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Introduction: Limited information is available on renal osteodystrophy (ROD) and vascular calcification

(VC) during early chronic kidney disease (CKD). This study was designed to evaluate ROD and VC in 32

patients with CKD stages II to IV.

Methods: Patients underwent dual-energy X-ray absorptiometry (DXA) for assessment of bone mineral

density (BMD) and trabecular bone score (TBS), thoracic computed tomography for VC scoring using the

Agatston method, and anterior iliac crest bone biopsy for mineralized bone histology, histomorphometry,

and Fourier transform infrared spectroscopy (FTIR). Classical and novel bone markers were determined in

the blood.

Results: Mean estimated glomerular filtration rate (eGFR) was 44 � 16 ml/min per 1.73 m2. Of the patients,

84% had low bone turnover. In Whites, eGFR correlated negatively with the turnover parameter activation

frequency (Ac.f) (r �0.48, P ¼ 0.019) and with parameters of bone formation. Most patients had VC (>80%)

which correlated positively with levels of phosphorus, c-terminal fibroblast growth factor-23, and activin.

Aortic calcifications (ACs) correlated negatively with bone formation rate (BFR) and Ac.f (rho �0.62, �0.61,

P < 0.001). TBS correlated negatively with coronary calcification (rho �0.42, P ¼ 0.019) and AC (rho �0.57,

P ¼ 0.001). These relationships remained after adjustment of age. The mineral-to-matrix ratio, an FTIR

metric reflecting bone quality, was negatively related to Ac.f and positively related to AC.

Conclusion: Low bone turnover and VC are predominant in early stages of CKD. This is the first study

demonstrating mineral abnormalities indicating reduced bone quality in these stages of CKD.
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A
pproximately 37 million American adults (1 in
7) have CKD.1 CKD-mineral and bone disorder

(CKD-MBD) is seen early during loss of kidney
function and almost in all dialysis patients. ROD
represents the bone manifestations of CKD-MBD; it is
well described in advanced CKD stages,2 however, it
develops early during the course of loss of kidney
function.3 In 2006, ROD was described as abnormal-
ities in bone turnover, mineralization, and bone
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balance/volume.4,5 It may present with high or low
bone turnover which controls bone volume
changes.6,7 If there is high turnover, there will be
osteoporosis if resorption exceeds formation (negative
balance), or there will be osteosclerosis if formation
exceeds resorption (positive balance).8 Limited infor-
mation is available on bone turnover and bone
quality parameters in the early stages of CKD.
Changes in bone quality have been observed with
lower bone turnover and in elderly patients.6 FTIR is
a very sensitive method of assessing material prop-
erties that have recently been used to study bone
quality in patients with osteoporosis.9–11 We use it
here for the first time in patients with CKD.

Determination of areal BMD by DXA is the most
commonly used method for measuring bone loss in
Kidney International Reports (2022) 7, 1016–1026
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Figure 1. Flowchart for recruitment, screening, and enrollment. CKD, chronic kidney disease.
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patients with CKD.12,13 A relatively new addition to the
use of lumbar DXA images is measurement of the
TBS.14,15 This score provides information on vertebral
trabecular texture reflecting bone microarchitecture
and correlates well with trabecular bone volume in
patients with CKD.16 Moreover, an inverse relationship
between TBS and AC was reported.17

ROD not only presents with abnormalities in turn-
over, mineralization, and volume but also is associated
with increased risk of cardiovascular calcification18 and
its related mortality.19–23 The correlations between
cardiovascular calcifications and bone turnover ab-
normalities have been reported in patients with
advanced CKD.23,24 However, cardiovascular calcifica-
tions may occur early in patients with CKD, and the
relationship between ROD and cardiovascular calcifi-
cation in patients with stages II to IV CKD is not well
documented. The aim of the study was to compre-
hensively characterize the CKD-MBD syndrome in
contemporary mild-to-moderate CKD. This includes
examining bone quality in these patients.
METHODS
Patients were recruited from the CKD clinic at the
University of Kentucky, from February 2016 to March
2018. Flowchart for recruitment, screening, and
enrollment is shown in Figure 1.

Patients agreed to undergo screening examinations
including blood drawing, DXA, non-contrast thoracic
computed tomography, and a bone biopsy for
Kidney International Reports (2022) 7, 1016–1026
histomorphometry and FTIR. In our clinic, the patients
are routinely treated following the Kidney Disease:
Improving Global Outcomes guidelines for the man-
agement of CKD-MBD.25 The study was reviewed and
approved by the Institutional Review Board at the
University of Kentucky and was conducted according
to the Declaration of Helsinki. Inclusion and exclusion
criteria were applied to rule out patients with other
causes of metabolic bone disease. Inclusion criteria
were age $ 21 years, CKD stages II to IV, stable
creatinine level for 3 months before study participa-
tion, willingness, and mental competence to participate
in the study. Exclusion criteria were previous dialysis;
organ transplantation; parathyroidectomy; pregnancy
or lactation; allergy to tetracycline or demeclocycline;
life-threatening comorbid conditions such as HIV,
active infection, systemic illnesses, active or chronic
liver disease; malabsorption; thyrotoxicosis; malig-
nancy; chronic alcoholism; and/or drug addiction.
Moreover, patients were ruled out if they were
receiving medications that might affect bone meta-
bolism (except oral calcium and parent vitamin D) such
as vitamin D analogs, glucocorticoids, or any other
immunosuppressants, bisphosphonates, calcimimetics,
and systemic anticoagulants.

All patients underwent (i) a blood draw for deter-
mination of serum parameters; (ii) DXA of the femoral
neck, total hip, and lumbar spine including measure-
ment of the TBS; (iii) electrocardiogram-synchronized
non-contrast thoracic computed tomography for coro-
nary and aortic calcium measurement; and (iv) anterior
1017



Table 1. Bone histomorphometric results (N ¼ 32)
Median (range) Normal values

Turnover

Activation frequencya

(number/yr)
0.22 (0.001–0.80) 0.49–0.72

Bone formation rate/bone
surfacea (mm3/cm2/yr)

0.64 (0.001–1.94) 1.80–3.80

Number of osteoblasts/bone
perimeter (number/100 mm)

7.77 (4.23–159) 10–200

Number of osteoclast/bone
perimeter (number/100 mm)

9.35 (4.23–25.8) 5–53

Mineralization

Osteoid thickness (mm) 6.42 (2.87–15.59) <20

Mineralization lag timea (d) 19.89 (0.41–134) <100

Structure

Bone volume/tissue volume (%) 18.22 (10.49–28.52) 16.8–22.9

Trabecular thickness (mm) 107 (61.24–151) 99–142

Trabecular separation (mm) 482 (304–717) 280–658

Cortical thickness (mm) 252 (121–575) 225–440

Cortical porosity (%) 6.11 (2.39–20.74) <10

aN ¼ 31 patients; 1 patient had a single label only.
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iliac crest bone biopsy after double tetracycline label-
ing for mineralized bone histology, histomorphometry,
and FTIR.

Determinations of Serum Parameters

Blood samples were withdrawn after an overnight
fasting, on the day of the bone biopsy. Serum creati-
nine, calcium, and phosphorus levels were measured
by automated techniques. eGFR was determined using
the Modification of Diet in Renal Disease formula.
Intact parathyroid hormone (iPTH) was measured by a
radio-immunometric assay (Scantibodies, Santee, CA);
normal range: 14 to 66 pg/ml; intra-assay coefficient of
variation: <5%. Serum 25-hydroxy vitamin D con-
centrations were measured by electro-
chemiluminescence immunoassay on a Roche Elecsys
10100/201 system (Roche Diagnosis Elecsys, Man-
nheim, Germany). Vitamin D deficiency was defined
as <10 ng/ml and insufficiency as <30 ng/ml. Activin
A levels were measured using R&D Systems kits
(Indianapolis, IN), sclerostin levels using Biomedica
kits (Vienna, Austria), fibroblast growth factor-23 us-
ing Kainos kits (Tokyo, Japan), a-Klotho using IBL kits
(Fujioka-Shi, Gunma, Japan), and bone-specific alkaline
phosphatase and tartrate-resistant acid phosphatase 5b
using Quidel kits (San Diego, CA). All measurements
were performed in duplicate using enzyme-linked
immunosorbent assay.

Measurements of BMD and TBS

DXA scans were performed by the same operator using
the same machine for the duration of the study. An
iDXA (GE Medical Systems Lunar, Madison, WI) was
used. T scores for the DXA measurements are reported
by the machine and the reference population used has
been published previously.26 The coefficients of vari-
ation for DXA measurements were spine 1.35% and hip
0.52%. BMD absolute measurements were calculated as
the average of the L1 through L4 values and as the
average of bilateral femoral neck sites and total hip
regions. The TBS of lumbar spines 1 to 4 was calculated
from the same DXA scans using TBS iNsight software
(version 2.2; Medimaps Group, Geneva, Switzerland).
TBS results are classified as normal (TBS $ 1.35),
partially degraded (1.21–1.34), or degraded (#1.20)
microarchitecture as previously reported.15 The coef-
ficient of variation for TBS was 1.93%.

Computed Tomography for Cardiovascular

Calcium Assessment

Prospective electrocardiogram-synchronized non-
contrast computed tomographic scans of the thorax
were obtained with a Siemens FORCE scanner (Siemens
Healthineers, Erlangen, Germany). Contiguous 3-mm-
1018
thick axial images with a displayed field of view
optimized for visualization of the heart and aorta were
obtained within a z-axis range from the level of the
proximal great vessels to the diaphragmatic hiatus. A
kVp of 120 and automated mA modulation were uti-
lized for all scans. Estimated effective radiation doses
were normative for a seventh-generation scanner.
Agatston calcium scoring and calcium volume mea-
surements27 for both the aorta and the coronary arteries
were performed by an experienced cardiovascular
radiologist using a United States Food and Drug
Administration–approved semiautomated algorithm
(Aquarius Intuition, Intuition AI, Durham, NC). Agat-
ston scores were stratified according to severity (risk
for cardiovascular events); high severity (>400), mod-
erate severity (100 < Agatston score # 400), and low
severity (1–100).28,29
Mineralized Bone Histology and Bone

Histomorphometry

All bone samples were processed and analyzed at the
Bone Diagnostic and Research Laboratory, University
of Kentucky. This laboratory is accredited by the Col-
lege of American Pathologists which conducts regular
checkups for quality control and assurance. For double
labeling of bone, patients were given oral demeclocy-
cline hydrochloride 300 mg twice daily for 2 days
followed by a 10-day free interval and then tetracycline
hydrochloride 500 mg twice daily for 4 days. Anterior
iliac crest bone biopsies were performed after an
additional 4 days using a “J” 8 gauge needle (TRAP-
SYSTEM, Boca Raton, FL) with a vertical approach as
previously described.2,7 Bone specimens were pro-
cessed without removal of the mineral as described
Kidney International Reports (2022) 7, 1016–1026



Table 2. Demographics and clinical data (N ¼ 32 subjects)

Age (yr) 61.1 � 11.3

Sex Male 13 (40.6)

Female 19 (59.4)

Race White 23 (71.9)

Black 8 (25.0)

Asian 1 (3.1)

BMI 35.8 (23.8–51.4)

CKD stages Stage II 3 (9.4)

Stage III 24 (75)

Stage IV 5 (15.6)

Smoking Current smoker 6 (18.8)

Ex-smoker 6 (18.8)

Nonsmoker 20 (62.4)

Hypertension 31 (96.9)

Diabetes 19 (59.4)

Dyslipidemia 14 (43.8)

Coronary artery disease 6 (18.8)

eGFR (ml/min per 1.73 m2) 44.1 � 15.9

Medication usage

Parent vitamin D 12 (37.5)

Calcium supplements 2 (6.3)
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previously.7 Bone histomorphometry for static and
dynamic parameters of bone structure, formation, and
resorption was done at a magnification �200 using the
Osteoplan II image analysis system.30,31 All measured
histomorphometric parameters are in compliance with
the recommendations of the nomenclature committee of
the American Society for Bone and Mineral
Research.32,33 ROD was assessed by evaluation of its
components “Turnover, Mineralization, and Vol-
ume.”4,5 Bone turnover was assessed by Ac.f, BFR/bone
surface, and numbers of osteoblasts and osteoclast/bone
perimeter based on published normal ranges2,7,34–36

(shown in results; Table 1). Mineralization was
assessed by osteoid thickness and mineralization lag
time. Osteomalacia was defined as osteoid thickness >
20 mm combined with mineralization lag time > 100
days.2 Bone volume was assessed by cancellous bone
volume/tissue volume, trabecular thickness and sepa-
ration, and cortical thickness and porosity
ACEI/ARBs 18 (56.3)

CCBs 12 (37.5)

BBs 15 (46.9)

Diuretics 15 (46.9)

ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker;
BB, b-blockers; BMI, body mass index; CCB, calcium channel blocker; CKD, chronic
kidney disease; eGFR, estimated glomerular filtration rate.
Results presented as n (%) or mean � SD.
FTIR

FTIR is an established technique for analyzing various
tissues in health and disease; it is especially useful for
quantifying various bone mineral and matrix parame-
ters reflecting bone quality and fracture resistance.37–40

Bone mineral parameters included mean values of the
mineral-to-matrix ratio, carbonate-to-phosphate ratio,
and c-axis mineral crystal length (crystallinity). The
bone matrix parameter was the ratio of mature to
immature collagen crosslinks (crosslinking ratio).41

FTIR was performed on bone samples using our pub-
lished methodology.11
Statistical Analyses

Results are given as mean � SD or median and range
when values were not normally distributed. Categorical
variables are expressed as number and percentages.
Spearman rho correlation is used to assess the correla-
tion between variables. Mann-Whitney test and
Kruskal-Wallis test are used to compare non-normally
distributed continuous variables between groups. The
one-way analysis of variance is used to determine
whether there are any statistically significant differ-
ences between the means of $2 categories. Non-
normally distributed parameters are log-transformed
for multivariable regression analysis. Univariable and
multivariable analyses of clinical, routine laboratory,
bone, and cardiovascular calcification data are per-
formed. We adjust for covariates that might impact the
bone and cardiovascular calcification in a multivariable
analysis. All statistical analyses are performed using
SPSS version 24 (IBM Corp., Armonk, NY). A P # 0.05
is considered statistically significant. RStudio version
Kidney International Reports (2022) 7, 1016–1026
1.4.1717 (RStudio Public-benefit Corp., Boston, MA)
was used to create the violin plots.
RESULTS
A total of 32 patients with CKD were included in the
study with mean eGFR � SD of 44.1 � 15.9 ml/min per
1.73 m2, range: 16 to 85. Most of the patients were
females (59%), White (72%), and nonsmokers (62%).
Of the females, 3 were under 55 years of age, and none
of them still had regular cycles. The most common
comorbidities were hypertension, diabetes, dyslipide-
mia, and coronary artery disease. The demographic,
clinical, medication usage, and laboratory characteris-
tics are shown in Tables 2 and 3. No patient required
treatment with bicarbonate.

Of the patients, 84% had low bone turnover. Low
bone turnover was found as early as GFR of 85 and in
the large majority of patients with eGFR of 20 to 60 ml/
min per 1.73 m2. Median values for the bone turnover
parameters Ac.f, BFR/bone surface, and number of os-
teoblasts/bone perimeter were clearly below normal
ranges (Table 1). These low values were less pro-
nounced with lower eGFR (r with Ac.f �0.48, P ¼
0.019). This was observed in non-Black patients only
and remained significant after adjusting for age and
diabetes. Patients with diabetes tended to have lower
1019



Table 3. Serum biochemical data
Serum levels Normal values

Serum calcium (mg/dl) 9.4 � 0.4 8.5–10.3

Serum phosphorus (mg/dl) 3.5 � 0.7 2.5–4.5

Serum albumin (g/dl) 3.7 � 0.4 3.5–5.0

Vitamin D level (ng/ml) 31 (13–88) >30

iPTH (pg/ml) 49 (16–221) 14–66

BSAP (U/l) 22.12 (11.17–42.57) 18–75

TRAP-5b (U/l) 2.27 (1.34–6.81) 1.2–6.7

Intact FGF23 (pg/ml) 15.95 (3.20–45.40) N/A

c-Terminal FGF23 (pg/ml) 36.30 (12.20–914.6) N/A

Klotho (pg/ml) 329.0 (179.2–603.5) 239–1266

Sclerostin (pg/ml) 291.6 (84.10–781.5) 245–1182

Activin (mg/ml) 465.2 (219–896.5) 142–753

BSAP, bone-specific alkaline phosphatase; FGF, fibroblast growth factor; iPTH, intact
parathyroid hormone; max, maximum; min, minimum; N/A, not applicable; TRAP,
tartrate-resistant acid phosphatase.
Results presented as mean � SD or median (min–max).

Table 5. Coronary and aortic calcification scores

CAC score 33.5 (0–3410)

CAC severity category Zero CAC 28.1%
Low >0–100 28.1%

Moderate 100–400 9.4%
High >400 28.1%

Coronary artery calcium volume score 28.3 (0–2707)

Aorta calcification score 150 (0–5076)

Aorta calcification volume 144 (0–4073)

CAC, coronary artery calcification.
One patient had coronary artery graft so CAC measurements were not obtainable.

CLINICAL RESEARCH A El-Husseini et al.: Bone and Vascular Calcifications in CKD Patients
bone turnover than those without (Ac.f. 0.25 number/
yr vs. 0.29 and BFR/bone surface 0.65 vs. 0.76 mm3/
cm2/yr), but these differences did not reach signifi-
cance. Similar relationships were observed in non-
Black patients between eGFR and osteoid surface,
osteoid volume, and BFR (Table 4). These relationships
were not found in Black patients. Of the patients, 26%
had cortical thickness below normal and 22% had
increased cortical porosity. Mineralization defect was
not found in any patient. No patient exhibited woven
osteoid or peritrabecular fibrosis, and there was no
stainable aluminum or any bone marrow abnormality.
The bone histomorphometry results are shown in
Table 1.

The majority of the patients had coronary artery
calcification (CAC) (72%; Table 5). CAC correlated
positively with levels of serum phosphorus, c-terminal
fibroblast growth factor-23, and activin (rho 0.378, P ¼
0.047; rho 0.370, P ¼ 0.044; and rho 0.407, P ¼ 0.026,
respectively). Patients with CAC > 400 had median
iPTH of 39 pg/ml (range 16–68) compared with 60 pg/
ml (range 23–221) in patients with CAC < 100 (P ¼
0.007). There was no correlation between serum iPTH
levels and AC scores.

CAC and AC scores were positively correlated (rho
0.535, P ¼ 0.002). AC scores correlated positively with
Table 4. Linear regression analysis of histomorphometric
parameters with eGFR in non-Blacks

Dependent variable r with eGFR

Linear regression adjusted for age and
diabetes

b 95% CI P value

Osteoid surface/bone surface �0.58 �0.20 �0.35 to �0.05 0.011

Osteoid volume/bone volume �0.48 �0.03 �0.06 to 0.00 0.064

Bone formation rate/bone surface �0.50 �0.03 �0.04 to �0.01 0.009

Activation frequency �0.47 �0.01 �0.02 to �0.003 0.009

CI, confidence interval; eGFR, estimated glomerular filtration rate.
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age (rho 0.516, P¼ 0.003) as did CAC scores but only in
females (rho 0.529, P ¼ 0.024). AC scores were higher
in patients with coronary artery disease (P ¼ 0.018),
dyslipidemia (P ¼ 0.016), and smokers (P ¼ 0.036).
These relationships showed a trend with CAC as well,
but limited number of patients and inability to measure
CAC in patients with coronary stents limited the sig-
nificance of the findings.

AC correlated negatively with bone turnover pa-
rameters (BFR [rho �0.621, P < 0.001] and Ac.f
[rho �0.606, P < 0.001]). These relationships remained
after adjusting for age and diabetes (adjusted B relative
to log-transformed AC: for Ac.f �2.1, 95% CI �3.54
to �0.63, P ¼ 0.007; for BFR/bone surface �1.04, 95%
CI �1.70 to �0.37, P ¼ 0.004). CAC scores had a
negative correlation with erosion depth (mm)
(rho �0.420, P ¼ 0.021).

All patients had normal serum calcium and phos-
phorus levels. Serum iPTH and 25-vitamin D levels
were within the normal range in the majority of pa-
tients (75% and 65%, respectively). In 10 patients with
iPTH above normal, 8 had low bone turnover by his-
tology. Serum phosphorus and 25-vitamin D levels did
not correlate with any bone parameters, whereas serum
calcium showed a weak positive correlation with bone
volume (r 0.414, P ¼ 0.019) and trabecular thickness (r
0.369, P ¼ 0.038). There was no significant relationship
found between serum sclerostin and the histomorpho-
metrically measured bone parameters. Levels of serum
iPTH, phosphorus, and c-terminal fibroblast growth
factor-23 correlated negatively with eGFR (rho �0.43,
P ¼ 0.014; r �0.493, P ¼ 0.006; rho �0.438, P ¼ 0.012,
respectively).

BMD measured by DXA was normal in the majority
of patients; only 6.5% of the patients had osteoporosis
at the femoral neck, whereas no patient had osteopo-
rosis at the lumbar spine or total hip. Osteopenia was
found in 44.8% of the patients at total hip, 35.5% at
femoral neck, and 9.7% at lumbar spine. The only
histomorphometric parameter that correlated with
DXA-BMD measurements in all patients was trabecular
separation (rho �0.438, P ¼ 0.014, rho �0.394, P ¼
0.035 for lumbar and hip t scores, respectively). BMD t
scores of the femoral neck, total hip, and lumbar spine
Kidney International Reports (2022) 7, 1016–1026



Figure 2. Correlation between trabecular bone score and aorta Agatston score log. AC, aortic calcification.
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correlated positively with a-klotho (rho 0.507, P 0.004;
rho 0.390, P 0.033; and rho 0.425, P 0.015,
respectively).

The mean TBS score was 1.35 � 0.12. Of all the
patients, 56% had normal TBS ($1.35), 13% had
TBS # 1.20, and 31% had TBS between 1.21 and 1.34.
TBS correlated negatively with age (r �0.393, P ¼
0.026) and positively with body mass index (r 0.394,
P ¼ 0.026). TBS was negatively correlated with CAC
and AC scores (rho �0.42, P ¼ 0.019 and �0.57, P ¼
0.001, respectively) (Figure 2). The inverse relationship
between TBS and both CAC-score and AC-score
remained significant after adjustment for age
(b �4.11, P ¼ 0.046 and b �3.03, P ¼ 0.036,
respectively).

The mean FTIR values were within the normal
range; however, some patients were below or above the
normal range (Table 6). The mineral-to-matrix ratio was
negatively related to Ac.f (r �0.421, P ¼ 0.016) and
positively related to AC (rho 0.379, P ¼ 0.035) (Figure
3a and b). Of 27 patients with low turnover, 6 (22%)
had abnormally high mineral-to-matrix ratio, and no
patient with normal-high turnover had abnormally
high mineral-to-matrix ratio. Additional significant
correlations between FTIR results and age, race,
Table 6. FTIR results
Patients

(mean ± SD)
Normal

(mean ± SD)
% Below
normal

% Above
normal

Mineral-to-matrix ratio 4.55 � 0.49 4.54 � 0.36 25 18.8

Carbonate-to-
phosphate ratio

0.95 � 0.08 0.95 � 0.05 18.8 25

Collagen crosslinks 3.50 � 0.32 3.56 � 0.21 28.1 21.9

Crystal size 1.18 � 0.06 1.15 � 0.04 6.3 34.4

FTIR, Fourier transform infrared spectroscopy.
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histomorphometric parameters of bone turnover, AC,
and serum biochemical parameters are shown in
Table 7.
DISCUSSION
ROD is characterized as a disorder of bone turnover,
mineralization, and balance or volume.4,5 Turnover is
the most important component of ROD because it re-
sults in increased volume when balance is positive and
decreased volume when balance is negative. In this
study, low bone turnover, abnormal bone quality, and
cardiovascular calcification were very prevalent in
patients with CKD stages II to IV. In dialysis patients,
both low (5%–58%) and high turnover (22%–24%)
have been described.2,3,42–44 The onset and develop-
ment of ROD during the course of CKD progression are
not well known. There are limited bone histo-
morphometric data from patients with early
CKD43,45,46 and no data on bone quality. More than 4
decades ago, Malluche et al.3 studied bone histo-
morphometry in 50 patients with CKD with an eGFR
ranging from 6 to 80 ml/min per 1.73 m2. At that time,
high turnover and mineralization defect were found in
the majority of patients. This could be explained by
the fact that vitamin D deficiency was common and
aluminum intoxication was not uncommon at that
time. More recently, Drüeke and Massy44 discussed
the changing presentation of ROD with progression of
CKD stages over the last several decades and described
the transition from low to high turnover with pro-
gressive loss of kidney function. Brazilian in-
vestigators have also reported that low turnover ROD
is common in patients with early stages of CKD.45–47

Conversely, Neto et al.48 published turnover data
1021



Figure 3. Relationship of mineral-to-matrix ratio with bone turnover and aortic calcification. Violin plots showing individual values and range of
low and high mineral-to-matrix ratio groups and their relationship with activation frequency (a, upper panel) and aortic calcium score (b, lower
panel). Red diamonds represent mean values.
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from patients with CKD stages III to IV and found a
high percentage of patients with normal bone histol-
ogy. These results could be explained by different
patient characteristics, different histologic technique,
different normal populations, or normal range defini-
tion, and/or other factors.
Table 7. Significant correlations with FTIR parameters
Mineral-to-matrix ratio

r P value

Age 0.456 0.009

Race (non-Black/Black)

Osteoid volume/bone volume �0.359 0.044

Osteoid thickness �0.373 0.035

Bone formation rate/bone surface �0.378 0.039

Activation frequency �0.421 0.016

Aortic calcification score 0.379 0.035

Aortic calcification volume 0.402 0.025

BSAP �0.428 0.016

Sclerostin 0.464 0.007

BSAP, bone-specific alkaline phosphatase; FTIR, Fourier transform infrared spectroscopy.
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In the present study, a direct inverse relationship
between eGFR and turnover was found. This relation-
ship remained after adjustment for age and the pres-
ence of diabetes. Most of the patients with CKD stages
II to IV (84%) had low bone turnover without use of
vitamin D analogs, calcium-sensing receptors, or
Collagen crosslinks Crystal size

r P value r/mean P value

(1.195/1.144) 0.04

0.372 0.039

0.363 0.045

0.381 0.032
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antiresorptive therapies. These results indicate that
medications aimed at suppressing PTH activity and/or
bone turnover in patients with mild-to-moderate CKD
should not be routinely used. In our patients with
moderately abnormal iPTH, 80% had low bone turn-
over by histology. Secondary hyperparathyroidism
may be an adaptive mechanism to guard against low
bone turnover, and a higher PTH level is required to
overcome the apparent PTH resistance with the goal of
maintaining normal BFR as CKD progresses.

In our cohort, eGFR correlated negatively with bone
turnover parameters only in non-Black patients.
However, it did not correlate with the bone histo-
morphometric values when we included Blacks. We
previously reported that among dialysis patients,
Whites exhibit predominantly low bone turnover,
whereas in Blacks high bone turnover is the prominent
ROD presentation. At any given plasma PTH level,
bone turnover is lower in Blacks compared with
Whites.2 Barreto et al.49 also reported that White
dialysis patients tend to have lower PTH levels and
lower turnover.

The association between Klotho and BMD requires
further study. The available data are inconsistent; some
studies show no relationship,50–52 whereas others show
a negative correlation.53 Our findings in these 32 pa-
tients with CKD are worth reporting, but they do not
allow us to make claims regarding pathogenetic rele-
vance. The use of FTIR provided us with a very sen-
sitive method for analyzing bone matrix and mineral
quality which has not been previously used in patients
with early CKD.6 The patients with the lowest turnover
in our study had abnormal bone quality as evidenced
by high mineral-to-matrix ratios. The mineral-to-
matrix ratio also correlated with the bone markers
bone-specific alkaline phosphatase and sclerostin,
known to be related to turnover. The mineral-to-matrix
ratio is a key parameter of bone composition which is
related to bone stiffness and energy-to-fracture; high
values are associated with reduced fracture toughness
(fracture resistance),54 increased microdamage,55 and
fractures.11,56 Further details on FTIR parameters and
measurements of bone quality are described by Mal-
luche et al.41

The TBS is a noninvasive tool to assess bone
microarchitecture.57 In the present study, no signifi-
cant relationship was found between TBS and bone
histomorphometric parameters, including trabecular
separation. Few studies have examined the relationship
between histomorphometric bone parameters and TBS
in patients with CKD before dialysis. Ramalho et al.16

found that TBS significantly correlated with trabec-
ular bone volume and “width” in a multivariable
analysis. However, they did not find any relationship
Kidney International Reports (2022) 7, 1016–1026
between TBS and other histomorphometric parameters.
Luckman et al.58 reported that in patients with CKD
stages III and VD, TBS correlated with cortical and
trabecular microarchitecture measured by high-
resolution peripheral computed tomography before
kidney transplantation.

The development of ROD in patients with CKD in-
creases the risk of cardiovascular calcification and ul-
timately cardiovascular mortality. This association is
well described in late stages of CKD, particularly dial-
ysis patients; however, little is known about the bone-
vascular axis in early stages of CKD. An interesting
study by Mace et al.59 provided some experimental
evidence for a vessel-bone axis documented by trans-
plantation of aortic tissue from uremic rats into rats
with normal kidney function. These rats showed in-
duction of bone genes involved in formation and
mineralization. Still, fundamental mechanisms that
regulate the bone and vascular compartments in pa-
tients with CKD are not well known. It seems that the
kidney-bone-cardiovascular crosstalk is important and
may become even more relevant with CKD
progression.60

In our cohort of patients, 72% had measurable CAC
and 81% had AC. In agreement with these results,
Tomiyama et al.46 reported CAC in 66% of Brazilian
predialysis patients with CKD. Also, Ichii et al.61 re-
ported that 79% of their predialysis patients with CKD
had AC. In contrast, other studies reported lower
prevalence of cardiovascular calcifications in pre-
dialysis patients with CKD.62,63 The differences in the
results might be explained by interstudy variabilities
in ethnicity, sex, age, smoking, alcohol abuse, body
mass index, and methods of measurements.

Thoracic AC scores correlated negatively with bone
turnover parameters in this study. Other studies have
also shown association between histomorphometric
bone abnormalities and cardiovascular calcifications in
patients with CKD. London et al.64 reported an inverse
correlation between osteoblastic surfaces and arterial
calcification score and a positive correlation between
bone histomorphometric parameters of low bone
turnover and calcification scores in dialysis patients.
Our group, in collaboration with Asci et al.,18 demon-
strated a U-shaped relationship between CAC and bone
turnover and suggested that the 2 extremes of bone
turnover are associated with VC. Barreto et al.43 eval-
uated longitudinally the relationship between bone
changes and CAC progression in dialysis patients over
1 year. They reported an association between
improvement in bone turnover and lower CAC pro-
gression in patients with both high and low turnover
bone disease. Yamamoto et al.65 evaluated the pro-
gression of abdominal AC over 3 years in asymptomatic
1023
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patients with CKD before dialysis. The serum PTH
levels significantly correlated with progression of AC
among patients with advanced CKD (stages IV and V).
There are also data describing a relationship between
bone volume and calcification.23 Thus, interpretation of
VC should consider both bone volume and bone
turnover as potential cofactors. We have found that the
presence of diabetes is not as strong a cofactor as the
presence of CKD.

The relationship between abnormal bone quality
and cardiovascular calcification in patients with CKD is
an intriguing finding. Patients with high mineral-to-
matrix ratio had higher AC, and we found an inverse
relationship between TBS and AC. Aleksova et al.17 also
found that TBS values correlated inversely with
abdominal AC scores. Similar to our results, they did
not find any correlation between abdominal AC scores
and BMD measurements.

Limitations of the present study include its cross-
sectional design, the relatively small sample size, and
the higher number of patients with CKD stage III
compared with stages II and IV. The strength of the
study rests with the patients’ selection to represent
routine CKD clinic patients with no specific bone biopsy
indication and inclusion of only patients with CKD
without other secondary disorders causing CKD-MBD or
affecting the bone. This is the first study to assess bone
quality by FTIR and its relation with cardiovascular
calcification in patients with CKD before dialysis.

CONCLUSION
The obtained findings confirm that low bone turnover
and cardiovascular calcification are seen in the vast
majority of patients with early stages of CKD. Consid-
eration should include control of risk factors for car-
diovascular calcifications and low bone turnover. We
also, for the first time, demonstrate abnormal bone
quality as measured by FTIR in these patients. The link
between abnormal bone quality and cardiovascular
calcification is an interesting observation calling for
longitudinal studies in a larger number of patients.
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