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Abstract

It is widely anticipated that a prophylactic vaccine may be needed to control the HIV/AIDS
epidemic worldwide. Despite over two decades of research, a vaccine against HIV-1
remains elusive, although a recent clinical trial has shown promising results. Recent studies
have focused on highly conserved domains within HIV-1 such as the membrane proximal
external region (MPER) of the envelope glycoprotein, gp41. MPER has been shown to play
critical roles in mucosal transmission of HIV-1, though this peptide is poorly immunogenic
on its own. Here we provide evidence that plant-produced HIV-1 enveloped virus-like parti-
cles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the MPER,
transmembrane, and cytoplasmic domains (Dgp41) provides an effective platform to display
MPER for use as an HIV vaccine candidate. Prime-boost strategies combining systemic
and mucosal priming with systemic boosting using two different vaccine candidates (VLPs
and CTB-MPR—a fusion of MPER and the B-subunit of cholera toxin) were investigated in
BALB/c mice. Serum antibody responses against both the Gag and gp41 antigens were
elicited when systemically primed with VLPs. These responses could be recalled following
systemic boosting with VLPs. In addition, mucosal priming with VLPs allowed for a boosting
response against Gag and gp41 when boosted with either candidate. Importantly, the VLPs
also induced Gag-specific CD4 and CD8 T-cell responses. This report on the immunogenic-
ity of plant-based Gag/Dgp41 VLPs may represent an important milestone on the road
towards a broadly efficacious and inexpensive subunit vaccine against HIV-1.
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Introduction

The HIV-1 transmembrane subunit of the envelope protein (Env), gp41, contains the highly
conserved membrane proximal external region, located just outside the lipid viral envelope
(MPER, amino acids 661-683, [1]). The gp41 domain that encompasses the MPER and extends
toward the C-terminal heptad repeat (residues 649-684, sometimes denoted as “MPR” but for
simplicity we will refer to both as MPER, [2]) functions as a galactosyl-ceramide-binding lectin
and is critical for mediating viral transcytosis across mucosal membranes [3] and other muco-
sal transmission routes [4, 5]. Both mucosal and systemic antibodies (Abs) raised against
immunogens containing the MPER can block the transcytosis of HIV across the epithelial bar-
rier [6, 7], similar to naturally occurring polyclonal mucosal IgAs found in the mucosal secre-
tions of some highly exposed persistently seronegative (HEPS) individuals [8-11]. Revealingly,
broadly neutralizing human monoclonal Abs (mAbs) such as 2F5, 4E10 and 10E8 also target
this region [12-15]. The MPER, therefore, provides an important target for vaccine design, in
addition to the widely-explored but highly-mutable surface subunit of Env (gp120, [16-19],
reviewed in [20-22]).

The proximity of the MPER to the viral envelope is increasingly recognized as a major factor
in the antigenicity and immunogenicity of the domain [23-25], suggesting that the presenta-
tion of the MPER in the context of a membrane, e.g. in virus-like particles (VLPs) may be of
value. This notion and the recent success of prophylactic VLP-based vaccines such as those
aimed at human papillomaviruses [26] provide the motivation for VLP-based vaccines against
HIV-1. Gag, a polyprotein that gives rise to the main structural proteins of HIV-1, is both nec-
essary and sufficient for the formation of enveloped VLPs [27, 28]. Gag contains the highest
density of cytotoxic T-lymphocyte (CTL) epitopes of any HIV protein [29] and Gag-based
VLPs are capable of inducing strong CTL responses without adjuvant [30]. CD8 T cell
responses to Gag have been correlated with control of viral replication in infected individuals
[31]. In addition, Gag VLPs can display HIV Env proteins on their surface in their native con-
formation [32], and these VLPs have been shown to induce both Env- and Gag-specific Abs
and CTLs [33], making Gag VLPs attractive candidates as an HIV vaccine platform [34].

Plant-based production systems for biologics and vaccines lately reached several critical
milestones gaining FDA approval for large-scale clinical trials and commercialization [35-39].
We previously reported that Gag VLPs displaying a deconstructed form of gp41 (Dgp41, com-
prising MPER, transmembrane, and cytoplasmic domains) could be produced in Nicotiana
benthamiana plants (Fig 1) [40]. Here we report on immunization studies employing plant-
based HIV-1 Gag/Dgp41 VLPs and demonstrate their immunogenicity.

Materials and Methods
Immunogens’ preparation

Highly-enriched plant-based VLPs were prepared by transiently expressing Dgp41 in Gag-
expressing transgenic N. benthamiana plants and transiently expressing Dgp41 as previously
described (see Fig 1 for expression and purification strategy) [40]. Quantitative immunoblots
were use to quantify Gag and Dgp41 as previously described [40].

CTB-MPR is a fusion protein consisting of the HIV-1"s MPER fused to the carboxy-termi-
nus of cholera toxin B-subunit (CTB, [41]). Expression of CTB-MPR in Escherichia coli and its
purification previously described [41]. CTB-MPR preparation quality and yield were deter-
mined by Coomassie stained gels, quantitative immunoblots (using a pure standard), and the
absorbance at 280 nm using € = 2.1 mM ™' ¢cm™" [41]. Total protein was determined as previ-
ously described [42].
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Fig 1. Plant-based strategy for the production of Gag-dgp41 VLPs. Plant-expression optimized synthetic gene encoding Gag was cloned into a T-DNA
expression cassette of a binary vector (A). Agrobacterium tumefaciens cells harboring the plasmid were used in the stable transformation of leaf explants
from Nicotiana benthamiana (B). Following co-cultivation (C) and selection on kanamycin, the transformed callus tissue was regenerated to obtain several
lines of transgenic N. benthamiana plants (D) and the best expressing line was selected for further use (E). Plant-expression optimized synthetic gene for the
expression of the MPER-transmembrane and cytoplasmic domain of gp41 (dgp41) was cloned into the tobacco mosaic virus-based MagnlCON vector
system that recombine in vivo to yield a replicon that spreads from cell to cell (F). Gag-expressing plants were infiltrated with agrobacteria that harbor the
MagnICON vectors (G) and on peak accumulation day of the transiently-expressed dgp41, plant leaf material was harvested and homogenized (H). VLPs
were highly enriched by several purification steps (I). Stable expression cassette: LB, left T-DNA border; A«—nptlll<nos, selectable marker consisting of the
nos promoter, the nptlll kanamycin resistance gene and the Agrobacterium gene 7 poly-A signal; 35S—T, cauliflower mosaic virus 35S promoter followed by
the tobacco etch virus 5’ untranslated region, V, polyadenylation signal of soybean vegetative storage protein gene; RB, right T-DNA border. Transient
expression replicon: RpRd, RNA-dependent RNA polymerase; MP, movement protein gene; a, barley alpha-amylase signal peptide. Wavy lines represent
the translation products of the recombinant genes.

doi:10.1371/journal.pone.0151842.g001

Animal Care and Use

This study was reviewed and approved by the Arizona State University Institutional Animal
Care and Use Committee (IACUC) under protocol number 11-1174R.

Housing and husbandry. All animals were housed in accordance with the American
Association for Laboratory Animal Care (AALAC) standards. The animals are housed in Tho-
ren ventilated racks that are HEPA filtered on both the supply and exhaust air on Irradiated
Sani-Chip 7990. Environmental enrichment includes social housing and nestlets to encourage
nesting activities. Animals are provided unlimited access to food and water. They are handled
in accordance with the Animal Welfare Act and Institutional Animal Care and Use Committee
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(IACUC) regulations. Experiments involving animals were conducted in a facility fully accred-
ited by the Association for Assessment and Accreditation of Laboratory Animal Care Interna-
tional (Unit #000765) and an assurance is on file with the Office for Laboratory Animal
Welfare (#A3217-01). Experiments were planned and conducted utilizing the three R's (reduce,
replace and refine), which included environmental enrichment, veterinary oversight, numbers
reflecting statistical significance and the use of appropriate analgesics and anesthesia when
appropriate.

Animal Monitoring. All animals are observed daily by trained DACT personnel for signs
of illness or abnormal behavior by 10 AM. Training is provided by the Department of Animal
Care and Technologies (DACT) veterinarians, experienced DACT personnel (i.e., Lead Tech-
nologists, Supervisors). Personnel performing the daily observations report sick or injured ani-
mals to the DACT vet team. During regular work hours, personnel can contact the veterinary
team in person, by phone, or via email using a veterinary team distribution list. Outside of
working hours, a veterinary team member carries a dedicated on-call cell phone. A call list with
contact numbers for supervisory and veterinary personnel is posted in each animal facility.

The mice are monitored for activity level that may be indicative of illness such as hypoactiv-
ity (abnormally low}, hyperactivity (abnormally high), lethargy, restlessness. They are moni-
tored for behavioral signs such as vocalization, self-trauma, aggressiveness, isolation from cage
mates, or ataxia. They are monitored for changes to their appearance such as unkempt or
greasy fur, porphyrin staining around eyes and nostrils, hunched posture, pale mucous mem-
branes, pale paws, soiled anogenital area, labored breathing, weight loss, dehydration or diar-
rhea. Animals that show obvious signs of illness are either removed from the study and treated
if it is relevant, or euthanized immediately, based upon the recommendation of the veterinary
team.

Euthanasia. Mice used in this study were euthanized by CO2 asphyxiation, which is con-
sistent with the most recent recommendations of the American Veterinary Medical Associa-
tion [43]. Cervical dislocation or secondary thoracotomy was used as a subsequent secondary
measure. No animals died during the experiments. One mouse belonging to the control group
(see below) was found to be in lateral recumbency and experiencing labored breathing. Since
this was the day before the final bleeding, the mouse was euthanized immediately. Gross nec-
ropsy was performed and revealed slightly enlarged kidneys, gas in the gastrointestinal tract
(indicative of not eating), and dehydration. This was not deemed as a result of the study as the
mouse was in our control group. This was one day before scheduled termination so there was
no significant impact on our study.

Systemic immunization

The immunization samples was prepared by diluting the concentrated protein preparations
into PBS supplemented with Ribi Adjuvant (Sigma-Aldrich, final concentration of 2% oil as
per manufacturer’s instructions). Female BALB/c mice (6-wk old, Charles River) were immu-
nized intraperitoneally (i.p.) with 200 pL of the immunization sample containing either
CTB-MPR (3.5 pg = 1.2 uyg MPER = 0.2 nmol MPER), VLP preparation (111 pg total protein
containing 4.8 pg dgp41 and 4.8 ug Gag, equivalent to 0.2 nmol and 0.1 nmol, respectively), or
a negative control sample (100 ug total protein, mock-purified in the same manner as the VLP
proteins). Four experimental groups (n = 8) were given either VLP or CTB-MPR during each
of three priming immunizations, and were then given either VLP or CTB-MPR during each of
two boosting immunizations (Fig 2A). A fifth group was immunized with the negative control
sample under the same regimen. Retro-orbital vein blood samples were taken as indicated.
Serum was prepared following clotting and centrifugation and kept at —-80°C until further use.
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Fig 2. (A) Immunization scheme for systemic immunization. Mice were given three priming
immunizations on Weeks 0, 2, and 4, and two boosting immunizations on Weeks 8 and 10 (black arrows).
Mice in Group 1 were primed and boosted with CTB-MPR; mice in Group 2 were primed with CTB-MPR and
boosted with VLPs; mice in Group 3 were primed with VLPs and boosted with CTB-MPR, mice in Group 4
were primed and boosted with VLPs, and mice in Group 5 were mock immunized with plant derived proteins
as described in the Methods. Blood samples were taken on Weeks 0, 2, 4, 8, 10, and 12 (red arrows). (B)
Immunization scheme for mucosal immunization. Mice were given four priming immunizations on Weeks
0, 1, 2, and 3, and two boosting immunizations on Weeks 7 and 8 (black arrows). Mice in Group 1 were
mucosally primed with VLPs and murabutide and systemically boosted with VLPs; mice in Group 2 were
mucosally primed with VLPs and CT and systemically boosted with VLPs; mice in Group 3 were mucosally
primed with VLPs and CT and systemically boosted with CTB-MPRs; mice in Group 4 were mucosally primed
with CTB-MPR and CT and systemically boosted with VLPs; mice in Group 5 were mucosally primed with
CTB-MPR and CT and systemically boosted with CTB-MPR, and mice in Group 6 were systemically primed
and boosted with VLPs. Blood, fecal, and vaginal samples were taken on Weeks 0, 1, 3, 5, 7, 8, 10, and 12
(red arrows).

doi:10.1371/journal.pone.0151842.9002

Mucosal immunization

For intranasal (i.n.) administration, immunization cocktails were made by mixing the indicated
proteins with PBS. Each dose (20 pl total, 10 ul per nostril) contained either CTB-MPR (35 pg
= 12 pg MPER = 2 nmol MPER) with cholera toxin (CT, 1 pg, List Biological Laboratories),
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VLP preparation (1.1 mg total protein containing 48 pg dgp41 and 48 ug Gag, equivalent to 2
nmol and 1 nmol, respectively) with either CT (1 pg), or murabutide (200 pg, InvivoGen).
Female BALB/c mice (6-wk old, Charles River, n = 8 per group) were given four i.n. priming
immunizations (Fig 2B). Group 1 received VLPs+murabutide, Groups 2 and 3 received VLPs
+CT, Groups 4 and 5 received CTB-MPR+CT. Group 6, serving as a control, was immunized
i.p. with VLPs, as described above. Mice in all groups were given two i.p. boosting immuniza-
tions with either VLPs (4.8 ug dgp41 and 4.8 ug Gag, Groups 1, 2, 4 and 6) or CTB-MPR

(3.5 ug), Groups 3 and 5, Fig 2B), administered with Ribi Adjuvant as per the systemic trial
above. Serum, vaginal secretions, and fecal pellets were collected from all mice as indicated.
Abs were extracted from fecal pellets by soaking five pellets (~50 mg) in PBS containing 0.02%
Na-azide (500 pL) for 30 min at 4°C with occasional vortex and clarification by centrifugation
(14,000 xg, 10 min). Vaginal secretions were collected by lavage using PBS (100 pL) with a
blunt-tipped syringe needle. Serum, fecal Abs, and vaginal lavages were kept at -80°C.

Antibody Titer Assays

ELISA plates were coated with 20 ug of streptavidin (Sigma-Aldrich) and 2 pg of biotinylated
MPR peptide (for detection of anti-MPER Abs) or 1 g of p24-CTA2 (for detection of anti-Gag
Abs). Binding of the MPR peptide through its N-terminal biotin should maximize accessibility
the accessibility of the peptide to interactions with cognate antibodies [41]. The wells were
overlaid with a threefold serial dilution of serum, vaginal secretions or fecal samples (starting
with 1:50, 1:5 or 1:2, respectively) in PBS containing 0.5% Tween 20 and 5% dry milk and the
procedure was continued as previously described [41]. Endpoint titers were determined as the
reciprocal of the dilution factor of sample giving background levels of OD 4. Statistical analy-
sis of data was by the Kruskal-Wallis test followed by Dunn’s Multiple Comparison test.

IFN-y ELISPOT Assay

Splenocytes were prepared from pooled harvested spleens on Week 12. Interferon-gamma
(IFN-v) Enzyme-Linked Immunosorbent Spot Assay (ELISPOT) responses were measured
using a mouse IFN-y set (BD Biosciences). Threefold serially diluted triplicates of splenocytes
(starting at 1 x 10° splenocytes/well) were applied to the plates in a final volume of 200 pl
RPMI 1640 culture medium (with 10% heat-inactivated fetal bovine serum, 100 U/mL penicil-
lin, 100 pg streptomycin). The peptides AAMQMLKDTINEEAA (corresponding to the
GagCD8 epitope, from HIV-1 Consensus C Gag (15-mer) Peptides, Cat#8118, NIH AIDS
Reagent Program) and SNPPVPVGDIYKRWI/VPVGDIYKRWIILGL (corresponding to the
GagCD4 epitope, from HIV-1 Consensus C Gag (15-mer) Peptides, Cat#8118, NIH AIDS
Reagent Program) were used as stimuli in the assay at 5 ug/mL. Reactions without peptide
served as background controls. Reactions were allowed to proceed for 30 h at 37°C in a humidi-
fied 5% CO, atmosphere. Spots were detected with the detection antibody, developed with
3-amino-9-ethyl-carbazole (BD Biosciences), and analyzed using a CTL ImmunoSpot plate
reader and counting software (Cellular Technology Ltd). For each group of mice, the number
of background spots in the absence of peptide was subtracted from the average of the triplicate
values in order to determine the number of peptide-relevant spots.

Results
Serum anti-Gag responses to systemic immunizations

Anti-p24 Abs were quantified after the third priming immunization (Week 6), before the first
boost (Week 8), after the first boost (Week 10), and after the second boost (Week 12, Fig 3). In
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OD490 values (mean +/- SEM). Also shown are Ab endpoint titers at response peaks after priming (B, Week
6); before first boost (C, Week 8), after first boost (D, Week 10), and after second boost (E, Week 12).
Symbols indicate statistical significance (compared to week zero within the group) evaluated by Kruskal-
Wallis test and Dunn’s Multiple Comparison test: * p < 0.05, ** p < 0.01, *** p <0.001.

doi:10.1371/journal.pone.0151842.9003

all mice (16/16) primed with VLPs, significant Ab titers (p < 0.01, in comparison to the nega-
tive control group) were elicited after priming and remained steady until the first boost (Fig
3B-3E). The VLP-primed animals were then split into two groups and boosted with either
CTB-MPR or VLPs. CTB-MPR-boosted mice retained significant titers of anti-p24 Abs
through the end of the trial, despite the fact that the mice did not receive any further Gag pro-
tein. Boosting with VLPs resulted in increased antibody titers, with final antibody titers reach-
ing extremely significant (p< 0.001) values over the negative control mice. The majority of
mice (5/8) primed with CTB-MPR and boosted with VLPs developed anti-p24 Ab responses at
similar titers to VLP-primed animals with two doses. All of these data demonstrate that plant-
produced VLPs can elicit robust, long-lived Ab responses against the Gag protein, which are
detectable at high titers at least eight weeks after the final VLP immunization (our final time
point) for VLP/CTB-MPR-immunized animals.

Serum anti-MPER responses to systemic immunizations

Most (11/16) mice primed with CTB-MPR responded to the MPER moiety before the second
boost (Fig 4). One of these mice (#3 from the CTB-MPR-primed and boosted group)
responded remarkably better than the rest of the mice (shown on its own, Fig 4). VLP priming
induced detectable anti-MPER Abs in 7/16 mice. All animals boosted with CTB-MPR, regard-
less of priming group, displayed significant anti-MPER antibody titers (p < 0.001 and

p < 0.01, respectively) after the second boost. In 7/8 mice primed with VLPs and boosted with
VLPs, significant (p < 0.05) titers were elicited after the first boost, which steadily increased
following the second boost. All four experimental groups elicited statistically significant Ab lev-
els following the second boost. However, CTB-MPR appears to be a slightly more potent
inducer of anti-MPER Abs, though this difference was not statistically significant.

Serum anti-Gag antibody response to mucosal immunization

Because HIV-1’s main mode of transmission mode is the crossing of mucosal barriers in the
female genital tract and the lower gastro-intestinal tract, we further tested the ability of plant-
derived VLPs to stimulate mucosal responses. To this end, immunogens were used to test the
effectiveness of intranasal priming with systemic boosting of plant-produced VLPs, CTB-MPR,
or a combination of both.

Anti-p24 Abs were not detected in any of the mucosally-primed mice prior to boosting (Fig 5),
although systemically-primed mice displayed anti-p24 serum IgG titers consistent with the first
immunization trial (see above) with 6/8 mice responding to Gag following the first priming immu-
nization. The majority of mice (30/32) in all groups that were i.p.-boosted with VLPs responded
to the Gag protein by eliciting very high Ab titers (Fig 5). These results confirm the effectiveness
of using VLPs in a systemic prime/boost regimen to elicit a response against Gag, and also suggest
the effectiveness of mucosal priming with systemic boosting to elicit a similar response.

Serum anti-MPER antibody response to mucosal immunization

As was the case of the anti-p24 response, anti-MPR serum Abs were below the detection limit
in all mucosally-primed mice prior to boosting immunizations (Fig 5). In accordance with the
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(mean +/- SEM). Mouse #3 (from

CTBMPR-CTBMPR group) responded significantly higher than other mice

from this group and was considered an outlier, and antibody response from this mouse is shown by itself.
Also shown are Ab endpoint titers at response peaks after priming (B, Week 6); before first boost (C, Week
8), after first boost (D, Week 10), and after second boost (E, Week 12). Symbols indicate statistical
significance as compared to week zero within the group evaluated by Kruskal-Wallis test and Dunn’s Multiple
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doi:10.1371/journal.pone.0151842.9005
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systemic immunization experiment, no significant Ab titers against MPER were raised in the
systemically-primed mice prior to boosting, either. Systemic boosting with CTB-MPR after
mucosal priming with the same immunogen (Group 5) elicited significant (p < 0.001, Fig 6)
levels of Abs as compared to naive mice, consistent with previous studies [6]. Interestingly,
mucosal priming with VLPs and boosting with either VLPs or CTB-MPR (Groups 1, 2, and 3)
elicited only marginal levels of Abs, and the same was observed for mucosal priming with
CTB-MPR and boosting with VLPs. Although all the mice responded in Group 6 (systemically
primed and boosted with VLPs), the levels of Abs were lower in this group than in the
CTB-MPR primed and boosted group (Group 5). However, we note that the differences
between the two groups were not statistically significant.

Fecal anti-Gag and anti-MPER responses to mucosal immunizations

Mucosal response against Gag was limited in all groups either primed or boosted with VLPs,
although 6/8 mice were positive for IgAs in fecal samples in Group 6 (systemically primed and
boosted with VLPs). Responses from Groups 1, 2, and 3 (mucosally primed with VLPs) were
all statistically similar. Additionally, mucosal VLP priming induced slightly higher Ab titers
with a greater number of responders as compared to those primed with CTB-MPR (Groups 4
and 5, Fig 6). While the difference was not statistically significant, the trend suggests that
mucosal priming with VLPs might assist in eliciting a mucosal response against Gag, though
this response is not as strong as that elicited with systemic priming with VLPs.

Similar to the anti-p24 mucosal response, we could not detect any fecal anti-MPER IgAs in
any of the treatment groups until after the final immunization. Two weeks after the final boost,
low anti-MPER IgA responses could be detected in 12/48 mice. The two responders in Group 5
had two of the highest responses, but no group reached statistically significant responses in
comparison to naive mice (Figs 4 and 5). Mice in Groups 2, 3, and 4 had similar responses.
Group 1 had a single responder while all mice in Group 6 had fecal anti-MPER responses
below the limit of detection. The results of MPER response in fecal samples are inconclusive,
but suggest that mice mucosally primed and systemically boosted with CTB-MPR can elicit a
moderate IgA response in fecal samples, while systemic priming and boosting with VLPs is
largely ineffective in eliciting a mucosal anti-MPER response in mice.

Vaginal anti-Gag and anti-MPER response in mucosal immunizations

Anti-p24 IgA Abs could not be detected in any vaginal secretions of the mice prior to boosting
immunizations, and only three mice (one from Group 2 and two from Group 6) responded
two weeks after the second boost.

In accordance with low levels of anti-MPER Abs in fecal samples, only 12/48 mice from all
groups responded to MPER in vaginal secretions. Once again, two mice in Group 5 (the same
mice with higher anti-MPER response in fecal samples) had two of the highest overall
responses, while vaginal anti-MPER responses from other groups were minimal or undetect-
able. Consistent with fecal results, no anti-MPER Abs were detected in vaginal secretions
from mice in Group 6. Overall, the results of anti-MPER response in vaginal secretions are
congruent with results of anti-MPER response in fecal samples. These results suggest that
while systemic priming and boosting with VLPs can be successful in eliciting antibody
responses against Gag in serum and at mucosal sites, mucosal VLP priming may not be nearly
as effective in this case, with minimal responses seen to Dgp41. Mucosal immunization elicits
the highest antibody responses to gp41 at all sites in Group 5, which is primed and boosted
with CTB-MPR.
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In addition to the humoral and mucosal immune responses, the cellular responses against pep-
tides corresponding to Gag-specific CD4 and CD8 immunodominant epitopes were also
assayed two weeks following the final immunization for the vaccination experiment described
in Fig 3. Mice primed (either mucosally or systemically) and boosted with Gag/Dgp41 VLPs
had expression of IEN-y at levels over 40sfu/10° cells in response to the CD8 epitope, suggest-
ing a high CTL response against Gag in these groups (Fig 7). Overall, CD4 responses were
lower with the highest response being mice primed and boosted systemically with VLPs at over
20 sfu per million splenocytes (Group 6, Fig 7). Minimal, but detectable, CD4 responses were
seen with all groups primed with VLPs regardless of boosting regimen (Groups 1-3, Fig 6). In
general, animals primed and boosted with VLPs induced higher T cell responses than those
with mixed regimens (compare groups 2 and 6 to 1, 3, and 4). As expected, mice primed and
boosted with CTB-MPR did not respond to either peptide (Group 5, Fig 7). These results sug-
gest that both CD8 and CD4 T-cell responses against Gag were elicited with the VLPs with the
most successful regimen being systemic administration.

Discussion

The MPER domain of gp41 in HIV-1, which plays multiple roles in early stages of the viral life-
cycle, is targeted by Abs with strong, broad and diverse antiviral activities including transcyto-
sis blockade (e.g. [3,7, 9, 41, 44]), neutralization (e.g. [8, 15, 45, 46]), and Ab-dependent cell
cytotoxicity [47]. Based on these findings, the MPER deservedly became the focus of intensify-
ing vaccine development research.

Because the MPER is poorly immunogenic on its own, a platform with which to present the
peptide is required and various carrier proteins have been tested (e.g. [48, 49]). Our lab has
tested the immunogenicity of multiple MPER fusion proteins which utilized CTB [6, 7, 41],
Yersinia pestis antigens [50], and hepatitis B core antigen (Cherni, Matoba, and Mor, unpub-
lished). These studies demonstrated the success of heterologous prime-boost strategies with
multiple routes of immunization and more than one vaccine construct in eliciting transcytosis-
blocking Abs. However, an optimal presentation platform to display the MPER peptide that
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would ensure a uniformly strong immune response against MPER, while overcoming the
immune-dominance of the carrier proteins, is still elusive.

The ability of the MPER to elicit Abs with antiviral activities is context dependent. In particu-
lar the proximity to the membrane plays a significant role. For example, recently it was demon-
strated using a knock-in mouse model that 2F5 Abs could be elicited to very high titers in vivo
only when MPER was displayed in the context of a membrane [51]. Similarly, the MPER peptide
(“P1”) attached to virosomes was shown to elicit transcytosis-blocking Abs in both serum and
mucosal sites in macaques (where their elicitation correlated with protection from infection
[52]) and humans [19]. Within the context of an intact Env, the MPER is available to bind neu-
tralizing mAbs exclusively during the pre-hairpin intermediate stage of the infection process.
Outside of this window, binding is hindered because the MPER is either sterically-obscured (e.g.
on the surface of a virion), or strongly interacting with other gp41 domains [53]. These confor-
mational considerations, among others (such as clonal anergy, [54]) contribute to the low pro-
pensity for induction of 2F5-like Abs during the acute phase of HIV-1 infection [53].

We previously demonstrated that plants can efficiently make HIV-1 enveloped VLPs con-
sisting of p55“““ and a membrane-anchored stripped-down Env that we call “deconstructed
gp41” [40]. Devoid of the immunodominant gp120 and the N-terminal regions of gp41, we
hypothesized that such VLPs would present the MPER in a conformation that approximate the
pre-fusion intermediate stage [2]. Interestingly, recent structural analyses of a similar gp41
construct containing the MPER and the transmembrane domains of gp41 (MPR-TM) reveal
that indeed, the neutralizing epitopes of 4E10 and 2F5 are accessible to these monoclonal anti-
bodies when the protein is presented in a non-denatured trimeric state [2, 55]. The antibodies
bind to the MPR-TM with sub-nanomolar affinities as determined by competitive ELISA and
surface plasmon resonance [2, 55].

The plant-derived VLPs incorporate the Gag protein and the deconstructed envelope protein
Dgp41 at Gag:Dgp41 ratios that vary slightly between 1:1 [40] and 2:1 (here). Previous studies
by others aimed at producing recombinant VLPs reported lower levels of Env protein incorpo-
ration. For example, Hammonds and co-workers reported much higher Gag:Env ratios in VLPs
produced in human cell lines (varying between 25:1 to 50:1) or through baculovirus infection of
insect cells (10:1) [56]. The presence of more dgp41 molecules on the surface of plant-derived
VLPs as compared to other recombinant VLPs is immunologically advantageous.

Here we tested the hypothesis that such plant-derived VLPs could serve to elicit immune
responses against the presented antigens. As shown above, HIV-1 Gag/Dgp41 VLPs produced
in N. benthamiana were able to elicit substantial titers of Abs against both Gag and gp41 epi-
topes through a heterologous platform prime-boost regimens in conjunction with CTB-MPR.
Intraperitoneally-administered VLPs were also effective as immunogens on their own (Figs 2-
5) and significant levels of Abs were raised against the MPER after boosting with VLPs. Our
ELISA detection system is not likely to enable us to detect potential conformational Abs and
therefore potentially underestimates the humoral response to the VLPs. Although mucosal
priming immunizations were not sufficient to elicit Abs against Gag or gp41, such responses
were shown for animals that subsequently were boosted with systemically-delivered plant-pro-
duced VLPs (Fig 6). In conjunction with the VLP induction of strong Ab responses, we
detected Gag-specific CD4 and CD8 T-cell responses, which were the highest in groups primed
and boosted with VLPs regardless of immunization route (Fig 7).

The use of plants as production platforms for candidate subunit vaccines is now well estab-
lished, achieving important milestones in the last couple of years including winning FDA
approval for use in humans [39, 57]. As was recently demonstrated by stepping up plant pro-
duction of a promising anti-Ebola virus mAb cocktail [39, 58, 59], plants offer a highly compet-
itive alternative in terms of costs, scale-up and safety to traditional production of vaccines such
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as fermentation (yeast and animal cell cultures), or eggs. In particular, plants were shown to
express VLPs such as those of Hepatitis B virus [60, 61], Norwalk virus [62, 63], influenza [64],
and even HIV-1 [65, 66].

Only few studies were published presenting immunogenicity data for plant-based HIV-1
full-length Gag or membrane-anchored gp41. Our co-expression system [40] was the first to
produce enough full-length p555°€ together with Dgp41 to conduct a study like the one we
describe here (Gag yield is ~ 22 mg/kg fresh leaf material). However, plant-expressed deriva-
tives of Gag (i.e. p24, p17, and p41) were tested and were shown to elicit anti-Gag Abs as well
as CTL responses [65, 67-70]. In addition, several studies demonstrated success in eliciting
immunological responses against plant-based MPER constructs [71-75], however none were
membrane anchored. While we acknowledge that further investigation is necessary to elicit a
more robust and durable anti-MPER Ab response and demonstrate its protective efficacy in
HIV-1 challenge models, our results here offer evidence that plant-based Gag/Dgp41 VLPs can
induce relevant Ab and T cell responses and forms the basis for the development of an effective
component for future HIV-1 prime/boost immunization trials.
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