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Abstract

CRISPR-associated nucleases are powerful tools for precise genome editing of model sys-

tems, including human organoids. Current methods describing fluorescent gene tagging in

organoids rely on the generation of DNA double-strand breaks (DSBs) to stimulate homol-

ogy-directed repair (HDR) or non-homologous end joining (NHEJ)-mediated integration of

the desired knock-in. A major downside associated with DSB-mediated genome editing is

the required clonal selection and expansion of candidate organoids to verify the genomic

integrity of the targeted locus and to confirm the absence of off-target indels. By contrast,

concurrent nicking of the genomic locus and targeting vector, known as in-trans paired nick-

ing (ITPN), stimulates efficient HDR-mediated genome editing to generate large knock-ins

without introducing DSBs. Here, we show that ITPN allows for fast, highly efficient, and

indel-free fluorescent gene tagging in human normal and cancer organoids. Highlighting the

ease and efficiency of ITPN, we generate triple fluorescent knock-in organoids where 3

genomic loci were simultaneously modified in a single round of targeting. In addition, we

generated model systems with allele-specific readouts by differentially modifying maternal

and paternal alleles in one step. ITPN using our palette of targeting vectors, publicly avail-

able from Addgene, is ideally suited for generating error-free heterozygous knock-ins in

human organoids.

Introduction

Since the development of efficient genome editing technology, molecular and cell biological

research increasingly relies on genetically modified in vitro model systems. In particular, the

visualization of endogenous proteins using fluorescent knock-in reporters allows for a precise

assessment of their subcellular localization and dynamics during cellular homeostasis and dis-

ease [1].
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Organoids, in particular of human origin, represent next-generation model systems that

recapitulate in vivo tissue architecture and functionality more accurately than 2D cell lines [2].

However, the precise engineering of large knock-in reporters in organoids can be laborious

when using conventional CRISPR-mediated strategies to stimulate homology-directed repair

(HDR) [3–5] or non-homologous end joining (NHEJ) [6] based editing. While generally effec-

tive, these strategies rely on the generation of genomic double-strand breaks (DSBs) by

CRISPR-associated nucleases, which often result in both on- and off-target indel mutations as

a consequence of error-prone repair by repeated cycles of NHEJ. On-target indels are often

generated in the secondary “untargeted allele” that is not carrying the knock-in and may result

in missense or nonsense mutations. In addition, while HDR generally results in error-free

repair, generating knock-ins via NHEJ-based ligation of a linearized DNA fragment often

results in indels within the up- and downstream junctions of the knock-in allele [6,7]. Conse-

quently, existing knock-in protocols inherently require sequence verification of individually

picked organoid clones, which is laborious, time consuming, and eliminates genetic heteroge-

neity in tumor-derived organoid models.

In cell lines, large knock-ins have been generated without introducing DSBs by using the

partially inactivated Cas9 D10A nickase variant [8–10], which generates single-strand DNA

breaks (nicks) in the genomic strand that hybridizes with the guide RNA [11]. By simulta-

neously nicking the genomic target locus and the extremities of both homology arms within

the targeting vector, a strategy known as in-trans paired nicking (ITPN) [8], efficient knock-in

alleles can be generated without double-strand DNA cleavage. Unlike conventional CRISPR/

Cas9-mediated genome editing, ITPN modifies target loci with high fidelity, since single geno-

mic nicks are rarely mutagenic [8,12]. By avoiding double-strand DNA cleavage, ITPN enables

the insertion of heterozygous reporters or pathogenic (germline) mutations with intact “untar-

geted” secondary alleles and with minimal risk of off-target indels. Consequently, knock-in

cells can be pooled to expedite the expansion and, thus, the generation time of a knock-in line

(2 weeks). Pooling successfully targeted organoids is particularly useful for organoid models

where clonal selection is laborious. Furthermore, by avoiding clonal selection, preexisting

genetic diversity in tumor-derived organoid lines is largely preserved. Here, we investigate the

efficiency and fidelity of fluorescent gene tagging via ITPN in human organoids. In addition,

we present a palette of easy-to-use targeting vector backbones and protocols for N- or C-termi-

nal fluorescent gene tagging using ITPN.

Results

To probe the efficiency of fluorescent knock-ins in human organoids (Fig 1A), we designed an

N-terminal mScarlet knock-in at the human SEC61B locus. We constructed different targeting

vectors in order to compare editing efficiencies of various knock-in strategies (Fig 1B). To

stimulate editing via NHEJ-mediated ligation of a linearized mScarlet-coding fragment into

the Cas9-generated genomic DSB [6,7], we constructed a vector carrying the mScarlet-coding

sequence flanked by copies of the genomic Cas9 target site. Alternatively, we included 20 bp

microhomology to stimulate genomic integration via the microhomology-mediated end join-

ing (MMEJ) pathway [13]. In addition, we generated vectors with 1 kb homology arms follow-

ing a traditional targeting vector design that is without flanking Cas9 target sites, or with

flanking Cas9 target sites to support genomic integration via ITPN or in-trans paired cleavage

(ITPC) [14,15].

Targeting vectors were coelectroporated with wild-type or D10A nickase SpCas9 expression

constructs in a patient-derived tumor organoid model obtained from a colorectal cancer bio-

bank [16]. We visually confirmed the expected localization of mScarlet within knock-in

PLOS BIOLOGY Error-free CRISPR knock-ins in human organoids using Cas9 nickase

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001527 January 28, 2022 2 / 16

files. All algorithms used for the mapping [gatk.

broadinstitute.org], mutational calling [https://

github.com/ToolsVanBox/NF-IAP], and filtering of

mutations [https://github.com/ToolsVanBox/

SMuRF, https://github.com/hartwigmedical/gridss-

purple-linx] are publicly available. Raw FCS files are

available on the FlowRepository database

(flowrepository.org) and accessible using the

repository ID FR-FCM-Z4PJ.

Funding: This work is part of the Oncode Institute,

which is partly financed by the Dutch Cancer

Society. HGJS received European Research

Council (ERC) starting grant (IntratumoralNiche),

project number 803608 (https://erc.europa.eu/

funding/starting-grants) and NWO TOP. YB was

supported by a strategic alliance between

University of Twente and UMC Utrecht on

Advanced Biomanufacturing (to LWMMT and

HJGS). The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: DSB, double-strand break; HDR,

homology-directed repair; ITPC, in-trans paired

cleavage; ITPN, in-trans paired nicking; MMEJ,

microhomology-mediated end joining; NHEJ, non-

homologous end joining; WGS, whole genome

sequencing.

https://doi.org/10.1371/journal.pbio.3001527
http://gatk.broadinstitute.org
http://gatk.broadinstitute.org
https://github.com/ToolsVanBox/NF-IAP
https://github.com/ToolsVanBox/NF-IAP
https://github.com/ToolsVanBox/SMuRF
https://github.com/ToolsVanBox/SMuRF
https://github.com/hartwigmedical/gridss-purple-linx
https://github.com/hartwigmedical/gridss-purple-linx
http://flowrepository.org
https://erc.europa.eu/funding/starting-grants
https://erc.europa.eu/funding/starting-grants


Fig 1. Fluorescent gene tagging in human organoids without double-strand DNA cleavage. (A) Schematic representation of the workflow used to capture

fluorescent knock-in efficiencies in human organoids. To ensure optimal outgrowth post-electroporation, organoids are trypsinized to a cell suspension consisting of

approximately 5 cell clumps. After electroporation, cells are allowed to expand for 10 days without selecting for cells that received the knock-in constructs. Prior to

flow analysis, organoids may consist of partial knock-in populations. To capture the overall knock-in efficiency, organoid cultures are trypsinized to a single-cell

suspension and flow analyzed. (B) Schematic representation of the SEC61B targeting strategy. mScarlet was flanked with homology arms matching up- and

downstream sequences of the N-terminus of the human SEC61B locus, coding for Protein transport protein Sec61 subunit beta. Cas9 was targeted close to the start of

the coding region using a gRNA as indicated (green arrow). Cas9 cleavage sites (triangles) and protospacer adjacent motifs (black bar) are indicated. Up- and

downstream homology is represented in blue and red, respectively. Compositions of targeting vectors supporting different knock-in strategies are indicated. (C)

Knock-in efficiencies of mScarlet at the human SEC61B locus in a patient-derived tumor organoid model using various knock-in strategies. WT or D10A nickase

(Nick) SpCas9 was codelivered with targeting vectors indicated in (B). In all knock-in experiments, targeting vectors were electroporated at equimolar ratios between

conditions to correct for differences in vector size. Editing efficiency (% mScarlet+ cells) was determined by single-cell flow analysis 10 days post-electroporation (n =
3 independent experiments). � p< 0.05 in a Ratio paired t test. Error bars indicate SEM. The inset shows representative stills of mScarlet-SEC61B localization in

patient-derived tumor organoids (scale bar = 10 μm). (D) As in (C), knock-in efficiency of mScarlet at the human SEC61B locus in tumor organoids using targeting

vectors with different homology arm lengths flanked by Cas9 target sites and codelivered with Cas9 D10A nickase to support ITPN (n = 3 independent experiments).

Error bars indicate SEM. (E) As in (B), schematic showing the targeting strategy for ITPN-mediated integration of mScarlet (0.7 kb) or mScarlet-P2A-PuromycinR

(1.4 kb) at the C-terminus of the human HIST1H2BC locus, coding for Histone H2B type-1C. (F) As in (C), knock-in efficiency of mScarlet (mSC; 0.7 kb) or

mScarlet-P2A-PuromycinR (mSC-PR; 1.4 kb) in tumor organoids at the C-terminus of the human HIST1H2BC locus (n = 3 independent experiments). The

difference between mSC and mSC-PR was nonsignificant in a Ratio paired t test. Error bars indicate SEM. (G) Knock-in efficiency of an mScarlet knock-in at the

SEC61B locus in human colon normal and tumor organoids via ITPN using 1 kb homology arms (n = 3, n = 6 independent experiments for normal and tumor

organoids, respectively). In all control conditions, the targeting vector was cotransfected with a guide targeting a different gene. The difference between normal and

tumor KI organoids was nonsignificant in a two-sided unpaired t test. Error bars indicate SEM. Underlying data for panels C, D, F, and G are provided in S1 Data.

Raw FCS files are available on the FlowRepository (FR-FCM-Z4PJ). ITPC, in-trans paired cleavage; ITPN, in-trans paired nicking; MMEJ, microhomology-mediated

end joining; NHEJ, non-homologous end joining; WT, wild-type.

https://doi.org/10.1371/journal.pbio.3001527.g001
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organoids for each condition prior to flow analysis of mScarlet+ cells 10 days post-electropora-

tion (Fig 1C). Flanking homology arms with Cas9 target sites to stimulate ITPN or ITPC

resulted in substantially higher editing efficiencies when compared to a traditional targeting

vector design with the same homology arm length (Figs 1C and S1A). In addition, NHEJ and

MMEJ conditions underperformed when compared to targeting vectors with long homology

arms, in particular when combined with nickase Cas9. Notably, ITPN resulted in a similar

fraction of knock-in cells when compared to a traditional knock-in strategy that uses wild-type

Cas9 and targeting vectors without flanking Cas9 target sites.

To investigate the fidelity of ITPN-mediated fluorescent knock-ins, we performed sequence

analyses on polyclonal knock-in lines that were generated according to above-described condi-

tions. To determine the risk for off-target indels, we analyzed the fidelity of the secondary allele

that is not carrying the knock-in as a proxy for the likeliest candidates for off-target modifica-

tions. Using TIDE analysis [17], we show that wild-type Cas9 conditions result in a high fre-

quency of indels within the secondary allele, whereas knock-in organoids generated via ITPN

displayed >99% sequence integrity of their secondary allele (S2 Fig). Next, to investigate the

fidelity of ITPN-mediated knock-ins, we generated 11 clonal knock-in lines from the ITPN

condition and examined the knock-in alleles via Sanger sequencing. All knock-ins contained

intact 50 and 30 junctions and no evidence for tandem integration was found (S3A Fig). More-

over, in agreement with previous TIDE analysis on polyclonal cultures, we confirmed the

absence of indels in the untargeted allele of heterozygous clones (S3B Fig). Finally, to exclude

the presence of off-target editing, we performed whole genome sequencing (WGS) on 3 out of

the 11 clonal ITPN-mediated knock-in lines. We investigated the somatic mutation burden of

these clones in 166 regions, which were predicted in silico to be likely off-target protospacer

loci. No genomic aberrations were identified in the unmodified allele, the predicted off-target

protospacer regions or the 200 bases surrounding the predicted sites (S1 Table). The lack of all

variants ranging from single base substitutions to structural variation breakpoints confirms

the absence of mutations due to incorrectly repaired off-target nuclease activity as well as off-

target integrations of the knock-in cassette.

Collectively, these data indicate that ITPN enables highly efficient and indel-free fluorescent

gene tagging in human organoids and makes sequence confirmation of clonal lines unneces-

sary. Consequently, all knock-in organoids can immediately be pooled to expedite the expan-

sion of the edited organoid line and to maintain genetic diversity of patient-derived tumor

organoid models.

Traditional design of targeting vectors requires long homology arms to maximize the

chance of homologous recombination between the genomic locus and targeting vector. How-

ever, vectors with long homology arms are challenging to assemble and are inconvenient for

locus-specific genotyping by PCR. To investigate whether efficiency of fluorescent gene tag-

ging is lost when ITPN is mediated by shorter homology arms, we generated a series of target-

ing vectors with decreasing homology. At the SEC61B locus, the homology demand of ITPN-

mediated mScarlet integration peaked at 800 bp (Figs 1D and S1B). While vectors with shorter

homology arms were accompanied with lower editing efficiencies, they were sufficient to gen-

erate knock-in lines and may be preferred in situations of challenging vector assembly and/or

genotyping.

Next, to probe whether knock-in size influences editing efficiency, we designed a C-termi-

nal knock-in at the HIST1H2BC locus and constructed targeting vectors with 500 bp homology

to integrate either mScarlet (0.7 kb) or mScarlet-P2A-Puro (1.4 kb) (Fig 1E). Surprisingly, we

found no substantial difference in knock-in efficiency between the 2 targeting vector variants,

suggesting that a knock-in size in the range of<1.4 kb has no notable influence on editing effi-

ciency via ITPN (Figs 1F and S1C).
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Since SEC61B and HIST1H2BC are ubiquitously expressed genes, we decided to investigate

if we could knock-in mScarlet-P2A-Blast into normal human colon organoids at the C-termi-

nus of KRT20, which is exclusively expressed in differentiated cells. Following a short pulse of

Blasticidin selection, we observed clonal organoids with a subpopulation of cells showing the

expected cytoplasmic red fluorescence (S4 Fig). Since differentiated cells do not form orga-

noids as efficiently as stem cells, lines that involve fluorescent knock-ins in differentiation

genes such as KRT20 are best generated either using a short pulse of selection or by manually

picking and pooling clonal organoids that contain (some) fluorescent cells.

Finally, we compared the efficiency of an N-terminal mScarlet knock-in at the SEC61B
locus between tumor and normal colon organoids (Figs 1G and S1D). The knock-in efficiency

in tumor organoids was higher (although not significant), which may be attributed to a differ-

ence in culture conditions and electroporation efficiency.

A major downside of generating targeting vectors with homology arms flanked by Cas9 tar-

get sites at their extremities is the time-intensive molecular cloning. To expedite the cloning of

targeting vectors for fluorescent gene tagging at either the N- or C-terminus, we generated a

series of minimalistic targeting vector backbones allowing seamless one-step integration of

both homology arms using SapI-based Golden Gate assembly [4] (Fig 2A). Targeting vector

backbones carrying state-of-the-art monomeric fluorescent proteins are made available from

Addgene, including optional P2A-linked selection elements (Fig 2B). Using our optimized

vector backbones, targeting vectors can be assembled in the same amount of cloning time as is

required for the insertion of gRNA oligos into Cas9 expression vectors. Consequently, when

using our vector backbones for ITPN, fluorescent reporter alleles in cell lines and organoid

Fig 2. One-step targeting vector assembly and ITPN expedite fluorescent gene tagging. (A) Schematic outline of one-step TV assembly via SapI-based golden gate-

mediated homology arm ligation. Homology arms can be amplified from genomic DNA or ordered as commercially synthesized DNA fragments. (B) Overview of

knock-in backbone constructs available from Addgene. Knock-in backbones contain one of 4 different fluorescent proteins and optional P2A-linked resistance

cassettes. Backbone constructs are suitable for knock-ins at either the C- or N-terminus, as indicated. (C) Schematic workflow outlining fluorescent gene tagging in

organoids using ITPN. Following electroporation, organoids generally require approximately 10 days of outgrowth before FACS purification of fluorescent knock-in

cells. Alternatively, fluorescent clonal organoids can be handpicked and pooled. Sequence verification of individually picked clonal lines is not required when editing

via ITPN. ITPN, in-trans paired nicking; TV, targeting vector.

https://doi.org/10.1371/journal.pbio.3001527.g002
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models can be generated in as little as 2 weeks, including molecular cloning procedures for

vector assembly (Fig 2C). We summarized our recommendations for knock-in design and

one-step targeting vector assembly in a protocol (S1 File). In addition, new variants of target-

ing vector backbones, e.g., replacing the donor with a different fluorescent protein sequence,

can be generated in a short amount of time (S2 File).

To probe the efficiency of ITPN using our newly designed targeting vectors, we generated

triple fluorescent knock-ins by simultaneous targeting of 3 separate genomic loci. Specifically,

we targeted the C-terminus of the HIST1H2BC locus to knock-in mTurquoise2-P2A-puromy-

cinR, the C-terminus of the CDH1 locus to knock-in mScarlet, and as a third locus, we

included an N-terminal knock-in of mNeongreen at either the LMNA, SEC61B, or MAP4
locus (Fig 3A). DNA cocktails containing different combinations of targeting vectors and their

respective Cas9 expression constructs were electroporated into fractionated tumor organoids.

Organoids were allowed to form for 10 days without puromycin selection prior to quantifica-

tion of the raw knock-in efficiencies by single-cell flow analysis. As expected, in all 3 condi-

tions, the knock-in fractions were dominated by cells that carried single knock-ins in either

one of the targeted genes. However, we readily detected cells carrying multiple knock-ins,

including cells where all 3 genes were edited simultaneously (Fig 3B). The overall knock-in

efficiencies for each targeted gene and the fraction of cells carrying multiple knock-ins are

summarized in Fig 3C. To confirm the fidelity of the gene fusions, we generated polyclonal tri-

ple knock-in lines from each editing condition by manual picking and pooling clonal triple

positive organoids. TIDE analysis again confirmed the absence of on-target indels in the untar-

geted alleles of all edited genes (S5 Fig). In addition, we confirmed the intended integration of

the knock-in via Sanger sequencing (S6 Fig). Next, we recorded overnight growth of our TKI-

3 knock-in line using live-cell imaging to demonstrate normal growth behavior and phenotype

(Fig 3D). Each channel could be recorded without excessive bleaching, allowing a multidimen-

sional dynamic readout of chromosomal instability during mitosis, including chromatin errors

(H2B1C), spindle assembly (MAP4), and membrane defects or binucleation (CDH1).

Taken together, these results demonstrate that ITPN maintains high levels of fidelity across

different genomic loci and allows multiplexed fluorescent gene tagging in human organoids.

Using conventional editing protocols, generating organoid lines carrying multiple fluorescent

knock-ins is highly laborious. By using ITPN, organoids with multiple edits can be generated

within 2 weeks. Alternatively, in case an attempt to multiplex gene targeting fails, cells with a

single knock-in can be pooled and retargeted. Moreover, we generated the same combinations

of triple knock-ins in 2 rounds of targeting and used intermediate antibiotic selection to enrich

for knock-in cells instead of manual picking (S7 Fig).

Since the sequence integrity of the untargeted allele that is not carrying the knock-in is

maintained when editing via ITPN, this secondary allele can be retargeted using the same

locus-specific targeting vector to obtain homozygous knock-ins. This also enables straightfor-

ward differential modification of maternal and paternal alleles by offering 2 different targeting

vectors for the same locus. To investigate if ITPN allows the simultaneous generation of bialle-

lic knock-ins carrying different fluorescent tags within each allele, we targeted the SEC61B,

MAP4, and HIST1H2BC loci in tumor organoids with both mNeongreen and mScarlet target-

ing vectors. Flow analysis at 10 days post-electroporation confirmed the presence of a double-

positive cell population for each targeted locus (Fig 4A). Genotyping of manually picked

lines confirmed correct modification of each allele (S8 Fig). In addition, imaging of biallelic

knock-in organoids confirmed the detection of both allele-specific reporters (Fig 4B). Next, we

performed live-cell imaging of our HIST1H2BC double knock-in organoids and assessed the

biallelic fluorescent output (green versus red) for single cells over time (Fig 4C), as a straight-

forward showcase how differential allele-specific modifications could be used to study allele-
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Fig 3. Multiplexed fluorescent gene tagging in human organoids using ITPN. (A) Multiplexed fluorescent gene tagging in tumor human colon organoids at 3

different genomic loci using ITPN. C-terminal integrations of mScarlet at the CDH1 locus and mTurquoise2-P2A-Puromycin into the HIST1H2BC locus were

combined with N-terminal integration of mNeongreen at either the LMNA, SEC61B, or MAP4 locus. In the schematics: Cas9 D10A nick positions (red triangles) and

protospacer adjacent motifs (black bars) are indicated for each knock-in design, as well as the gRNA used (green arrow). Organoids were electroporated

simultaneously with all 3 targeting vectors to generate one-step multiplexed triple knock-ins. (B) All 3 targeting combinations yielded triple knock-in populations
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specific expression levels [18,19]. This proof of principle underscores the power of ITPN to

create allele-specific readouts that, depending on the knock-in template, can be applied to

address many biological questions, ranging from allele-specific expression patterns to differen-

tial biochemical properties between wild-type and mutant proteins.

Discussion

Here, we show that large knock-ins such as fluorescent gene tags can be generated in human

organoids with high efficiency and fidelity using ITPN. The strategy is superior to conven-

tional Cas9-mediated genome editing as ITPN is DSB independent, which minimizes the risk

with practical efficiencies, as indicated by flow analysis (numbers indicate frequencies (%) of knock-in cells within the entire targeted cell population). Imaging

snapshots show the expected subcellular localization of each fusion protein (scale bar = 10 μm). Raw FCS files are available on the FlowRepository (FR-FCM-Z4PJ).

(C) Overview of the multiplexed gene tagging efficiencies as determined by flow cytometry analysis. Raw FCS files are available on the FlowRepository

(FR-FCM-Z4PJ). (D) Live-cell imaging of tumor human colon organoids carrying CDH1-mScarlet, HIST1H2BC-mTurquoise2, and mNeongreen-MAP4 knock-ins.

The top panel shows representative stills of organoid growth over time (scale bar = 10 μm). For divisions I and II, snapshots of each channel are shown in metaphase

and anaphase (scale bar = 5 μm). ITPN, in-trans paired nicking.

https://doi.org/10.1371/journal.pbio.3001527.g003

Fig 4. One-step differential fluorescent knock-ins at a single locus. (A) The SEC61B, MAP4, and HIST1H2BC loci of a patient-derived tumor organoid model

were targeted via ITPN with both mNeongreen and mScarlet targeting vectors according to the design shown in Fig 3A. Flow analysis was performed 10 days post-

electroporation. The percentage of cells carrying a single knock-in and cells carrying both knock-ins are indicated. Raw FCS files are available on the FlowRepository

(FR-FCM-Z4PJ). (B) Representative stills of tumor organoids carrying biallelic mNeongreen and mScarlet modifications at either the SEC61B, MAP4, and

HIST1H2BC loci (scale bar = 10 μm). (C) Allele-specific readout in human colorectal cancer organoids containing differentially tagged HIST1H2BC alleles.

Organoids carrying mNeongreen and mScarlet knock-ins at the HIST1H2BC locus were live-cell imaged for 18 hours. Top panels show imaging stills of the green/

red composite over time. The left bottom graph shows the changes of allele-specific output over time for a single representative cell. The corrected fluorescent signals

of mScarlet, mNeongreen, as well as the ratio mScarlet/mNeongreen are plotted. The right bottom graph shows 7 out of 17 analyzed single cell ratios (mScarlet/

mNeongreen). Underlying data are provided in S1 Data. ITPN, in-trans paired nicking.

https://doi.org/10.1371/journal.pbio.3001527.g004
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of undesired mutations, both at potential off-target sites as well as within the untargeted allele

that does not carry the knock-in. This also implies that ITPN is ideally suited for the introduc-

tion of heterozygous pathogenic (germline) mutations. An additional advantage is that

sequence verification of individually picked clonal lines becomes obsolete and thus that all de

novo generated knock-in cells can immediately be pooled. This accelerates expansion of the

early culture and reduces the overall generation time of knock-in models. In addition, pooling

all de novo generated knock-in cells preserves the genetic heterogeneity present in the original

culture, which is important when working with patient-derived tumor organoid models. To

circumvent labor-intensive molecular cloning of targeting vectors, we generated a palette of

vector backbones that can be locus customized in the same amount of cloning time required

for gRNA oligo insertion into Cas9 expression vectors. Moreover, our targeting vector back-

bone design is modular, so that the donor template itself can easily be adapted to more com-

plex and sophisticated reporter designs [5]. Our vector backbones are available on Addgene,

and our protocols (S1 and S2 Files) contain detailed instructions for their application.

While absolute knock-in efficiency depends on many variables, the most practical determi-

nant of a successful strategy is that knock-ins are consistently obtained with each attempt. To

showcase the robust efficiency of ITPN in organoids, we generated triple knock-ins at 3 inde-

pendent genomic loci in a single targeting round, and we accomplished a one-step generation

of biallelic knock-ins carrying allele-specific reporters. In our hands, efficiency of ITPN is

superior to CRISPR strategies that use conventional donor templates. In agreement with ear-

lier reports [8,9,14,15], an important variable that influences overall efficiency was the ITPN or

ITPC of the donor. Although NHEJ-mediated knock-ins by strategies such as CRISPR-HOT

[6] minimize the need for molecular cloning, our results indicate that ITPN substantially

improves efficiency and fidelity when compared to NHEJ-mediated strategies, while our dedi-

cated vector backbones minimize molecular cloning to a similar extent.

Due to the near exact sequence similarity between maternal and paternal alleles, differences

in expression patterns between 2 alleles of a given gene are poorly understood. Likewise,

changes in subcellular localization, protein interactions, and/or biochemical properties between

wild-type and mutant proteins, such as oncogenes, are rarely examined in the same cells due to

the near impossible task of modifying both alleles independently with different tags. Since ITPN

generates knock-in alleles without modifying the untargeted allele, the same locus can be retar-

geted with an alternative donor template. As a proof of principle, we generated a biallelic

knock-in with different fluorophores at the HIST1H2BC, SEC61B, and MAP4 loci in a single

targeting round. Accurate estimation of allelic imbalance is important to understand genetic

and epigenetic mechanisms of gene regulation, and dysregulation during carcinogenesis.

In conclusion, ITPN is a versatile strategy that generates fast and efficient knock-ins in human

organoids. We envision that our approach can easily be applied to organoid models derived from

other tissues or sources, such as pluripotent stem cell-derived organoid models. Various CRISPR-

mediated knock-in strategies have been reported to date that reach sufficient efficiencies to make

genetic editing practical in organoid models. ITPN is comparable in terms of efficiency but stands

out as being DSB independent and therefore has the highest intrinsic fidelity of precise genome

editing. In combination with the seamless one-step generation of targeting vectors, ITPN repre-

sents an important technological advance in generating high-fidelity knock-in model systems.

Materials and methods

Vector assembly

Targeting vector backbones were generated by recombinase-based seamless assembly (In-

Fusion cloning, Takara Biotech) of a commercially synthesized DNA fragment (IDT or
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Genscript) carrying mNeongreen [20], mTurquiose2 [21], mScarlet [22], or photoconvertible

Dendra2 [23] with optional P2A-selection elements (S2 Table) into a PCR-amplified generic

backbone fragment (FWD: tcctcgctcactgactcgct, REV: gcggtattttctccttacgcatctg). See S2 File for

a detailed explanation of how to generate new targeting vector backbones. To generate locus-

specific targeting vectors, commercially synthesized homology arm fragments (S3 Table) were

inserted into targeting vector backbones using SapI-based golden gate assembly as previously

described [4]; see S1 File for a more detailed protocol. Cas9 wild-type (addgene #48139) and

Cas9 D10A nickase (addgene #48141) locus-specific expression vectors were generated accord-

ing to published protocols [24].

Organoid culture

Patient-derived tumor organoid with identifier P9T (PDTO-9) was obtained from a previously

published colorectal cancer biobank [16]. PDTO-9 was maintained at 37˚C with 5% CO2 atmo-

sphere seeded in RGF Basement Membrane Extract (BME), Type 2 (Cultrex). Culture media con-

sisted of advanced DMEM/F12 (Gibco) supplemented with penicillin–streptomycin (Lonza, 10 U

ml−1), GlutaMAX (Gibco, 1x), HEPES buffer (Gibco, 10 mM), Noggin-conditioned medium

(10%), R-spondin1-conditioned medium (10%), B-27 (Gibco, 1x), nicotinamide (Sigma-Aldrich,

10 mM), N-acetylcysteine (Sigma-Aldrich, 1.25 mM), SB202190 (Gentaur, 10 μM), A83-01

(Tocris, 500 nM), and recombinant human EGF (PeproTech, 50 ng ml−1). PDTO-9 cultures were

passaged weekly and maintained below passage 10. Briefly, PDTOs were dissociated using tryp-

sin–EDTA (Sigma-Aldrich) and seeded in BME in a prewarmed 24-well plate. ROCK inhibitor

Y-27632 (Gentaur, 10 μM) was added to culture medium upon plating for 2 days.

Normal human colon organoids were maintained at 37˚C with 5% CO2 atmosphere seeded

in growth factor reduced Matrigel (BD Biosciences). Culture media [25] consisted of advanced

DMEM/F12 (Gibco) supplemented with penicillin–streptomycin (Lonza, 10 U ml−1), Gluta-

MAX (Gibco, 1x), HEPES buffer (Gibco, 10 mM), Noggin-conditioned medium (10%), R-

spondin1-conditioned medium (20%), B-27 (Gibco, 1x), N-acetylcysteine (Sigma-Aldrich,

1.25 mM), A83-01 (Tocris, 500 nM), recombinant human EGF (PeproTech, 50 ng ml−1),

recombinant human IGF-1 (BioLegend, 100 ng/ml), recombinant human FGF-basic (Pepro-

tech, FGF-2 50 ng/ml), and 0.5 nM Wnt surrogate (U-protein Express). Organoid were pas-

saged as described above.

Organoid electroporation

To generate knock-ins in either normal or colorectal tumor organoids, 1 × 106 cells at approxi-

mately 5 cell clumps were coelectroporated with 15 μg DNA, at a 1:1 ratio of Cas9 (Addgene

#48139) or Cas9 D10A nickase (Addgene #48141) and targeting vector using the NEPA21

Super Electroporator (Nepagene) following described conditions [26].

Flow analysis

Organoids were trypsinized and filtered through a CellTrics 10 μm sieve (Sysmex) to obtain a

single-cell suspension. To quantify the knock-in efficiency, cells were flow analyzed (FACSCe-

lesta, BD) at least 10 days post-electroporation. Gates were set based on a negative control/

population.

Genotyping and TIDE analysis

Polyclonal or clonal knock-in cultures were established via manual picking or FACS. Site-spe-

cific integrations were confirmed by genotyping PCRs on genomic DNA extract using locus-
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specific primer sets (S4 Table), followed by Sanger sequencing. TIDE analysis was performed

on Sanger sequencing data of secondary “non-knock-in” alleles using the Sanger sequencing

read of the parental organoid line as a control sample chromatogram.

Whole genome sequencing and read mapping

The genomic DNA of 3 clonally expanded ITPN-mediated SEC61B-mScarlet organoid lines

was isolated using the QIAamp DNA Micro Kit according to the manufacturer’s instructions.

Illumina sequencing libraries were generated using 200 ng of genomic DNA according to stan-

dard protocols (Illumina). Following WGS to a base coverage of 15x (Illumina NovaSeq 6000,

2 × 150 bp), initial processing of the sequence reads was performed using the complete analysis

pipeline available at https://github.com/UMCUGenetics/NF-IAP. Briefly, the Burrows-

Wheeler Aligner v0.7.17 mapping tool was used to map sequence reads against human refer-

ence genome GRCh38 with settings “bwa mem -c 100 –M” [27]. Next, duplicate reads were

flagged with Sambamba v0.6.8 and the Genome Analysis Toolkit (GATK) v4.1.3.0 was used

for realignment [28].

Variant calling and filtering

Next, variants were multisample called with the GATK HaplotypeCaller v4.1.3.0 and GATK--

Queue v.4.1.3.0, based on default settings and the additional option “EMIT_ALL_CONFI-

DENT_SITES.” Subsequently, GATK VariantFiltration v4.1.3.0 was used to evaluate the

quality of the variant positions, with options -snpFilterName SNP_LowQualityDepth -snpFil-

terExpression “QD < 2.0” -snpFilterName SNP_MappingQuality -snpFilterExpression

“MQ < 40.0” -snpFilterName SNP_StrandBias -snpFilterExpression “FS > 60.0” -snpFilter-

Name SNP_HaplotypeScoreHigh -snpFilterExpression “HaplotypeScore > 13.0” -snpFilter-

Name SNP_MQRankSumLow -snpFilterExpression “MQRankSum < −12.5” -snpFilterName

SNP_ReadPosRankSumLow -snpFilterExpression “ReadPosRankSum < −8.0” -snpFilter-

Name SNP_HardToValidate -snpFilterExpression “MQ0 > = 4 && ((MQ0 / (1.0 � DP)) >

0.1)” -snpFilterName SNP_LowCoverage -snpFilterExpression “DP< 5” -snpFilterName

SNP_VeryLowQual -snpFilterExpression “QUAL < 30” -snpFilterName SNP_LowQual

-snpFilterExpression “QUAL > = 30.0 && QUAL < 50.0” -snpFilterName SNP_SOR -snpFil-

terExpression “SOR> 4.0” -cluster 3 -window 10 -indelType INDEL -indelType MIXED

-indelFilterName INDEL_LowQualityDepth -indelFilterExpression “QD < 2.0” -indelFilter-

Name INDEL_StrandBias -indelFilterExpression “FS > 200.0” -indelFilterName INDEL_-

ReadPosRankSumLow -indelFilterExpression “ReadPosRankSum < −20.0” -indelFilterName

INDEL_HardToValidate -indelFilterExpression “MQ0 > = 4 && ((MQ0 / (1.0 � DP)) > 0.1)”

-indelFilterName INDEL_LowCoverage -indelFilterExpression “DP < 5” -indelFilterName

INDEL_VeryLowQual -indelFilterExpression “QUAL < 30.0” -indelFilterName INDEL_-

LowQual -indelFilterExpression “QUAL > = 30.0 && QUAL < 50.0” -indelFilterName

INDEL_SOR -indelFilterExpression “SOR > 10.0.”

Low-quality and subclonal mutations accumulated during clonal expansion of the organoid

lines were excluded by annotating using SMuRF release 2.1.2 as described [29] (https://github.

com/ToolsVanBox/SMuRF). We included all variants in each clone at autosomal or X chro-

mosomes present in less than 3 clonal samples that passed VariantFiltration, with a GATK

phred-scaled quality score�60; minimum base coverage of 5X, a mapping quality�30, and a

variant allele frequency of at least 0.15 [29,30]. Structural variation calling was performed with

the GRIDSS-purple-linx pipeline v1.3.2, using all paired combinations of the 3 WGS samples

as tumor-normal pairs [31].
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Analysis of in silico predicted off-target regions

All potential off-target protospacer regions for the guide sequence 50-GGGGTCGGAC-

CAGGCTGTAG-30 were predicted using the publicly available CasOFFinder tool [32], using

an NGG PAM and allowing up to 4 mismatches. As regions of interest, both the potential off-

target protospacer regions as well as the flanking 200 bases were considered. Using BEDtools

v2.27.1, all variants that passed filtering by SMuRF were intersected with the regions of interest

[33]. In addition, all start and end coordinates of the structural variations called by GRIDSS-

purple-linx were intersected with the same potential off-target genomic regions.

Live organoid imaging

To support live-cell microscopy of organoids, PDTO-9 or normal organoid cultures were pas-

saged 5 to 7 days prior to imaging. PDTOs were harvested 24 hours before imaging and resus-

pended in an ice-cold mix of culture media containing 50% v/v BME or 90% v/v Matrigel. The

organoid suspension was then seeded in an ice-cold glass bottom WillCo-dish (WillCo Wells

B.V.) coated with a thin film of BME or Matrigel. Organoids were allowed to settle on ice

before gel polymerization at 37˚C and addition of culture media. Outgrowth was captured

overnight on a spinning disk confocal system (Nikon, 15-minute frame rate, z-step 1.4 μm).

Imaging data were analyzed with Fiji (ImageJ). For the HIST1H2BC biallelic knock-in orga-

noids, a custom-made analysis macro [34] was used to track single cells and monitor their

mNeongreen and mScarlet signals. Bleach correction (per channel, per time point) was per-

formed based on integral fluorescence signals of the corresponding organoids.

Supporting information

S1 Fig. Flow cytometry analyses for the measurement of knock-in efficiencies. Representa-

tive flow cytometry plots for the analysis of knock-in efficiencies including nonedited controls

are shown. Panel (A), (B), (C), and (D) are related to Fig 1C, 1D, 1F, and 1G, respectively. Raw

FCS files are available on the FlowRepository (FR-FCM-Z4PJ). ITPC, in-trans paired cleavage;

ITPN, in-trans paired nicking; MMEJ, microhomology-mediated end joining; NHEJ, non-

homologous end joining; wt, wild-type.

(EPS)

S2 Fig. On-target TIDE analysis of different knock-in strategies at the SEC61B locus. To

perform TIDE analyses, genomic DNA was extracted from polyclonal knock-in populations

generated either via MMEJ, traditional targeting, ITPC (with wild-type Cas9), or ITPN (with

Cas9 D10A nickase) (see Fig 1C). Polyclonal lines were generated by manually pooling approx-

imately 10 clonal knock-in organoids. TIDE analysis was performed using the Sanger sequenc-

ing read of the parental patient-derived tumor organoid model as a control sample

chromatogram. The NHEJ condition codelivered with wild-type Cas9 was omitted from this

analysis as there were too few knock-in organoids available to generate a polyclonal line. The

percentage of reads containing indels is displayed in the left upper corners. Underlying data

are provided in S2 Data. ITPC, in-trans paired cleavage; ITPN, in-trans paired nicking; MMEJ,

microhomology-mediated end joining; NHEJ, nonhomologous end joining; WT, wild-type.

(EPS)

S3 Fig. Fidelity of ITPN-mediated fluorescent knock-ins at the SEC61B locus. Sanger

sequencing was performed on the SEC61B locus of 11 clonal patient-derived tumor organoid

knock-in lines generated via ITPN (see Fig 1C). Knock-in lines were generated by handpicking

individual large clonal knock-in organoids. The 50 and 30 junctions of the knock-in allele and

the target region of the “untargeted” allele is shown for each clone. Clone no.7 carries a
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homozygous mScarlet knock-in at the SEC61B locus and therefore does not contain an untar-

geted allele. Underlying data are provided in S2 Data. ITPN, in-trans paired nicking.

(TIF)

S4 Fig. KRT20-mScarlet knock-in in normal human colon organoids. (A) Schematic repre-

sentation of the KRT20 targeting strategy to knock in mScarlet-P2A-BlasticidinR. The donor

was flanked with homology arms matching up- and downstream sequences of the C-terminus

of the human KRT20 locus. Cas9 D10A nickase was targeted close to the stop codon using a

gRNA as indicated (green arrow). Cas9 D10A nickase cleavage sites (triangles) and protospa-

cer adjacent motifs (black bar) are indicated. Up- and downstream homology is represented in

blue and red, respectively. Knock-in organoids were generated by electroporating normal

human colon organoid clumps followed by outgrowth for 10 days. To select for successfully

targeted cells, organoids were treated for 7 days with Blasticidin, followed by manual picking

of a clonal organoid containing red fluorescent cells. (B) Fluorescent images of representative

KRT20-mScarlet-P2A-BlasticidinR knock-in organoids containing both KRT20-positive and

KRT20-negative cells (red: KRT20-mScarlet). Scale bar = 50 μm. (C) Sanger sequencing was

performed on the KRT20-mScarlet-P2A-BlasticidinR knock-in line. The 50 and 30 junctions of

the knock-in allele are intact. Underlying data are provided in S2 Data.

(EPS)

S5 Fig. TIDE analysis of multiplexed triple knock-in lines in tumor human colon orga-

noids. TIDE analysis of the “untargeted” alleles for all targeted genes in the one-step triple

knock-in lines (see Fig 3). TIDE was performed using the Sanger sequencing read of the paren-

tal tumor colon organoid model as a control sample chromatogram. The SEC61B allele of Tri-

ple KI-2 was not analyzed because it failed quality control. Underlying data are provided in S2

Data.

(EPS)

S6 Fig. Sanger sequencing of 50 and 30 knock-in allele junctions in triple knock-in tumor

colon organoids. Sanger sequencing was performed on polyclonal triple knock-in tumor

colon lines generated via manual picking of triple positive clonal organoids. The 50 and 30 junc-

tions of each knock-in allele are shown for all 3 multiplexed knock-in conditions (see Fig 3).

Underlying data are provided in S2 Data.

(TIF)

S7 Fig. Two-step triple knock-ins in human colon cancer organoids using antibiotic

enrichment. (A) Schematic representation showing the generation of triple fluorescent knock-

ins in human colon cancer organoids in 2 rounds of gene targeting. mScarlet-BlastR was inte-

grated into the CDH1 locus, coding for E-cadherin, followed by Blasticidin selection for 2

weeks to enrich for knock-in organoids. Subsequent handpicking generated a pure line

(99.5%, Scarlet+). In a second round of gene targeting, mTurquoise2-PuroR was integrated

into the HIST1H2BC locus combined with mNeongreen integrations into either the LMNA,

SEC61B, or MAP4 loci. In the schematics: Cas9 (D10A) nick positions (red triangles) and pro-

tospacer adjacent motifs (black bar) are indicated for each knock-in design, including gRNA

used (green arrow). (B) FACS plots of triple knock-in organoids after the second targeting

round and puromycin selection for 10 days. Puromycin enrichment resulted in a near com-

plete selection for HIST1H2B-mTQ2-PuroR positive cells (purple and blue populations com-

bined). Numbers in FACS plots indicate frequencies (%) of knock-in populations within the

entire targeted cell population. Raw FCS files are available on the FlowRepository

(FR-FCM-Z4PJ).

(EPS)
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S8 Fig. Sanger sequencing of differential biallelic modifications in a patient-derived tumor

organoid line. Sanger sequencing was performed on polyclonal biallelic tumor knock-in lines

carrying both mScarlet and mNeongreen integrations at either the SEC61B, MAP4, or

HIST1H2BC locus. The 50 and 30 junctions of each knock-in allele are shown for all 3 biallelic

knock-in conditions (see Fig 4A). For HIST1H2BC-mSC, the endogenous stop codon of the

HIST1H2BC locus was maintained.

(TIF)

S1 Table. Presence of off-target effects (small indels and structural variations breakpoints)

in in silico predicted off-target regions (spacer and flanking regions) in WGS of 3 clonal

ITPN-mediated SEC61B-mScarlet knock-in organoid lines. ITPN, in-trans paired nicking;

WGS, whole genome sequencing.

(XLSX)

S2 Table. Targeting vector backbone fragments.

(XLSX)

S3 Table. Targeting vector homology arm sequences.

(XLSX)

S4 Table. Locus-specific primer sets for genotyping and TIDE.

(XLSX)

S1 Data. Data underlying Figs 1C, 1D, 1F, 1G, and 4C. (A-D) Knock-in efficiencies (% of

total cell population) as determined by flow cytometry analysis for Fig 1C, 1D, 1F and 1G. (E)

Fluorescent signals reported in Fig 4C. Values are corrected as explained in the methods.

(XLSX)

S2 Data. Raw Sanger and TIDE sequencing results for S2–S6 and S8 Figs.

(ZIP)

S1 File. Design considerations and cloning protocol for the one-step targeting vector

assembly to obtain fluorescent gene tagging using in-trans paired nicking or cleavage.

(DOCX)

S2 File. Personalize your one-step targeting vector backbone by replacing the current

donor templates.

(DOCX)
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