zhu
et al., 2016), to classify the performance of problem solvers
(Zoanetti, 2010) and to predict their success (Romero et al.,
2013). Compared to characterizing process data, the research of
scoring process data is very limited. Hao et al. (2015) introduced
“the editing distance” to score students’ behavior sequences based
on the process data in a scenario-based task of the National
Assessment of Educational Progress (NAEP). Meanwhile, these
process data have been used in psychometric studies. Researchers
analyzed students’ sequential response process data to estimate
their ability by combining Markov model and item response
theory (IRT) (Shu et al., 2017). It is noteworthy that all these
practices have examined process data that describe students’
sequential actions to solve a problem.

All the actions, recorded as process level data, which are
nested in individual level, are logically interconnected. This
interdependency allows a straightforward modeling in a multi-
level framework (Goldstein, 1987; Raudenbush and Bryk, 2002;
Hox, 2010). This framework is similar to those used in
longitudinal studies, yet with some differences. In longitudinal
studies, measurements are typically consistent to show the
development pattern of certain traits. For process data, however,
actions are typically different within each individual. These

successive actions are used to characterizing individuals’ problem
solving strategies.

It is common in computer-based assessments that a nested
data structure exists. To appropriately analyze process data (e.g.,
time series actions) within a nested structure (e.g., process within
individuals), the multi-level IRT model can be modified by
allowing process data to be a function of the latent traits at
both process and individual levels. It is noteworthy that in the
modified model, the concept of “item” in IRT changed to each
action in individuals’ responses, which was scored based on
certain rules.

With respect to the assessment of problem solving
competency, the focus of this study is the ability estimate
at the student level. We were not concerned with individual’s
ability reflected from each action at the process level, since the
task needs to be completed by taking series actions. Even for
individuals with high problem solving ability, the first few actions
may not accurately reflect test takers’ ability. As a result, more
attention was put on the development of ability at the process
level because it can reveal students’ problem solving strategies.
Mixture item response theory (MixIRT) models have been used
in describing important effects in assessment, including the
differential use of response strategies (Mislevy and Verhelst,
1990; Rost, 1990; Bolt et al., 2001). The value of MixIRT models
lies in that they provide a way of detecting different latent groups
which are formed by the dimensionality arising directly from the
process data. These groups are substantively useful because they
reflect how and why students responded the way they did.

In this study, we incorporated the multilevel structure into
a mixture IRT model and used the modified multilevel mixture
IRT (MMixIRT) model to detect and compare the latent groups
in the data that have differential problem solving strategies. The
advantage of this approach is the usage of latent groups. Although
they are not immediately observable, these latent groups, which
are defined by certain shared response patterns, can help explain
process-level performance about how members of one latent
group differ from another. The approach proposed in this study
was used to estimate abilities both at process and student levels,
and classify students into different latent groups according to
their response strategies.

The goal of this study is to illustrate steps involved in applying
the modified MMixIRT model in a computer-based problem
solving assessment then to further present and interpret the
results. Specifically, this article focuses on (a) describing and
demonstrating the modified MMixIRT model using a task of
PISA 2012 problem-solving process data; (b) interpreting the
different action patterns; (c) analyzing the correlation between
characteristics of different strategies and task performance, as
well as some other operational variables such as the number
of resets or clicks. All the following analysis was based on one
sample data set.

MEASUREMENT MATERIAL AND DATASET

Problem Solving Item and Log Data File
This study illustrates the use of the modified MMixIRT model
in analyzing process data through one of the problem-solving
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tasks in PISA 2012 (Traffic CP007Q02). The task is shown
in Figure 1. In this task, students were given a map and the
travel time on each route, and then they were asked to find
the quickest route from Diamond to Einsten, which takes
31min.

The data are from the task’s log file
(CBA_cp007q02_logs12_SPSS.SAV, data source: http://www.
oecd.org/pisa/data/) (an example of log data file is shown in
Appendix 1). The data file contains four variables associated
with the process. The “event” variable refers to the type of
event, which may be either system generated (start item,
end item) or student generated (e.g., ACER_EVENT, Click,
Dblclick). The “time” variable is the event time for this item,
given in seconds since the beginning of the assessment, with
all click and double-click events included. The “event_value”
variable is recorded in two rows, as a click event involves
selecting or de-selecting a route of the map. For example, in
the eleventh row where the state of the entire map is given, 1
in the sequence means that the route was selected, and 0 means
that it was not; the twelfth row records an event involving
highlighting, or un-highlighting. A route of the map represents
the same click event, and it is in the form “hit_segment
name” (The notes on log file data can be downloaded
from http://www.oecd.org/pisa/data/). All the “click” and
“double-click” events represent that a student performs a click
action that is not related to select a route. Table 1 shows the
label, the route and the correct state of the entire selected
routes.

Sample
The study sample was drawn from PISA 2012 released dataset,
consisting of a total of 413 students from 157 American schools
who participated in the traffic problem-solving assessment
(47.2% as females). The average age of students was 15.80 years
(SD= 0.29 years), ranging from 15.33 to 16.33 years.

For the traffic item response, the total effective sample
size under analysis was 406, after excluding seven incomplete
responses. For the log file of the process record, there were 15,897
records in the final data file, and the average record number
for each student was 39 (SD = 33), ranging from 1 to 183. The
average response time was 672.64 s (SD= 518.85 s), ranging from
58.30 to 1995.20 s.

THE MODIFIED MMIXIRT MODEL FOR
PROCESS DATA

Process-Level Data Coding
In this task log file, “ACER_EVENT” is associated with “click.”
However, in this study we only collected the information
of ACER_EVENT and deleted the redundant click data.
Then, we split and rearranged the data by routes, making
each row represent a step in the process of individual
students, and each column represent a route (0 for de-
selecting, and 1 for selecting). Table 2 shows part of the
reorganized data file, indicating how individual student
selected each route in each step. For example, the first line

FIGURE 1 | Traffic.
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TABLE 1 | The routes of the map.

Label Route Included or not in the

correct routes

P1 Diamond-Nowhere 1

P2 Diamond-Silver 0

P3 Emerald-Lincoln 0

P4 Emerald-Unity 0

P5 Lee-Mandela 1

P6 Lincoln-Sato 0

P7 Mandela-Einstein 1

P8 Market-Lee 1

P9 Market-Park 0

P10 Nobel-Lee 0

P11 Nowhere-Einstein 0

P12 Nowhere-Emerald 0

P13 Nowhere-Sakharov 1

P14 Nowhere-Unity 0

P15 Park-Mandela 0

P16 Park-nowhere 0

P17 Sakharov-Market 1

P18 Sakharov-Nobel 0

P19 Sato-nowhere 0

P20 Silver-Market 0

P21 Silver-nowhere 0

P22 Unity-Park 0

P23 Unity-Sato 0

1, Yes; 0, No.

represents that student 00017 selected P2 in his/her first
step.

Process data were first recoded for the analysis purpose.
Twenty-three variables were created to represent a total number
of available routes that can possibly be selected (similar to
23 items). The right way for solving this problem is to select
the following six routes: Diamond–Nowhere–Sakharov–Market–
Lee–Mandela–Einstein (i.e., P1, P5, P7, P8, P13, and P17). For
the correct routes, the scored response was 1 if one was selected,
and 0 otherwise; for the incorrect routes, the scored response
was 0 if one was selected, and 1 otherwise. Each row in the
data file represents an effective step (or action) a student took
during the process. In each step, when a route was selected or
not, the response for this route was recoded accordingly. When
a student finished an item, all the steps during the process were
recorded. Therefore, for the completed data set, the responses of
the 23 variables were obtained and the steps were nested within
students.

The Modified MMixIRT Model Specification
The MMixIRT model has mixtures of latent classes at the process
level or at both process and student levels. It assumes that possible
heterogeneity exists in response patterns at the process level and
therefore are not to be ignored (Mislevy and Verhelst, 1990;
Rost, 1990). Latent classes can capture the interactions among the
responses at the process level (Vermunt, 2003). It is interesting

to note that if no process-level latent classes exist, there are
no student-level latent classes, either. The reason lies in that
student-level units are clustered based on the likelihood of the
processes belonging to one of the latent classes. For this particular
consideration, the main focus in this study is to explore how to
classify the process-level data, and the modified MMixIRT model
only focus on latent classes at the process level.

The MMixIRT model accounts for the heterogeneity by
incorporating categorical or continuous latent variables at
different levels. Because mixture models have categorical latent
variables and item response models have continuous latent
variables, latent variables at each level may be categorical or
continuous. In this study, the modified MMixIRT includes both
categorical (latent class estimates) and continuous latent variables
at the process level and only continuous (ability estimates) latent
variables at the student level.

The modified MMixIRT model for process-level data is
specified as follows:

Process-Level

P
(

yjki = 1
∣

∣θjkg ,Cjk = g
)

=
exp(αig.Wθjkg − βig)

1+ exp(αig.Wθjkg − βig)
(1)

P
(

yjk1 = ω1, yjk2 = ω2, · · · , yjkI = ωI

)

=

∑G

g= 1
γjkg

∏I

i=1
P

(

yjki = 1
∣

∣θjkg ,Cjk = g
)ωi

(1− P
(

yjki = 1
∣

∣θjkg ,Cjk = g
)

)
(1−ωi) (2)

Student-Level

P
(

yki = 1
∣

∣θk
)

=
exp(αi.Bθk − βi)

1+ exp(αi.Bθk − βi)
(3)

For the process level, in Equation (1), i is an index for ith route
(i = 1, . . . , I), k is an index for a student (k = 1,. . . , K), j is
an index for the jth valid step of a student during the response
process (j = 1, . . . , Jk),(J is the total steps of the kth student)
and g indexes the latent classes (Cjk = 1, . . . , g. . .G, where G is
the number of latent classes), Cjk is a categorical latent variable
at the process level for the jth valid step of student k, which
captures the heterogeneity of the selections of routes in each step.
P

(

yjki = 1
∣

∣θjkg ,Cjk = g
)

is the probability of selecting an route
i in the jth step of student k, which is predicted by the two-
parameter logistic (2PL) model, and αig.W is the discrimination
parameter of process-level in class g, W means within-level,
βig is the location parameter in class g, and θjkg is the latent
ability of examinee k for a specific step j during the process of
selecting the route, which is called the process ability in this study
(θjkg ∼N(µjkg , σ

2
jkg)). The process abilities across different latent

classes are constrained to follow a normal distribution (θjk ∼N(0,

1)). In Equation (2), P
(

yjk1 = ω1, yjk2 = ω2, · · · , yjkI = ωI

)

is

the joint probability of the actions in the jth step of student k.
ωi denotes either selected or not selected for ith route. For the
correct routes, 1 represents that the route was selected, and 0

Frontiers in Psychology | www.frontiersin.org 4 August 2018 | Volume 9 | Article 1372

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Liu et al. Analysis of Problem-Solving Process Data

otherwise; for the incorrect routes, 0 represents that the route was
selected, and 1 otherwise. γjkg is the proportion of the jth step in

each latent class and
∑G

g=1 γjkg = 1. As can be seen from the

Equation (2), the probability of the actions (yjki) are assumed to
be independent from each other given classmembership, which is
known as the local independence assumption formixturemodels.

For the student level, in Equation (3), αi.B is the item
discrimination parameter where B represents between-level. βi

is the item location parameter which is correlated with the
responses of the final step of the item. θk is the ability estimate at
the student level based on the final step of the process, which also
represents the problem-solving ability of student k in this study
(θk ∼N(0, 1)).

Figure 2 demonstrates a modified two-level mixture item
response model with within-level latent classes. The squares in
the figure represent item responses, the ellipses represent latent
variables, and 1 inside the triangle represents a vector of 1 s.
As is shown in the figure, the response for each route of the

jth step [yjk1,..., yjki,..., yjkI] is explained by both categorical
and continuous latent variables (Cjk and θjkg , respectively)
at the process level; and the final response of students for
each route [yk1,..., yki,..., ykI] is explained by a continuous
latent variable (θk) at the student level. The arrows from the

continuous latent variables to the item (route) represent item

(route) discrimination parameters (αig,W at the process level and

αi,B at the student level), and the arrows from the triangle to the
item responses represent item location parameters at both levels.

The dotted arrows from the categorical latent variable to the other
arrows indicate that all item parameters are class-specific.

It should be noted that the MMixIRT model is different
from the traditional two-level mixture item response model
in the definition of the latent variables at the between-level.
In the standard MMixIRT model, the between-level latent
variables are generally obtained from the measurement results
made by within-level response variables [yjk1,..., yjki,..., yjkI] on
between-level latent variables (Lee et al., 2017). In this study,

TABLE 2 | Example of the reorganized data file.

StIDStd Time Event_number Event_value P1 P2 P3 P4 P5 P6 P7 P8 … P21 P22 P23

00017 837.6000 2.00 ’01000000000000000000000 0 1 0 0 0 0 0 0 … 0 0 0

00017 839.8000 4.00 ’11000000000000000000000 1 1 0 0 0 0 0 0 … 0 0 0

00017 841.1000 7.00 ’11000000000010000000000 1 1 0 0 0 0 0 0 … 0 0 0

00017 841.7000 9.00 ’11000000000010000100000 1 1 0 0 0 0 0 0 … 0 0 0

00017 842.7000 11.00 ’11000000010010000100000 1 1 0 0 0 0 0 0 … 0 0 0

00017 844.8000 13.00 ’11000000010010000101000 1 1 0 0 0 0 0 0 … 0 0 0

00017 846.4000 15.00 ’11000000010000000101000 1 1 0 0 0 0 0 0 … 0 0 0

00017 847.4000 17.00 ’01000000010000000101000 0 1 0 0 0 0 0 0 … 0 0 0

00017 848.4000 19.00 ’01000000010000000001000 0 1 0 0 0 0 0 0 … 0 0 0

00017 850.6000 21.00 ’01000000000000000001000 0 1 0 0 0 0 0 0 … 0 0 0

00017 851.6000 23.00 ’01000000010000000001000 0 1 0 0 0 0 0 0 … 0 0 0

00017 852.5000 25.00 ’01000000000000000001000 0 1 0 0 0 0 0 0 … 0 0 0

00017 853.4000 27.00 ’01000000100000000001000 0 1 0 0 0 0 0 0 … 0 0 0

00017 853.7000 29.00 ’01000000100000010001000 0 1 0 0 0 0 0 0 … 0 0 0

FIGURE 2 | The modified MMixIRT model for process data.
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the process-level data mainly reflect the strategies for problem
solving, while the responses at the last step represent students’
final answers on this task. Therefore, students’ final responses are
used to estimate their problem-solving abilities (latent variable at
the between-level, i.e., ability of the student level) in the modified
MMixIRT model.

Mplus Software (Muthén and Muthén, 1998-2015) was used
to estimate the parameters of the modified MMixIRT model, as
specified above. In addition, the detailed syntax are presented in
Appendix 5.

RESULTS

Results of Descriptive Statistics
Table 3 shows the proportion of each route selected by the
students in the correct group and in the wrong group,
respectively. The correct group consists of students who selected
the right routes, and the wrong group refers to students who
failed to do so. There are a total of 476 students, with 377 in
the correct group and 99 in the wrong group. The results show
that most of the students in the correct group selected the right
routes, while a large number of students in the wrong group
selected the wrong routes. To further explore the differences of
the proportion of students selecting the wrong routes in the two
groups, χ2-tests were conducted. No significant differences were
found between the correct group and the wrong group in terms
of the proportion of students who clicked four wrong routes,
including P4 [χ2

(1) = 0.370, P > 0.05], P9 [χ2
(1) = 3.199, P >

0.05], P10 [χ2
(1) = 3.636, P > 0.05], and P15 [χ2

(1) = 2.282, P
> 0.05]. This further suggests that it was difficult for the correct
group to avoid these routes during their response process, and
even quite a number of students in the correct group experienced
trial and error before eventually solving the problem.

Results of the Modified MMixIRT Model
Model Selection

The determination of the number of latent classes has been
discussed in many studies (Tofighi and Enders, 2008; Li
et al., 2009; Peugh and Fan, 2012). Several statistics of the
mixture IRT models are often computed to compare relative
fits of these models. Akaike’s (1974) information criterion (AIC)
incorporates a kind of penalty function for over-parameterization
on model complexity. A criticism of AIC has been that it is not
asymptotically consistent because the sample size is not directly
involved in its calculation (Janssen and De Boeck, 1999; Forster,
2004). Schwarz (1978) proposed BIC as another information-
based index, which attains asymptotic consistency by penalizing
over-parameterization by using a logarithmic function of the
sample size. For the sample size in BIC, the number of persons
is used in multilevel model (Hamaker Ellen et al., 2011) and in
multilevel item response model (Cohen and Cho, 2016). Most
studies suggested the BIC value as the best choice because it was a
sample-based index that also penalized the sophisticated model.
However, Tofighi and Enders (2008) indicated in their simulation
study that a sample size-adjusted BIC (aBIC) was an even better
index. Smaller AIC, BIC, and aBIC values indicate a better model
fit for mixture IRT models. Besides, entropy value has been used

TABLE 3 | The proportion of route selection.

Route Selected proportion

Wrong group Correct group

P1 40.023 69.504

P2 38.158 19.872

P3 3.290 1.688

P4 0.635 0.815

P5 16.055 25.148

P6 2.481 1.287

P7 15.699 22.260

P8 4.340 21.953

P9 25.379 23.435

P10 12.586 12.007

P11 16.559 10.819

P12 4.304 2.601

P13 36.846 64.109

P14 8.404 3.622

P15 5.182 6.886

P16 19.122 12.771

P17 16.653 43.530

P18 17.629 13.157

P19 4.884 1.923

P20 17.579 10.732

P21 15.369 7.211

P22 5.531 1.759

P23 4.296 1.377

The right routes are printed in bold.

to measure how well a mixture model separates the classes; an
entropy value close to 1 indicates good classification certainty
(Asparouhov and Muthén, 2014).

Themodel selection results for themodifiedMMixIRTmodels
are given in Table 4. The model fit indicates that LL, AIC, BIC,
and aBIC decreased consistently as the class number increased
to eight classes, and the nine-class model did not converge. As
noted above, the best fit for AIC, BIC, and aBIC was determined
or dictated by the smallest value in the ordered set of models from
the least to the most complex. As suggested by Rosato and Baer
(2012), selecting a robust latent class model is a balance between
the statistical result of the model fit and the substantive meaning
of the model. The model that fits best and yields meaningful
classes should be retained. In this study the proportions of latent
classes were examined to ensure the empirical significance, and
the interpretability of each class was considered accordingly.
For the 6-class model, the proportion of each class was 18.1,
30.7, 18.1, 20.1, 7.2, and 5.9%. And for the 7-class model,
the proportion was 19.9, 13.4, 6.0, 12.3, 13.5, 27.4, and 7.5%.
Compared to the 6-class model, in the 7-class model, the extra
class of the steps was similar to class 2 of the 6-class model, while
mixing class 4 at the same time. This makes the 7-class model
hard to interpret. For the 8-class model, the proportion of one
of the classes was too small (only 2.7%). Taking into account
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both the model fit index and the interpretability of each class, the
6-class model was retained in this study.

Description of Class Characteristics

The most likely latent class membership are displayed in Table 5.
In this matrix, steps from each class have an average probability
of being in each class. Large probabilities are expected on the
diagonal. The numbers on diagonal are greater than 0.9. It can
be concluded from the results that the modified MMixIRT model
can classify students properly based on process data.

Figure 3 presents the characteristics of route selection for
each class based on the 6-class mixture IRT model, with À, Á,
Â.... indicating the order of the routes. Based on the results
of the modified MMixIRT model, the number of clicks of the
23 routes (P1–P23) in each class is listed in Appendix 2. The
characteristics of route selection can be obtained pursuant to
routes that get more clicks than others in each class, as well
as the relations among routes shown in Figure 1. For example,
P17, P13, P1, P8, P5, P16, and P7 in Class 1 were clicked more
than other routes; however, Figure 1 shows that there is no
obvious relationship between P16 and other routes. Therefore,
the characteristic of Class 1 was defined as P1-P13-P17-P8-P5-
P7 and P16 was removed. These routes were sequenced by the
number of clicks they got, with the most clicked routes taking
the lead. As indicated in Figure 3, different latent classes have
typical characteristics depending on the similarity of the correct
answers. For example, the route selection strategy of Class 1 best
approximated the ideal route required by the item. Based on
their last click, almost all the students in Class 1 gave the correct
answer. Therefore, Class 1 could be regarded as the correct
answer class, while the rest classes took different wrong routes.

The numbers in circles (À, Á, Â....) indicate the order of the
routes.

As is illustrated in Table 6, different classes demonstrated
different means of process-level ability. It is obvious that the
mean process ability in Class 1 is the highest (0.493), followed
by Class 6, Class 2, Class 4, yet Class 5 and Class 3 with the
lowest process-level ability. A closer check of these classes in
Figure 3 indicates that the selected routes of Class 5 and Class
3 were incredibly far away from the correct one, and they
took far more than 31min. Therefore, it is no surprise that
the mean process-level ability estimates of these two classes

were the lowest and were both negative (−1.438 and −0.935,
respectively). In addition, as can be seen in the number of
students, almost all the students in Class 1 provided the right
answer, demonstrating that different latent classes had different
probabilities of the correct answer. In summary, the process-
level ability is different across latent classes, which is related
to different strategies of students’ route selection or cognitive
process.

The Sequence of Latent Classes at the Process Level

Based on the results of the modified MMixIRT model, the
characteristics of the strategy shifts between step-specific classes
were explored and summarized. To capture the characteristics
of students’ strategy shifts during the response, it is necessary
to identify the typical route selection strategy of each class in
the first place. In this study, if a student applied the strategy
of a certain class three or more times consecutively, it was
considered that the student had employed the strategy of this
class at the process level. Three times was chosen as the rule
of thumb because it demonstrated enough stability to classify
a solution behavior. Then the strategy shifts of each student
during their clicking procedure could be obtained in orders.
The typical route selection strategy of different classes and the
class shifts of students in the correct group are presented in
Appendixes 3, 4, respectively. The results inAppendix 4 provide
useful and specific information about the strategy shifts used
by students over time. For example, in the correct group, 58
students shifted from one class to another, including 22 from
Class 2 to Class 1, 3 from Class 3 to Class 1, 30 from Class

TABLE 5 | Most likely latent class membership of each class.

Most likely latent class membership

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

Class 1 0.945 0.000 0.006 0.033 0.004 0.012

Class 2 0.001 0.936 0.002 0.033 0.013 0.015

Class 3 0.002 0.020 0.949 0.011 0.017 0.001

Class 4 0.029 0.004 0.007 0.949 0.002 0.010

Class 5 0.002 0.007 0.018 0.002 0.969 0.002

Class 6 0.016 0.014 0.001 0.025 0.002 0.942

TABLE 4 | Model comparison and selection.

No

of

class

No of Free

parameters

LL Value Akaike

(AIC)

Bayesian

(BIC)

Sample-Size

Adjusted BIC

Entropy

1 46 −112745.581 225583.161 225936.108 225789.923

2 95 −99334.232 198858.463 199587.375 199285.472 0.957

3 144 −92723.338 185734.676 186839.552 186381.931 0.860

4 193 −89375.035 179134.070 180607.239 179997.077 0.920

5 242 −87186.912 174857.823 176714.629 175945.571 0.936

6 291 −85974.117 172530.234 174763.005 173838.228 0.908

7 340 −84864.882 170409.764 173018.500 171938.004 0.904

8 389 −83821.533 168421.066 171405.766 170169.552 0.893
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FIGURE 3 | Route selection strategy by class.

4 to Class 0, and 3 from Class 6 to Class 1. It is noteworthy
that when students did not apply any strategies for more than
three times consecutively, it was regarded as class 0 in this
study.

The Relationship of the Two Level Ability
Estimates and Operational Variables
To validate whether students with different patterns of actions
will have different process-level ability, the descriptive statistics
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TABLE 6 | Means and standard deviations of process level abilities.

Latent class size

for process-level

No of Students Process-level ability

Count Proportion Right Wrong Mean SD

Class 1 2875 18.1 307 3 0.493 0.678

Class 2 4867 30.7 0 41 0.323 0.903

Class 3 2867 18.1 0 14 −0.935 0.386

Class 4 3192 20.1 0 26 0.292 0.556

Class 5 1138 7.2 0 12 −1.438 0.404

Class 6 940 5.9 0 3 0.424 0.698

Total 15879 100 307 99 0.000 0.934

In the column of no of Students, the last step of the process within each student is

classified into one of the six latent classes. Then, the numbers of students who gave

the correct or wrong answer are summarized based on the latent classes.

were conducted of operational variables such as the number
of route clicks and resets and their correlation with the mean
ability estimate of process-level ability (See Table 7 for details).
To further explore the differences of click actions between
the correct group and the wrong group, several T-tests were
conducted. The results indicate that students in the correct
group did significantly fewer resets than their counterparts in
the wrong group [t(404) = 2.310, P < 0.05]. No significant
differences were detected of the number of routes clicked or the
response time between the correct group and the wrong group
[t(404) = 1.656, P= 0.099; t(404) =−0.199, P= 0.843]. The results
in Table 7 suggest two things. Firstly, positive correlation existed
between the estimate of student-level ability and that of process-
level ability. This means that the process-level ability estimate
provides consistency and auxiliary diagnostic information about
the process. The students with higher process-level ability had
higher ability estimates of student level. Secondly, for the process-
level ability, a significant negative correlation existed between the
mean process-level ability estimate and variables such as the valid
number of route clicks and the number of resets for students in
the correct group. It is concluded that in the correct group, the
less frequently a student clicks the routes and resets the whole
process, the higher process-level ability he or she is likely to
obtain. For students in the wrong group, however, no significant
correlations were observed between the mean ability estimate
and the variables discussed above. Instead, a significant negative
correlation was found between the mean process-level ability
estimate and the absolute time of difference from 31min. For
these students, their process-level ability decreased as the time
cost by the wrong routes increased. Third, the mean process-level
ability estimate for the correct group was 0.310, in contrast to
−0.175 for the wrong group, which reveals a significant difference
between the two groups [t(404) = 8.959, P < 0.001]. In terms
of student-level ability, the estimate for the correct group was
significantly higher than for the wrong group [t(404) = 112.83,
P < 0.001].

The result in Table 8 indicates that the sequence of latent
classes are consistent with the ability estimates at both process
and student levels. For students in the correct group, the mean
process-level ability estimate decreased as the number of class

shifts, clicks and resets increased. Students with higher process-
level ability tended to select the correct route immediately or after
a few attempts. Consequently, these students clicked and reset
for fewer times because they had a clearer answer in mind and
therefore were more certain about it. In contrast, for students in
the wrong group, the mean ability estimates at both process and
student levels were rather small when the number of class shifts
were 0 and 1. When the number of class shifts was 0, students
failed to stick with a specific strategy to solve the problem during
the process. It took them a longer response time with about two
resets on average; as a result, the time cost for their route selection
was nearly twice the target time. When the number of class shifts
was 1, these students simply stuck to a totally wrong route for
the entire time, with shorter response time and fewer numbers
of clicks. However, unlike the correct group, the number of class
shifts in the wrong group showed a non-linear relationship with
the mean ability at both process and student levels. At first,
when the number of class shifts increased from 0 to 4, the ability
estimates at both levels increased as well. The explanation was
that because these students figured out the right routes, they
should have higher abilities than the 0 shift group that sticks to
the wrong route all the time. For example, students with four
shifts all ended up using strategy of Class 1, which was the right
strategy class (Appendix 4). Therefore, they were supposed to
have the highest process ability in the wrong group. However,
when the number of class shifts increased from 5 to 6, the process-
level ability estimate dropped. This has much to do with the fact
that too many shifts reflected little consideration and a lack of
deep cognitive processing.

DISCUSSION

A modified MMixIRT model was described for modeling
response data at process and student levels. The model developed
in this study combined the features of an IRTmodel, a latent class
model, and a multilevel model. The process-level data provide
an opportunity to determine whether latent classes or class shifts
differ in their response strategies to solve the problem. The
student-level data can be used to account for the differences
of students’ problem solving abilities. The ability estimate at
both process and student levels are different across latent classes.
The modified MMixIRT model makes it possible to describe
differential strategies based on process-level and student-level
characteristics. If a student’s specific strategies and their strengths
and weaknesses can be described in the process of solving
a problem, then the assessment of a student’s proficiency in
problem solving can guide instructional interventions in target
areas.

As process data from various computer-based assessment or
educational learning system have become common, there is an
urgent call for analyzing such data in an accurate way. The
psychometrical model-based approach has a great potential in
this aspect. Latent classes and the characteristics of latent class
shifts obtained from process data can reveal students’ reasoning
skills in problem-solving. The findings of characteristics of
process-level latent classes make it easy to uncover meaningful
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TABLE 7 | Correlation between ability estimates and operational variables in process.

Item response

result

Click action variable Mean ability of process level Ability of student level Mean SD

Correct

(N = 307)

No of Route Clicks −0.657** / 79.760 63.874

No of Resets −0.467** / 0.919 1.737

Absolute Time of Difference from 31 / / 0.000 0.000

Response Time 0.048 / 675.540 525.710

Mean Ability of Process Level / / 0.310 0.447

Ability of Student Level / / 1.371 0.000

Wrong

(N = 99)

No of Route Clicks −0.050 0.142 93.030 84.138

No of Resets −0.124 0.098 1.394 1.910

Absolute Time of Difference from 31 −0.248* −0.179 5.210 10.869

Response Time −0.087 0.022 663.620 499.466

Mean Ability of Process Level / 0.597** −0.175 0.530

Ability of Student Level 0.597** / −0.432 0.281

Total

(N = 406)

No of Route Clicks −0.439** −0.066 83.000 69.484

No of Resets −0.378** −0.103* 1.035 1.790

Absolute Value of Difference from 31 −0.269** −0.407*** 1.300 5.802

Response Time 0.015 0.012 672.640 518.849

Mean Ability of Process Level / 0.454*** 0.192 0.512

Ability of Student Level 0.454** / 0.931 0.787

Correct Responses 0.407** 0.985*** 0.756 0.430

“31” indicated in “absolute value of difference from 31” in Column 8 refers to the time taken in walking the right route for the item CP007Q02. *p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 8 | Ability estimates and the operational variables in the different numbers of class shifts in the correct group and wrong group.

Correct or wrong

answer group

No of

class

shifts

No of

students

Process-

level ability

(Mean)

Student-

level ability

(Mean)

Response time

(Mean)

Valid No of

click

(Mean)

Absolute value of

difference from 31

(Mean)

No of

Reset

(Mean)

Correct group

(N = 307)

1 32 0.650 1.371 714.941 19.375 0 0.156

2 58 0.692 1.371 609.116 31.655 0 0.121

3 69 0.468 1.371 814.619 60.667 0 0.275

4 73 0.196 1.371 601.215 93.795 0 1.192

5 63 −0.141 1.371 649.711 134.143 0 1.937

6 12 –0.279 1.371 679.617 212.25 0 3.5

Wrong group

(N = 99)

0 11 −0.453 −0.548 991.7 36.909 29.182 2.091

1 15 −0.439 −0.552 377.713 22.867 1.067 1.067

2 12 0.139 −0.312 470.392 37.75 1.417 0.5

3 12 0.466 −0.275 552.042 71.917 0.917 0.667

4 20 −0.151 −0.438 784.455 94.4 1.250 0.85

5 24 −0.343 −0.492 690.038 170.292 5.042 2.292

6 5 −0.348 −0.162 921.02 234 1.000 2.6

and interesting action patterns from the process data, and to
compare patterns from different students. These findings provide
valuable information to psychometricians and test developers,
help them better understand what distinguishes successful
students from unsuccessful ones, and eventually lead to better
test design. In addition, as shown in this study, some operational
variables such as the number of resets and the number of clicks
or double clicks are related to the ability estimates at both process

and student levels and therefore can predict student scores on
problem solving assessment. Since students’ different abilities
capture individual patterns in process data, it can be used to
score or validate the rubrics. Williamson et al. (2006) explain
that a “key to leveraging the expanded capability to collect and
record data from complex assessment tasks is implementing
automated scoring algorithms to interpret data of the quantity
and complexity that can now be collected” (p. 2).
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The extension of the modified MMixIRT approach proposed
in this study can be implemented in several ways. Firstly, it can be
simplified in removing the process-level ability parameters, and
also be extended to include student-level latent classes instead of
abilities. Secondly, one of the advantages of this proposed model
is that item parameters can be constrained to be equal across the
process-level and student-level. So the abilities of both levels are
on the same scale and can be compared and evaluated. Lastly, the
main benefits of multilevel IRT modeling lie in the possibility of
estimating the latent traits (e.g., problem solving) at each level.
More measurement errors can be accounted for by considering
other relevant predictors such as motivations (Fox and Glas,
2003).

The psychometrical model-based approach also has its
limitations. First, even though latent class shifts preserve the
sequential information in action series, they do not capture
all the related information. For instance, for the purpose of
convenient analysis in this study, some unstable characteristics
of a latent class such as random shifts were not used in our
definition of class characteristics and class shifts. Fortunately, in
many cases, as in this study, this missing information does not
affect the results. If it becomes an issue in some cases, it can
be addressed by considering more details about the latent class
shifts to minimize the ambiguity. Second, this study only takes
a single route as an analysis unit, yet failing to consider possible

route combinations. For example, in some cases two routes are
available, it makes full sense to combine these two routes into
one to conduct analysis, because the link between these routes
is exclusive. In the future, we may consider the transition model
for different route combinations, such as Bi-Road. In terms of

the generalizability of the modified MMixIRT model for solving
complicated problems, if the process data for another single task
can be recoded or restructured as the data file in this study,
similar models can be applied to explore the latent classes and
characteristics of the problem solving process. However, the
difficulty during the analysis lies in how to recode the responses
into dichotomous data. For multiple tasks, a three-level model
can be applied, with the first level as the process level, the second
as the task level and the third as the student level. If there are
plenty of tasks, the ability estimates of the student will stay
stable. Therefore, while the generalizability of the model may be
conditional, the main logic of the MMixIRT approach can be
generalized.
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