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Specificity of resistance and geographic
patterns of virulence in a vertebrate host-
parasite system
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Abstract

Background: Host genotype - parasite genotype co-evolutionary dynamics are influenced by local biotic and
abiotic environmental conditions. This results in spatially heterogeneous selection among host populations. How
such heterogeneous selection influences host resistance, parasite infectivity and virulence remains largely unknown.
We hypothesized that different co-evolutionary trajectories of a vertebrate host-parasite association result in specific
virulence patterns when assessed on a large geographic scale. We used two reference host populations of three-
spined sticklebacks and nine strains of their specific cestode parasite Schistocephalus solidus from across the
Northern Hemisphere for controlled infection experiments. Host and parasite effects on infection phenotypes
including host immune gene expression were determined.

Results: S. solidus strains grew generally larger in hosts coming from a population with high parasite diversity and
low S. solidus prevalence (DE hosts). Hosts from a population with low parasite diversity and high S. solidus
prevalence (NO hosts) were better able to control the parasite’s growth, regardless of the origin of the parasite.
Host condition and immunological parameters converged upon infection and parasite growth showed the same
geographic pattern in both host types.

Conclusion: Our results suggest that NO sticklebacks evolved resistance against a variety of S. solidus strains,
whereas DE sticklebacks are less resistant against S. solidus. Our data provide evidence that differences in parasite
prevalence can cause immunological heterogeneity and that parasite size, a proxy for virulence and resistance, is,
on a geographic scale, determined by main effects of the host and the parasite and less by an interaction of both
genotypes.
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Background
The interaction of an organism with its environment is a
hallmark of life and a pre-requisite for natural selection.
Local adaptation is driven by abiotic conditions and bi-
otic interactions within and between species. Among the
strongest evolutionary processes is the co-evolution be-
tween hosts and parasites [1–5]. Parasites rely on host
resources and have the potential to drastically reduce
host fitness [6]. To diminish the harm of parasites,

effective defence strategies have evolved on the host side
[4, 7]. However, heterogeneous environments select for
different defence strategies among host populations,
which results in immunological heterogeneity [8, 9]. The
variation of host defence against parasites can range
from mechanisms that decrease the risk of infection to
processes that diminish the harm of parasites, such as
resistance (i.e. the prevention of infection or the control
of parasite growth) and tolerance (i.e. the ability to limit
health or fitness effects of a distinct infection intensity)
[10, 11]. Likewise, parasite infectivity and virulence (i.e.
the detrimental effects on host traits related to fitness)
are spatially structured both by environmental parame-
ters and co-evolutionary processes.
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The epidemiological traits are shaped through main ef-
fects of the host and the parasite and by interaction ef-
fects (Fig. 1). The relative contribution of each of the
interaction partners may differ along the infection
process and depends on the geographic scale and the de-
gree of environmental heterogeneity. Controlled infec-
tion experiments can be used to first identify
environmental and evolutionary causes shaping the
epidemiological traits and, second, to study the mecha-
nisms and the adaptive significance thereof. Experiments
revealed rapid and adaptive co-evolution of host and
parasite genotypes in various systems, including
phage-bacteria associations [4, 12], malaria systems [13,

14], plant-pathogen interactions [15, 16], and immune
gene evolution in three-spined sticklebacks [17, 18]. We
chose the association of three-spined sticklebacks and
their specific macroparasite Schistocephalus solidus to
determine host and parasite effects along the infection
process and on different geographic scales.
Three-spined sticklebacks (Gasterosteus aculeatus;

hereafter ‘sticklebacks’) live in numerous freshwater and
marine habitats across the Northern Hemisphere. Vari-
ous studies reported habitat-specific immune responses
[19–24]. A lot of attention has been paid on the “super-
model” [25] interaction between sticklebacks and the
cestode Schistocephalus solidus, as both can be bred in

Fig. 1 Theoretical framework of the study. Reference hosts came from two contrasting populations, indicated by violet (DE) and orange (NO)
dots and lines. For the sake of simplicity, we exemplify possible outcomes with a subset of hypothetical parasites A to E. We asked whether main
effects of the host, the parasite, and/or host-parasite interaction effects shaped epidemiological traits (life history traits of the host and/or the
parasite). (a, b, c, d) Partitioning of host, parasite, and interaction effects on an epidemiological trait. (a, b) Host genotype and parasite genotype
main effects. The host effect (vertical spacing between the two lines) indicates the genetic difference between the two host types. Parallel
horizontal lines in (a) indicate absence of a plastic response towards infection. Differences among hosts that are infected with the same parasite
(vertical spacing between the dots) indicate a phenotypic plastic response of the parasite. The positive slope in (b) indicates different effects of
the two parasite types (parasite effect) and thus a phenotypic plastic response of the host and the parasite. (c) and (d) demonstrate host
genotype-parasite genotype interaction effects, because the host effect depends on the parasite type. Crossing reaction norms in (d) clearly show
the interaction effect; but note in (c) that the main-effect components can cumulate, causing non-crossing reaction norms. We tested the
predictions with data from contrast 1. (e, f) To further understand the parasite effect on a larger geographic scale, each of the two host types was
exposed to parasites from different geographic clusters across the Northern Hemisphere. We tested these predictions with data from contrast 2
and contrast 3
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the laboratory facilitating controlled infection experi-
ments [25]. S. solidus has a three-host life cycle with co-
pepods as first intermediate host and G. aculeatus as
specific second intermediate host. S. solidus grows mas-
sively in the body cavity of the fish, sometimes even ex-
ceeding the host’s weight [26, 27]. Reproduction is
confined to the definite host, mostly piscivorous birds.
The parasite’s reproductive output is directly related to
its size [28]. S. solidus’ detrimental effects on stickle-
backs were shown both in nature and in the laboratory
and have been linked to the size of the parasite [27–30].
This cestode is assumed to be a driving force of diver-
gent selection in three-spined sticklebacks [31]. Studies
using hosts and parasites from different populations
from Europe [32], from across continents [33] and in
vitro leukocyte responses [34] indicate local adaptation
of sticklebacks and S. solidus. It was suggested that S.
solidus growth depends on host and/or parasite
population-specific traits [35].
We assumed that sticklebacks evolved environment-specific

immunological adaptations to S. solidus and that S. solidus
evolved environment-specific virulence. We specifically asked
if such divergent evolution could cause different immuno-
logical activation in response to a variety of S. solidus strains
(i.e. S. solidus parasites from distinct locations). The following
was hypothesized: (i) the infection phenotype differs between
sticklebacks from heterogeneous environments (indicating a
host effect); (ii) the infection phenotype differs between S.

solidus strains (indicating a parasite effect); (iii) the infection
phenotype differs according to stickleback-S. solidus interac-
tions (indicating an interaction effect) (Fig. 1). These hypoth-
eses were tested with three distinct analyses. First, hosts from
two contrasting reference populations of G. aculeatus were
experimentally infected with S. solidus from four European lo-
cations in order to test if host effects, parasite effects and/or
interaction effects influenced S. solidus infection phenotypes
in G. aculeatus (the corresponding analyses are referred to as
contrast 1; Fig. 1). In order to test the parasite effect in further
detail, each of these reference host types was infected with S.
solidus strains from across the Northern Hemisphere (the
corresponding analyses are referred to as contrast 2 and
contrast 3; Fig. 1; Table 1; Additional file 1: Table S1). S. solidus
sampling sites covered four geographic areas (clustered
localities) corresponding to G. aculeatus phylogeny: the
Atlantic region (NU, ISC, SKO), the Baltic region (OBB,
NST, GOT), European Inland (SP, IBB), and the Pacific
(ECH) (Fig. 2; Table 1).
The two host populations differ remarkably in parasite

diversity (Shannon diversity index) and abundance (the
mean number of parasites per fish) [24, 36]. Parasite di-
versity is high and S. solidus prevalence (the number of
infected individuals) is low (< 1%) in the German habitat
(DE), whereas S. solidus prevalence is high and parasite
diversity is low in the Norwegian population (NO) (20 to
> 50%). Under the assumption that immune defence is
costly and co-evolves with parasite virulence [7, 37–40],

Table 1 Summary table of sample sizes within contrasts of interest

Baltic European Inland Pacific Atlantic

Analysis Host OBB GOT NST SP IBB ECH NU ISC SKO control

contrast 1 DE (A) na na (a) 2 na (a) 5 na na (a) 2 (d) 4 20

DE (B) na na (b) 10 na (b) 3 na na (b) 5 (a) 7 18

DE (C) na na (c) 8 na (c) 10 na na (c) 5 (c) 3 20

NO (A) na na (a) 2 na (a) 3 na na (a) 1 (d) 4 20

NO (B) na na (b) 4 na (b) 2 na na (b) 6 (a) 8 20

NO (C) na na (c) 2 na (c) 2 na na (c) 5 (c) 2 20

contrast 2 DE (D) (a) 4 (a) 5 (a) 4 (a) 1 na (a) 3 (a) 1 na (a) 7 20

DE (E) (b) 2 (b) 0 (b) 3 (b) 0 na (b) 2 (b) 3 na (b) 0 20

DE (F) (c) 4 (c) 3 (c) 9 (c) 7 na (c) 2 (c) 6 na (c) 5 20

contrast 3 NO (A) (a) 1 (d) 1 (a) 2 (a) 2 (a) 3 (a) 1 (b) 5 (a) 1 (d) 4 20

NO (B) (b) 10 (b) 4 (b) 4 (d) 5 (b) 2 (c) 4 (d) 7 (b) 6 (a) 8 20

NO (C) (c) 1 (a) 2 (c) 2 (b) 2 (c) 2 (b) 0 (c) 6 (c) 5 (c) 2 20

Naïve laboratory bred first generation offspring from three-spined sticklebacks Gasterosteus aculeatus from lake Großer Plöner See, Germany (DE), and Lake
Skogseidvatnet, Norway (NO), were infected with Schistocephalus solidus parasites from different geographic locations or sham-exposed as controls. The top row
indicates S. solidus geographic cluster; abbreviations in the second row refer to S. solidus sampling sites (OBB: Obbola, Sweden; GOT: Gotland, Sweden; NST:
Neustädter Binnenwasser, Germany; SP: Xinzo de Limia, Spain; IBB: Ibbenbürener Aa, Germany; ECH: Vancouver Island, Canada; NU: North Uist, Scotland; ISC: Lake
Myvatn, Iceland; SKO: Lake Skogseidvatnet, Norway; control: sham-exposed control). Capital letters indicate fish families (offspring of one pair of sticklebacks),
lower case letters indicate worm sibships (offspring of one pair of worms). Per treatment, i.e. fish family x worm sibship combination, 100 copepods and
subsequently 20 fish were exposed to single infective S. solidus larvae or sham-exposed; combinations with ‘na’ were not included in the respective analysis.
Numbers in columns of S. solidus exposed fish indicate the number of infected individuals. We used contrast 1 to test for host, parasite and interaction effects;
contrast 2 and contrast 3 were used to test parasite effects on a broader geographic scale. NO data in contrast 1 is a data subset of contrast 3. We accounted for
multiple testing
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we hypothesized that sticklebacks from the highly S.
solidus exposed (NO) population evolved S. solidus spe-
cific resistance, whereas this might not be the case for
the rarely S. solidus exposed (DE) population. We sug-
gested that S. solidus specific resistance could be effect-
ive against sympatric and potentially even allopatric
strains. In order to cover numerous important parame-
ters along the infection process, infection rates and the
size of the parasite, as well as host condition and im-
munological parameters were determined [10]. The size
of the parasite is used a measure of host resistance and
parasite virulence [11, 32, 41]. The immunological acti-
vation was inferred from the size of the major immune
organs and by immune gene expression analyses. We
asked whether host population and/or parasite strain,
cluster or growth caused distinct gene expression pro-
files. This study investigates evolutionary and proximate
(physiological and molecular) causes of immunological
heterogeneity, the specificity of resistance and the con-
tribution of host and parasite on infection phenotypes.

Results
Both intermediate hosts (copepods and sticklebacks) were in-
fected with S. solidus from every location (Additional file 1:
SI.1; Tables S2 and S3). We obtained 227 plerocercoids from
1342 fish (excluding two infected controls and one double
infected fish). The average weight of S. solidus plerocercoids
55 (+/− 2) days post exposure (DPE) was 61.8mg and varied
between 0.6mg and 151.4mg. Neither infection rates in co-
pepods nor infection rates in fish influenced S. solidus size in
the fish (LMMs for average parasite index (PI) per worm
sibship as dependent variable; worm origin, infection rates in
copepods and in fish as fixed effects, round as random
term).
Contrast 1, the comparison of DE and NO hosts in-

fected with four different European S. solidus strains, in-
cluded 587 fish: 118 controls (excluding two infected DE

controls), 105 infected fish, 364 exposed but uninfected
fish; 11 fish died. Contrast 2, testing the parasite effect
in DE hosts, included 522 fish: 60 controls, 71 infected
fish, 335 exposed but uninfected fish; 14 fish died. Con-
trast 3, testing the parasite effect in NO hosts, included
60 controls, 92 infected fish, 433 exposed but uninfected
fish; 15 fish died.

Constitutive differences between the host populations
(contrast 1)
Contrast 1, the combination of the two hosts and four
S. solidus strains, was used to test for host effects,
parasite effects and host-parasite interaction effects
on infection rates and infection phenotypes (Fig. 1;
Table 1). S. solidus infection rates were consistent among
host populations (host effect: Χ2

1 = 2.27, p= 0.132; S. solidus
effect: Χ2

3 = 0.882, p= 0.830; host-parasite interaction effect:
Χ2

3 = 6.42, p= 0.093; Additional file 1: Table S4). However,
all four S. solidus strains were significantly smaller in NO
hosts (parasite index, PI, the relative weight of S. solidus in
the host [27]; host effect: F1,95 = 23.48, p < 0.0001). The
differences between S. solidus strains were independent
of the host population (host-parasite interaction effect
on PI: F3,95 = 0.995, p = 0.399) (Fig. 3; Additional file 1:
Tables S5-S7).
We detected constitutive differences in condition and

immunological parameters of the two stickleback popu-
lations (more information in Additional file 1: SI.3). DE
sticklebacks had a significantly higher condition (CF; an
estimate of the overall condition [42]) if they were unin-
fected (Χ2

1 = 44.252, p < 0.0001) or infected with S.
solidus from the Baltic (NST) (Χ2

1 = 10.48, p = 0.001).
Hepatosomatic indices (HSI, an estimate of metabolic
reserves [43]) were higher in DE controls compared to
NO controls (Χ2

1 = 26.93, p < 0.0001). Head kidney
indices (HKI, the relative weight of the major immune

Fig. 2 Sampling sites. Sticklebacks originated from Lake Großer Plöner See, Germany (DE), ~ 25 km from Neustädter Binnenwasser (NST; one of
the sampling sites of S. solidus) and Lake Skogseidvatnet, Norway (NO). S. solidus were sampled from nine different locations across Europe and
the Pacific (more information in Additional file 1: Table S1). Colors indicate four geographic clusters (pink: Pacific, orange: Atlantic, violet: Baltic,
green: European Inland). The map was drawn with the R package maps [77]; colors were chosen from the ColorBrewer palette [76]
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organ in fish) were generally higher in DE fish (Χ2
4 = 49.47,

p < 0.0001) and DE controls showed higher reactive
oxygen species (ROS) production of head kidney
leukocytes (Χ2

1 = 24.1, p < 0.0001). Splenosomatic in-
dices (SSI, the relative weight of the major secondary
immune organ [44]) were significantly higher in DE
controls (Χ2

1 = 79.38, p < 0.0001) and in DE hosts in-
fected with Baltic (NST) S. solidus (Χ2

1 = 30.75, p <
0.0001) or European Inland (IBB) S. solidus (Χ2

1 =
19.02, p < 0.0001). The effects were not directly
related to S. solidus size but to S. solidus strain. We
detected no significant differences in these condition
and immunological parameters between DE and NO
sticklebacks if they were infected with S. solidus from
two Atlantic populations (SKO, ISC) (Additional file 1:
Figure S1).
Total RNA from spleen was used to determine expres-

sion levels of 24 key immune genes. We ran non-
parametric permutational multivariate analyses of
variance (PERMANOVA) including host and parasite
main effects and their interaction. The main effects
were significant predictors while the interaction did
not influence immune gene expression profiles (host
effect: PERMANOVAinnate: F1,148 = 10.69, p < 0.0001;
PERMANOVAadaptive: F1,148 = 13.58, p < 0.0001; PER-
MANOVAcomplement: F1,148 = 7.03, p = 0.0001; S. solidus
effect: PERMANOVAinnate: F4,148 = 3.74, p = 0.0002;
PERMANOVAadaptive: F4,148 = 2.73, p = 0.007; PERMA-
NOVAcomplement: F4,148 = 3.82, p = 0.0002; host-parasite
interaction effect: PERMANOVAinnate: F4,148 = 0.93, p
= 0.45; PERMANOVAadaptive: F4,148 = 1.01, p = 0.41;
PERMANOVAcomplement: F4,148 = 0.40, p = 0.94). Pair-
wise PERMANOVAs were used a posteriori in order
to identify significantly different groups [45].

Immune gene expression profiles differed significantly
between DE and NO controls (PERMANOVAinnate:
F1,48 = 3.32, p < 0.001; PERMANOVAadaptive: F1,48 = 6.76,
p = 0.002; PERMANOVAcomplement: F1,48 = 4.78, p = 0.004;
Additional file 1: Table S11; Fig. 4). DE sticklebacks had
higher expression levels of genes of innate and adaptive
immunity, while complement genes were lower
expressed than in NO sticklebacks (Additional file 1:
Table S8; Figure S6). ISC S. solidus infection caused
different innate immune gene expression in DE and NO
sticklebacks (PERMANOVAinnate: F1,22 = 3.58, p = 0.004;
Additional file 1: Table S9; Fig. 4), which was driven by re-
markably low expression of Interleukin-1β (il-1β) in DE
sticklebacks (F1,18 = 20.0, p < 0.001) (Additional file 1:
Table S9; Figure S6). Expression profiles of NST-, IBB-
and SKO-infected fish did not differ significantly between
host populations (Fig. 4).

Parasite indices show a geographic pattern in both host
types
To further understand the effect of the parasite on infec-
tion phenotypes, we exposed DE hosts (contrast 2) and
NO hosts (contrast 3) to S. solidus strains from across
the Northern Hemisphere (Fig. 1). The infection rates
did not differ significantly between parasite strains in DE
sticklebacks (contrast 2: Χ2

6 = 7.15, p = 0.307), but did so
in NO sticklebacks (contrast 3: Χ2

8 = 21.62, p = 0.006)
(Additional file 1: Tables S3–S4). Parasite indices dif-
fered between parasite strains (contrast 2: F6,62 = 42.39,
p < 0.0001; contrast 3: F8,81 = 61.09, p < 0.0001). We
found a clear pattern with S. solidus from the Baltic be-
ing significantly smaller than worms from the other ori-
gins; Atlantic S. solidus were the largest in both host
types (Additional file 1: Tables S10-S12; Fig. 3).

Fig. 3 S. solidus growth differs significantly between host populations and between geographically clustered parasite strains. Naïve laboratory
bred F1 offspring from sticklebacks from lake Großer Plöner See, Germany (DE), and Lake Skogseidvatnet, Norway (NO), were experimentally
infected with single S. solidus larvae from nine different locations (‘strains’) across the Northern Hemisphere. Fish were dissected 55 (+/− 2) days
after exposure to the parasite. The parasite index (PI) was calculated as the proportion of the parasite’s weight from the total weight of infected
fish. (a) DE and NO hosts were infected with four different European S. solidus strains (contrast 1). Black and white dots represent individuals;
violet: mean parasite indices in DE hosts; orange: mean parasite indices in NO hosts (Additional file 1: Table S6). (b) Parasite indices in DE hosts
(contrast 2). Black dots and bars indicate the mean and the standard deviation. Color coding follows Fig. 2. (c) Parasite indices in NO hosts
(contrast 3). Black dots and bars indicate the mean and the standard deviation. Color coding follows Fig. 2
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Immune gene expression is parasite strain specific
Building on from the idea that S. solidus growth fol-
lows a geographic pattern, we asked whether the mo-
lecular phenotypes would show the same clustering.
We studied the influence of S. solidus strain on
stickleback immune gene expression by running
pairwise PERMANOVAs within host populations
(contrast 2 or contrast 3) and tested (i) if gene ex-
pression differed within and/or between geographic
clusters (Atlantic, Baltic, European Inland, Pacific)
and (ii) if immune gene expression differed between
sham-exposed controls and S. solidus infected

sticklebacks for each parasite origin. Gene expression
neither differed significantly within the clustered lo-
calities, nor between Baltic and Atlantic or European
parasites, although the parasite indices differed con-
siderably (Figs. 3 and 5). Immune gene expression
profiles only differed between clustered localities if
sticklebacks were infected with S. solidus from the
Pacific (ECH) versus the Baltic or Atlantic region
(Fig. 5).
In DE sticklebacks (contrast 2), Pacific S. solidus infec-

tion was associated with higher expression of innate im-
mune genes (PERMANOVAinnate: F1,33 = 3.88, p = 0.018),

Fig. 4 Multivariate gene expression patterns differ between DE and NO sticklebacks. Non-metric multidimensional scaling (NMDS) plots on
Euclidian distances and two dimensions comparing data from NO and DE sticklebacks (contrast 1). NMDS were based on log10-transformed
calibrated normalized relative quantities (CNRQ values) of all 24 immune genes, twelve genes of innate immunity (marco, mst1ra, mif, il-1β, tnfr1,
saal1, tlr2, csf3r, p22phox, nkef-b, sla1, cd97), nine genes of adaptive immunity (stat4, stat6, igm, cd83, foxp3, tgf-β, il-16, mhcII, tcr-β), or three genes
of the complement system (cfb, c7, c9). Each dot represents one individual; colors refer to the host population. Ellipses represent 95% confidence
intervals. P-values are shown if significant after FDR-correction. The contribution of each gene is shown in the first row. The second row shows
data from sham-exposed (CTRL) sticklebacks. The third to sixth row show data from infected individuals. Function metaMDS() was used to plot
the NMDS; the contribution of each gene was plotted by use of the envfit() function (both functions are implemented in R package vegan [74])
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adaptive immune genes (PERMANOVAadaptive: F1,33 =
4.16, p = 0.013) and complement components (PERMA-
NOVAcomplement: F1,33 = 8.1, p = 0.001) compared to in-
fection with Baltic S. solidus (Table S13). Compared to
infection with Atlantic S. solidus, Pacific S. solidus infec-
tion was associated with higher expression of adaptive im-
mune genes (PERMANOVAadaptive: F1,26 = 5.84, p < 0.001)
and complement components (PERMANOVAcomplement:
F1,26 = 3.66, p = 0.016) in DE sticklebacks; only mhcII
RNA levels were lower in Pacific S. solidus infections
(F1,26 = 15.71, p = 0.0007; Additional file 1: Table S14).
In contrast 3, NO sticklebacks infected with Pacific S.

solidus showed differential expression of genes of innate
(PERMANOVAinnate: F1,29 = 3.26, p = 0.006) and adaptive
immunity (PERMANOVAadaptive: F1,29 = 5.8, p = 0.002)
in comparison to infection with Baltic S. solidus. Seven
innate immune genes (marco, mif1, tnfr1, p22phox,
nkef-b, sla1, cd97) and five adaptive immune genes
(stat4, cd83, foxp3, tgf-β, il16) were significantly higher
expressed in Pacific S. solidus infections; only RNA
levels of mhcII were significantly lower (Additional file 1:

Table S15). In comparison to infection with Atlantic S.
solidus, Pacific S. solidus infection was linked to higher
expression of innate immune genes (PERMANOVAinnate:
F1,47 = 2.95, p = 0.014), adaptive immune genes (PERMA-
NOVAadaptive: F1,47 = 5.27, p = 0.004) and complement com-
ponents (PERMANOVAcomplement: F1,47 = 5.16, p = 0.008) in
NO hosts. Seven genes of innate immunity (mst1ra, il-1β,
tnfr1, p22phox, nkef-b, sla1, cd97), seven genes of adaptive
immunity (stat4, igm, cd83, foxp3, tgf- β, il16, mhcII) and
complement c9 were significantly higher expressed in
NO sticklebacks infected with Pacific S. solidus in
comparison to infection with Atlantic S. solidus (Additional
file 1: Table S16).
We next tested if immune gene expression patterns

differed between infected and control fish within con-
trast 2 or contrast 3. Again, gene expression patterns
were not related to parasite indices or size but
strain-specific.
In DE hosts (contrast 2), expression of genes of all three

functional arms of the stickleback’s immune system dif-
fered significantly between sham-exposed controls and

Fig. 5 Infection with Pacific S. solidus drives significantly different multivariate gene expression patterns. Multivariate patterns in gene expression
were visualized by non-metric multidimensional scaling (NMDS) on Euclidian distances and two dimensions using function metaMDS() from
vegan [74]. Polygons were plotted using ggplot2 [75]. NMDS were based on log10-transformed calibrated normalized relative quantities (CNRQ
values) of twelve genes of innate immunity (marco, mst1ra, mif, il-1β, tnfr1, saal1, tlr2, csf3r, p22phox, nkef-b, sla1, cd97), nine genes of adaptive
immunity (stat4, stat6, igm, cd83, foxp3, tgf-β, il-16, mhcII, tcr-β), or three genes of the complement system (cfb, c7, c9). Upper panel: data from DE
hosts infected with seven different S. solidus strains from the four clustered localities (contrast 2); lower panel: data from NO hosts infected with
nine different S. solidus strains from the four clustered localities (contrast 3). Color coding follows Fig. 1
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fish infected with Pacific S. solidus (PERMANOVAinnate:
F1,32 = 7.51, p < 0.0001; PERMANOVAadaptive: F1,32 = 6.47,
p < 0.001; PERMANOVAcomplement: F1,32 = 5.57, p = 0.007;
Additional file 1: Table S17) or Scottish (NU) S. solidus
(PERMANOVAinnate: F1,35 = 4.89, p = 0.003; PERMANO-
VAadaptive: F1,35 = 3.925, p = 0.009; PERMANOVAcomple-

ment: F1,35 = 4.75, p = 0.014; Table S18). Infection with
Norwegian (SKO) S. solidus altered expression of adaptive im-
mune genes (PERMANOVAadaptive: F1,35 = 8.76, p< 0.0001)
and complement genes (PERMANOVAcomplement: F1,35 = 3.42,
p=0.028; Additional file 1: Table S19).
In NO sticklebacks (contrast 3), innate immune genes

and complement components were differentially
expressed between controls and hosts infected with Pacific
S. solidus (PERMANOVAinnate: F1,26 = 5.43, p = 0.0118;
PERMANOVAcomplement: F1,26 = 7.61, p = 0.008; Additional
file 1: Table S20). Adaptive immune genes were differ-
entially expressed between controls and Atlantic (NU)
S. solidus infections (PERMANOVAadaptive: F1,39 = 5.71,
p = 0.002; Additional file 1: Table S20).

Discussion
Parasites are important components of the host’s environ-
ment and a crucial agent of natural selection [5, 7, 8, 34, 35,
41]. The co-evolution between hosts and parasites entails
complex dynamics, influencing host defense and parasite
infectivity and virulence. We used controlled infection ex-
periments of three-spined sticklebacks from two contrast-
ing populations with a variety of Schistocephalus solidus
strains in order to characterize specificity and consequences
of divergent co-evolution in a vertebrate host-parasite asso-
ciation. We propose that main effects of the host and the
parasite determine S. solidus virulence, whereas the inter-
action might play a minor role.

Immunological differences between host populations
NO sticklebacks come from a population with high S.
solidus prevalence and low parasite diversity [24, 36].
Since immune defence is costly and co-evolves with
parasite virulence [7, 37–40], we hypothesized that NO
sticklebacks evolved specific resistance against S. solidus.
Infection rates did not differ significantly between host
populations, but S. solidus plerocercoids were consist-
ently smaller in NO hosts. This supports our hypothesis
that NO hosts evolved increased resistance against S.
solidus as inferred from parasite growth suppression [11,
41]. We found that controls from the DE population had
higher immunological activity than NO controls (Fig. 4;
SI.3–4). This is in line with the natural situation, as DE
hosts are constantly challenged through high parasite di-
versity and abundance. However, the differences in im-
munological activation between the two host
populations mostly converged upon infection: while im-
mune gene expression profiles and respiratory burst

activity of head kidney leukocytes differed significantly
between controls, those parameters converged when fish
were infected with S. solidus from most origins (Fig. 4;
Additional file 1: Figure S1). This resembles the results
from among-lake reciprocal transplant experiments [46]
and comparisons of wild and laboratory-raised fish [47].
Consistently, these findings emphasize the importance of
environmental effects on immune gene expression rela-
tive to genetic adaptation. We infer from our data that
phenotypic plasticity in response to parasite infection is
a stronger contributor to immunological activation than
host genotype.

Parasite strain specific immune gene expression
Host immune gene expression did not depend on S.
solidus size or geographic cluster, but was parasite strain
specific. Immune gene expression profiles differed be-
tween NO and DE controls and if fish were infected with
Icelandic (ISC) S. solidus (contrast 1). Notably, Icelandic
sticklebacks seem to be genetically distinct from other
Atlantic populations [48].
Within DE hosts (contrast 1) and within NO hosts

(contrast 2), expression profiles of infected fish did not
differ between or within clustered parasite localities, but
only if sticklebacks were infected with S. solidus from
the Pacific (ECH) (Fig. 3). Those parasites originated
from the geographically most distant population, indicat-
ing the potential of local adaptation at this scale [33]. In-
fection with Pacific S. solidus was consistently associated
with high expression of most immune genes but low ex-
pression levels of mhcII. Major histocompatibility com-
plex (MHC) class II molecules are important
components of adaptive immunity and activate T-cell
mediated humoral immune responses [49]. In our exper-
iments, low expression of mhcII was often associated
with low expression of the gene of T-cell receptor sub-
unit TCR-β that is involved in MHC ligand binding
(Additional file 1: SI.4). If a speculative active
down-regulation of this arm of the immune system in
allopatric combinations results from a direct manipulation
by S. solidus remains to be answered.
In comparison to sham-exposed controls, Pacific S. solidus

infection caused high expression of pro-inflammatory and
complement genes in hosts of both populations (Additional
file 1: Tables S17 and S20). Genes of adaptive immunity were
highly expressed (foxp3) or down-regulated (tcr-β and mhcII)
in DE hosts. A simultaneous up-regulation of foxp3 is indica-
tive of a T regulatory response [47] that potentially protects
the host but may also enable parasite growth through
anti-inflammatory activities. Indeed, ECH S. solidus were
three times bigger in DE sticklebacks (Fig. 2). Pacific and
Atlantic S. solidus reached similar sizes in DE hosts but,
except for a potential involvement of tcr-β and/or mhcII,
distinct genes were differentially expressed between hosts
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infected with parasites from different populations (Additional
file 1: SI.4.3). We infer that (i) the relative parasite size and
immune gene expression profiles are similar in infected
fish of the two populations (similar parasite effect) but
that (ii) complex ecological and co-evolutionary adapta-
tions at different localities caused distinct levels of viru-
lence and resistance.

Geographic pattern of virulence
Parasite indices were strikingly similar between the two
host populations with regard to the geographic origin of
the parasite. S. solidus from Atlantic populations grew
consistently larger and Baltic parasites were the smallest
in both host types (Fig. 3). The geographic pattern of
virulence in both host types highlights the parasite main
effect. The greatest difference was the suppression of Pa-
cific S. solidus growth through Atlantic (NO) stickle-
backs relative to Baltic (DE) sticklebacks. Sticklebacks
from the Atlantic region likely originate from the Pacific
[50], so we suggest a relatively similar genetic back-
ground of Pacific and Atlantic G. aculeatus – S. solidus
species pairs. Such a similarity could explain the higher
resistance of Atlantic hosts against Pacific parasites. Baltic
stickleback populations, in contrast, form a cluster that is
distinct from European Inland populations [48]. This,
again, is a pattern that we also see in S. solidus growth
(Fig. 2). Thus, the geographic pattern of virulence corre-
sponds to the host’s recolonization history after the last
glaciation [48]. Based on these data and a previous study
[35], we hypothesize that the parasite’s phylogeny resem-
bles the phylogeny of its highly specific host. A genetic
basis could explain the same clusters of S. solidus growth
in both host types. Latitude or geographical distance be-
tween host and parasite source populations did not ex-
plain parasite size. This renders the question of what
could have selected for different S. solidus types.
We propose that S. solidus evolved different life-history

strategies in response to distinct selection by their hosts
and habitat-specific trade-offs. Baltic S. solidus from NST,
where S. solidus prevalence is extremely low [32], did not
reach the proposed minimum weight (50mg) for sexual
reproduction in final hosts [28, 51, 52]. Baltic S. solidus
from Swedish populations (OBB, GOT), where S. solidus
prevalence is actually high (T. Henrich; pers. comm.),
showed the same growth pattern. Hence, parasite preva-
lence might be one explanation [32, 34, 35, 41], but is cer-
tainly not the only cause for different growth strategies,
especially in the light of ecological effects on exposure risk
[33]. Another possible inference is that S. solidus from the
Baltic region reach sexual competence at lower weights
than those from other populations, which is supported by
the fact that smaller worms can reproduce [26]. Neverthe-
less, mapping variation on fitness differences in the nat-
ural habitat remains to be investigated.

Conclusions
We tested the specificity and immunological activation
of three-spined sticklebacks Gasterosteus aculeatus to-
wards various strains of the cestode Schistocephalus
solidus at different stages of the infection process. (i) S.
solidus infection rates were consistent among the two
host populations whereas (ii) the growth of the parasite
differed significantly among host populations and among
parasite strains from different geographic clusters.
Parasite indices were determined by main effects of the
host and the parasite with nonsignificant interaction ef-
fects. (iii) Immune gene expression profiles were
host-parasite combination specific, suggesting stronger
interaction effects at this level of the infection process.
Our results highlight the differences between mecha-
nisms of distinct stages of the infection process and pro-
vide new insights into cestode growth suppression as a
form of resistance [41].
We found constitutive immunological population dif-

ferences but similar responses to infection. Our data
provide evidence for (co-)evolutionary and ecological ef-
fects on immune functions that favour immunological
heterogeneity. We propose that sticklebacks and S.
solidus from a population with high S. solidus prevalence
(NO) co-evolved high virulence and high resistance. The
high resistance of NO hosts against S. solidus (host main
effect) was not strain specific on an intermediate geo-
graphic scale (across Western Europe). On a larger geo-
graphic scale, parasites from the most distant (Pacific)
population triggered elevated immunological parameters.
The analogous clustering of parasite growth according
to geography in the two host populations highlights the
strong contribution of the parasite main effect on infec-
tion phenotypes. We suggest that patterns of local adap-
tation are either weak, absent or might be found at large
scales [32–35].

Methods
Experimental hosts and parasites
Hosts and parasites were laboratory-raised first gener-
ation offspring from wild-caught individuals. Stickle-
backs originated from lake Großer Plöner See, Germany
(DE), and lake Skogseidvatnet, Norway (NO) and were
kept in the institute’s aquaria system at 18 °C and a
light:dark rhythm of 16:8 h. All fish were approximately
nine months old at the start of the respective experi-
ment. Sticklebacks were experimentally infected in 18
different combinations. We ran two experiments with
essentially the same procedures. Each experiment was
composed of three rounds using distinct fish families
and parasite sibships. ‘Fish family’ refers to offspring
from one pair of sticklebacks; ‘parasite sibship’ refers to
offspring from one pair of worms. Parasite sibships from
one origin are here referred to as ‘strain’. Sham-exposed
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controls were included in each round. A total of 1345
fish were analysed (Table 1; Table S1). We tested for
host, parasite and host-parasite interaction effects using
contrast 1. The respective infection experiments were
run simultaneously and involved the exact same parasite
sibships for both host populations, which should reduce
any confounding factors. Parasite effects were further
tested within each host type by using S. solidus strains
from across the Northern Hemisphere (Table 1; Figs. 1
and 2). Schistocephalus solidus plerocercoids had been
sampled from naturally infected sticklebacks from nine
different locations (Fig. 2; Additional file 1: Table S1).
The sampling sites cover four geographic areas corre-
sponding to G. aculeatus phylogeny: the Atlantic region
(NU, ISC, SKO), the Baltic region (OBB, NST, GOT),
European Inland (SP, IBB), and the Pacific (ECH). The
parasites were bred in vitro in the laboratory in 2012–
2014. The eggs were kept at 4 °C in the dark.

Infection experiments
S. solidus eggs developed at 20 °C for three weeks. A 3:8
h light:dark cycle and another light stimulus initiated
hatching of the first larval stage (coracidia). Single cora-
cidia were immediately fed to Macrocyclops albidus co-
pepods (first intermediate hosts) from laboratory
cultures. Copepods were kept at 16:8 h light:dark cycles
at 18 °C and fed with Paramecium three times a week.
Infection success was determined by inspection for pro-
cercoids (second larval stage) in vivo 7 to 11 DPE. On
day 16, sticklebacks were exposed to single infected co-
pepods or uninfected controls. By this time, S. solidus is
infective to its second intermediate host and differences
in infection success are unlikely to be caused by vari-
ation in ontogeny [53, 54]. The fish were starved for two
days and isolated in individual tanks. We assigned num-
bers to each treatment group, i.e. worm sibship and the
control, and used a random design for the exposure to
avoid any observer bias. The fish were transferred to 16
L aquaria according to their numbers 24 h after expos-
ure. The water was sieved in order to determine the
number of ingested copepods per treatment. Stickle-
backs were kept in aerated aquaria connected to a
flow-through freshwater system at 18 °C and a light:dark
rhythm of 16:8 h. The density of 20 individuals per
aquarium was maintained by replacing dead fish with
spine-clipped sticklebacks from the same fish family.
The fish were fed with frozen Chironomidae larvae

three times a week but starved for two to four days be-
fore dissection. We dissected the fish in the laboratory
55 (+/− 2) DPE. Fish of every treatment group per ex-
periment were dissected on each day. Sticklebacks were
euthanized with MS222 (1 g/L), weighed and measured
(standard length, i.e. without tail fin). The head kidneys,
spleen, liver, gonads, and, if present, worms were

weighted to the nearest 0.1 mg. The carcasses were
stored on ice upon dissection. Head kidney cells were
immediately prepared for flow cytometric analyses.
Spleen, liver and worms were transferred to RNAlater®
(Sigma R0901; tenfold volume per weight), kept at 4 °C
for one day and stored at − 20 °C until further use.

Phenotypic parameters
Infection rates were calculated with respect to the num-
ber of copepods that had not been ingested and include
data from double infected hosts and fish that died before
the day of dissection. The parasite index (PI) is a proxy
for parasite size and host exploitation [32] and is calcu-
lated as the proportion of the total weight of an infected
fish accounted for by the parasite [27]. The condition
factor [42] and the hepatosomatic index (HSI) [43] are
estimates of host condition. The splenosomatic index
(SSI) [55] and head kidney index (HKI) were used as
first proxies of immunological activation. The head kid-
ney is the major immune organ in bony fish [44]. Thus,
head kidney leukocytes (HKL) were studied in more de-
tail [56] (Additional file 1: SI.3). Briefly, total cell num-
bers were determined by a modified protocol [57] of the
Standard cell dilution assay [58]. Granulocytes and leu-
kocytes were identified according to their FSC/SSC pro-
files using a Becton Dickinson FACS Calibur and BD
CellQuest™ pro software (Version 6.0). We calculated a
granulocyte to lymphocyte ratio (G/L ratio) as a rough
activity estimate of the innate versus the adaptive im-
mune system [59], and used a lucigenin-enhanced
chemiluminescence assay [59, 60] to measure the phago-
cytic capacity of HKL by quantifying the respiratory
burst reaction in relative luminescence units (RLUs).
More details can be found in Additional file 1: SI.3.

Gene expression analyses
Differential gene expression of S. solidus infected fish
and sham-exposed controls was studied by quantitative
real time reverse transcription PCR (RT-qPCR). Total
RNA from spleen was extracted with the NucleoSpin®96
Kit (Macherey-Nagel) according to the manufacturer’s
manual. Samples were thawed at 4 °C, transferred to
new tubes, supplied with ß-mercaptoethanol (1% v/v)
containing lysis buffer and homogenized for 2 × 3min at
30 Hz using Tissue Lyser II (Qiagen). A DNase digestion
step was included. RNA was eluted with 40 μL
RNase-free H2O. RNA concentration and quality were
measured spectrophotometrically (NanoDrop; Thermo
Scientific). Samples with concentrations below 6 ng/μL
or A260/A280 ratios < 1.9 were excluded. Reverse tran-
scription was performed on 6.4 ng of total RNA using
the Omniscript® RT Kit (Qiagen) with oligo dT priming
and RNase inhibition (0.2 μL per reaction) at 37 °C for
60 min. 12.8 μL of sample RNA were used if the
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concentration was below 39 ng/μL. The cDNA was
stored at − 20 °C and diluted 1:5 with RNase-free H2O
before pre-amplification. Pre-amplification was per-
formed with TaqMan® PreAmp Master Mix (Applied
Biosystems) according to the manufacturer’s instructions
with 14 cycles. The PCR product was diluted 1:5 with
low TE buffer. Differences in transcription levels were
tested using 96.96 Dynamic Array IFCs on a Biomark™
HD system (Fluidigm) according to the manufacturer’s
protocol. EvaGreen was used as DNA binding dye. Sam-
ples were spread across four IFCs. All targets for a given
sample were included in the same run and measured in
triplicates (technical replicates). Inter-run calibrators, di-
lution series, and negative controls were included on
each IFC. Fluidigm Analysis software was used to assess
melting curves of all qPCR assays in order to confirm
specific amplification. Samples with suspicious Tm pro-
files in more than two targets or failed amplifications
were excluded. Qbase + 3.0 (Biogazelle) was used for cal-
culation of calibrated normalized relative quantities
(CNRQ values). Replicates with variability (difference in
quantification cycle, Cq) > 0.5 and wells with Cq > 28
were excluded, resulting in 94% pass rate. The average
Cq was calculated as arithmetic mean; targets were
scaled to average. We determined target and run specific
amplification efficiencies. Expression stability of putative
reference targets was inferred from geNorm M and Co-
efficient of Variation (CV) values [61, 62]. The most sta-
bly expressed reference targets rpl13 and ubc (M =
0.133, CV = 0.046) were used for normalization. CNRQs
were log10 transformed for analysis. Three missing
values from gene csf3r and one missing value from tlr2
were replaced by the mean expression of the respective
gene. We analysed gene expression data of a total of 284
individuals from 18 different combinations including
controls.

Genes targeted in expression analyses
We used 28 different primer pairs targeting mRNA from
immune related genes and putative reference genes
(b2m, ef1a, rpl13a, ubc; described in [63]). Targets of
interest covered genes of innate immunity (cd97, csf3r,
il-1β, marco, mif, mst1ra, nkef-b, tnfr1, saal1, tlr2,
p22phox, sla1), adaptive immunity (cd83, foxp3, igm,
il-16, stat4, stat6, tgf-β, mhcII, tcr-β) and the comple-
ment system (cfb, c7, c9). Primers are described in [46,
47, 64] and in Piecyk, Ritter & Kalbe (in review); the de-
tailed information can be found in Additional file 2.

Statistical analyses
Statistical analyses were performed with R v. 3.2.0; [65].
We used (generalized) mixed effects models (GLMMs)
from nlme [66] and lme4 [67] to include random terms
and fixed effects according to the experimental design.

Infection rates were analysed by using the number of in-
fected individuals as proportional data in GLMMs with
binomial error structure and logit link function. The
interaction of host and parasite was included in contrast
1 (Table 1). Genotypic variation was generally accounted
for by including parasite sibship or ‘round’, i.e. worm sib-
ship x fish family combination, as random term. Models
for fish parameters included the sex of the fish as an-
other random effect to account for sex-specific differ-
ences. Model selection was based on the Akaike
information criterion (AIC) and log likelihood ratio tests.
Whenever needed, we incorporated heteroscedasticity in
the model fit by definition of the varIdent variance struc-
ture for factorial variables. R2 values of mixed effects
models [68, 69] were calculated with function sem.mo-
del.fits() from piecewiseSEM [70]. Significantly different
groups were identified with glht() post hoc tests from
multcomp [71] using Tukey’s all-pair comparisons or
user defined contrasts according to the respective hy-
pothesis. Multiple testing was accounted for by false dis-
covery rate (FDR) correction [72]. Gene expression data
was derived from infected and control fish from each
family. Differential immune gene expression was ana-
lysed between groups within contrasts by multivariate
statistics on data of all 24 immune genes and, if signifi-
cant, according to functional groups (innate, adaptive,
complement). Non-parametric permutational multivari-
ate analyses of variance (PERMANOVA [72]) were cal-
culated on Euclidian distance matrices [73] using
function adonis() from vegan [74]. For each test, a random
subset of 10,000 permutations was used; permutations
were constrained within ‘round’. The weight of the fish
was included as covariate to account for size related ef-
fects. Post hoc pairwise comparisons were FDR-corrected
[72]. If multivariate statistics indicated significant differ-
ences, we used linear mixed models (LMMs) to identify
which genes were differentially expressed. Again, we
accounted for unequal variances and used FDR correction
due to multiple testing. In each case, the raw p-values are
reported. Data was plotted using ggplot2 [75]; colours for
plots and figures were chosen from the ColorBrewer pal-
ette [76]. Multivariate patterns in gene expression were vi-
sualized by non-metric multidimensional scaling (NMDS)
on Euclidian distances and two dimensions (function
metaMDS()); the contribution of each gene was plotted by
use of the envfit() function (both implemented in vegan).
The maps package [77] was used to draw the map of the
sampling sites.

Additional files

Additional file 1: Supplementary information. Supplementary tables
and figures for ‘Specificity of resistance and geographic patterns of
virulence in a vertebrate host-parasite system’. (PDF 2743 kb)

Piecyk et al. BMC Evolutionary Biology           (2019) 19:80 Page 11 of 14

https://doi.org/10.1186/s12862-019-1406-3


Additional file 2: Primer information. The primer information is cited
from Piecyk, Ritter & Kalbe (in review). (PDF 108 kb)
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