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� HBV, HBC, and alcoholic and non-
alcoholic fatty liver disease lead to
liver cirrhosis.

� All these are inflammatory conditions
with PUFA deficiency state.

� HBV, HCV, and alcohol inhibit PUFA
metabolism.

� PUFAs and their metabolites have
anti-viral and cytoprotective actions.

� PUFAs and vitamin C may be of
benefit in NAFLD, AFLD, and liver
cirrhosis.
g r a p h i c a l a b s t r a c t

Scheme showing possible role of HBV and HCV on cytokines, PUFA metabolism and development of
hepatitis.
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a b s t r a c t

It has been suggested that hepatitis B virus (HBV)- and hepatitis C virus (HCV)-induced hepatic damage
and cirrhosis and associated hypoalbuminemia, non-alcoholic fatty liver disease (NAFLD), and alcoholic
fatty liver disease (AFLD) are due to an imbalance between pro-inflammatory and anti-inflammatory
bioactive lipids. Increased tumour necrosis factor (TNF)-a production induced by HBV and HCV leads
to a polyunsaturated fatty acid (PUFA) deficiency and hypoalbuminemia. Albumin mobilizes PUFAs from
the liver and other tissues and thus may aid in enhancing the formation of anti-inflammatory lipoxins,
resolvins, protectins, maresins and prostaglandin E1 (PGE1) and suppressing the production of pro-
inflammatory PGE2. As PUFAs exert anti-viral and anti-bacterial effects, the presence of adequate levels
of PUFAs could inactivate HCV and HBV and prevent spontaneous bacterial peritonitis observed in cirrho-
sis. PUFAs, PGE1, lipoxins, resolvins, protectins, and maresins suppress TNF-a and other pro-
inflammatory cytokines, exert cytoprotective effects, and modulate stem cell proliferation and differen-
tiation to promote recovery following hepatitis, NAFLD and AFLD. Based on this evidence, it is proposed
that the administration of albumin in conjunction with PUFAs and their anti-inflammatory products
could be beneficial for the prevention of and recovery from NAFLD, hepatitis and cirrhosis of the liver.
NAFLD is common in obesity, type 2 diabetes mellitus, and metabolic syndrome, suggesting that even
these diseases could be due to alterations in the metabolism of PUFAs and other bioactive lipids.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jare.2018.12.006&domain=pdf
https://doi.org/10.1016/j.jare.2018.12.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Undurti@hotmail.com
https://doi.org/10.1016/j.jare.2018.12.006
http://www.sciencedirect.com/science/journal/20901232
http://www.elsevier.com/locate/jare


18 U.N. Das / Journal of Advanced Research 17 (2019) 17–29
Hence, PUFAs and co-factors needed for their metabolism and albumin may be of benefit in the preven-
tion and management of HBV, HCV, alcoholic hepatitis and NAFLD, and liver cirrhosis.
� 2019 The Author. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Alcoholism, hepatitis B virus (HBV), hepatitis C virus (HCV) and
fatty liver disease (non-alcoholic fatty liver disease, NAFLD, and
non-alcoholic steatohepatitis, NASH) are the most common causes
of liver cirrhosis [1]. NAFLD and NASH are common in subjects
with obesity, diabetes mellitus and coronary heart disease (CHD)
[2,3]. Hence, a better understanding of the pathophysiology of
HBV, HCV, NAFLD, and NASH may also provide clues for under-
standing obesity, diabetes mellitus, and CHD.

Both HBV and HCV can cause acute and chronic infection.
Chronic HBV and HCV infections may lead to cirrhosis and hepa-
tocellular carcinoma (HCC). In addition, patients with chronic
HBV and HCV hepatitis may remain infectious and transmit the
disease to other for many years. Several other causes of hepatitis
include hepatitis A, hepatitis D (HDV) and hepatitis E viruses
(HEV). Other infrequent causes of viral hepatitis include aden-
ovirus, cytomegalovirus (CMV), Epstein-Barr virus (EBV) and her-
pes simplex virus (HSV). Both HBV and HCV may cause
extrahepatic manifestations. Approximately 5% of the world’s
population (ie, 350 million people) are estimated to be chroni-
cally infected with HBV. Of which, about 20% will eventually
develop HBV-related cirrhosis or hepatocellular carcinoma
(HCC). Both HBV and HCV are transmitted via perinatal, par-
enteral (especially via intravenous and intranasal drug use) and
sexual routes. Health workers are especially at risk of contacting
both HBV and HCV infections (HBV > HCV). HBV and HCV are the
most common causes of serious hepatitis (HAV is common but
causes mild hepatitis, self-limiting and is transmitted through
contaminates food, water and from person to person). Hence,
the present discussion is restricted to HBV and HCV.

Alcohol is metabolized in the body to acetaldehyde and acetate
by alcohol dehydrogenase and aldehyde dehydrogenase enzymes
respectively. Acetaldehyde is hepatotoxic. HBV, HCV and alcohol
cause inflammation and thus, ultimately, they lead to hepatotoxi-
city and apoptosis and necrosis of liver cells that can lead to fibro-
sis and hepatocellular carcinoma. Non-alcoholic fatty liver disease
(NAFLD) is the most common cause of liver damage and is due to
accumulation of excess of fat in the liver that can trigger inflamma-
tion and its consequences. Thus, inflammatory events seem to be at
the centre of both infective and non-infective causes of liver
damage, cirrhosis and hepatocellular carcinoma (HCC). Current
knowledge suggests that there is a significant role for pro- and
anti-inflammatory cytokines, bioactive lipids and oxidative stress
in the pathogenesis of viral hepatitis, alcoholic hepatitis, NAFLD,
liver cirrhosis, and HCC. In the current review, I surveyed critically
literature pertaining to cytokines, free radicals, antioxidants, and
various bioactive lipids namely polyunsaturated fatty acids
(PUFAs) and their pro- and anti-inflammatory metabolites and
their role in hepatitis, NAFLD and liver cirrhosis. Based on these
evidences, I suggested that bioactive lipids and their metabolites
and the co-factors needed for their appropriate metabolism could
be exploited in the prevention and management of these diseases.
Since, NAFLD is common in those with obesity, type 2 diabetes
mellitus and metabolic syndrome, it is implied that similar
approaches could be employed in the prevention and management
of these conditions as well.
Cirrhosis is associated with PUFA deficiency

The total n-6 and n-3 PUFA levels and the levels of linoleic (LA),
dihomo-c-linolenic acid (DGLA), arachidonic acid (AA), and
docosahexaenoic acid (DHA) have been reported to be significantly
lower in patients with post-viral and alcoholic cirrhosis than in
healthy controls, and the administration of AA, eicosapentaenoic
acid (EPA) and DHA has been shown to be beneficial in HCV and
diet- and chemical-induced hepatic dysfunction [4–7]. These
results indicate that a deficiency of n-3 and n-6 PUFAs and the
resultant decreased formation of their anti-inflammatory products,
such as prostaglandin E1 (PGE1), prostacyclin (PGI2), lipoxins
(LXs), resolvins, protectins and maresins, play a significant role in
the pathogenesis of liver cirrhosis [8–15]. In general, PUFAs,
PGE1, PGI2, LXs, resolvins, protectins and maresins seem to exert
anti-fibrotic effects as they can also prevent cardiac, renal and pul-
monary fibrosis [16–21] by suppressing inflammation. Lipoxin A4
(LXA4) can attenuate the expression of fibronectin, N-cadherin,
thrombospondin and the notch ligand jagged 1 induced by pro-
fibrotic TGF-b partly by regulating the expression of microRNA
let-7c, which enhances the expression of fibronectin, N-cadherin,
thrombospondin and the notch ligand jagged 1. In addition, several
microRNA let-7c target genes have been found to be upregulated in
fibrotic human renal biopsies, indicating that the reduced synthe-
sis and action of LXA4may play a significant role in fibrosis [15,21].

In this context, it is noteworthy that HBV and HCV inhibit the
activity of D6 and D5 desaturases that are essential for the metabo-
lism of dietary linoleic acid (LA) and alpha-linolenic acid (ALA) into
their respective long-chain products gamma-linolenic acid (GLA),
DGLA and AA and EPA and DHA, respectively (see Figs. 1 and 2
regarding the metabolism of essential fatty acids, EFAs, and their
influence on inflammation). Thus, it is anticipated that HBV and
HCV infection would cause a deficiency of GLA, DGLA, AA, EPA
and DHA and their anti-inflammatory metabolites, such as LXs,
resolvins, protectins and maresins, as well as PGE1 and PGI2. Such
a virus-induced PUFA deficiency may further aggravate viral (e.g.,
HCV and HBV) infection due to the absence or decrease in the
anti-viral activity of PUFAs, which are probably needed for anti-
viral responses.
Pufas and their metabolites exert anti-HBV and anti-HCV effects

It is noteworthy that HBV and HCV inhibit the activity of desat-
urases and thus produce a PUFA (GLA, DGLA, AA, EPA and DHA)
deficiency. This virus-induced PUFA deficiency seems to be a
defensive mechanism developed by HBV and HCV to protect them-
selves from the viricidal action of these bioactive lipids. This idea is
supported by the observation that several PUFAs (especially AA)
and their metabolites exert anti-viral effects [22–52]. It has been
reported that AA, EPA and DHA show anti-HCV activity at a phys-
iologically relevant dose of 4 lM (especially AA), whereas ALA, GLA
and LA are effective at a much higher dose (100 lM). In contrast,
oleic acid (18:1) and saturated fatty acids, including myristic acid,
palmitic acid, and stearic acid, were found to be ineffective. It is
interesting to note that AA enhanced the anti-viral activity of
interferon (IFN)-a [23]; additionally, IFN is known to activate
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Fig. 1. Scheme showing potential role of PUFAs and their metabolites on cytokines, stem cells and liver cirrhosis. HBV, HCV, and alcohol decrease the activities of desaturases.
This leads to a decrease in the formation of GLA, DGLA, AA, and EPA and DHA from their dietary precursors LA and ALA, respectively. HBV, HCV, and alcohol activate PLA2 and
induce the release of various PUFAs from the liver cell membrane. These released PUFAs will be used for the formation of their respective pro- and anti-inflammatory
metabolites by the action of COX-2 and LOX enzymes. HBV, HCV, and alcohol enhance the formation of pro-inflammatory products such as PGE2, LTs and pro-inflammatory
cytokines such as IL-6 and TNF-a. Under normal physiological conditions, when the hepatocyte content of PUFAs are normal released PUFAs undergo peroxidation. The lipid
peroxides inactivate HBV and HCV. If the hepatocytes are deficient in PUFAs, it leads to the formation of pro-inflammatory PGE2 and LTs. This causes hepatocyte inflammation
(hepatitis). If PUFAs are present in adequate amounts in hepatocytes, it leads to the formation of anti-inflammatory lipoxins, resolvins, protectins and maresins that not only
inhibit inflammation (hepatitis) but also inactivate HBV and HCV and protect liver from toxic actions of alcohol. PUFAs and their metabolites can also act on stem cells to
enhance repair process and augment liver regeneration. IL-1b enhances the formation of lipoxins, resolvins, protectins and maresins. Pro-inflammatory cytokines augment
the production of pro-inflammatory bioactive lipids whereas anti-inflammatory cytokines enhance the formation of lipoxins, resolvins, protectins and maresins. AA and LXA4
deficiency may cause obesity, NAFLD and type 2 DM. Free radicals (ROS) generation induced by inflammatory process (including cytokines) triggered by HBV and HCV is
suppressed by albumin, lipoxins, resolvins, protectins, maresins, and PUFAs especially AA. PUFAs and lipoxins, resolvins, protectins and maresins suppress the production of
IL-6, TNF and HMGB1. In summary AA, EPA, DHA, LXs, resolvins, protectins and maresins inactivate viruses, suppress ROS, prevent abnormal lipid peroxidation, suppress
inappropriate inflammation and thus, prevent NAFLD, hepatitis, liver cirrhosis, obesity, type 2 DM and metabolic syndrome. For further details see text.
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phospholipase A2 (PLA2) and induce the release of PUFAs from the
cell membrane lipid pool, indicating that one of the mechanisms by
which IFN meditates its anti-viral effects is by inducing the release
of PUFAs [53–56]. Thus, PUFAs released by IFN are utilized to form
PGE2, a pro-inflammatory molecule and immunosuppressor,
which may explain the pro-inflammatory actions of IFN. It is note-
worthy that activation of the ERK, p38 and JNK signalling cascades
in host cells is needed for virus-induced cyclo-oxygenase (COX)-2
activation and PGE2 formation. Paradoxically, PGE2 enhances viral
replication [57]. On the other hand, AA, EPA, DHA, PGA, PGJ2, PGE1,
and leukotrienes (LTs) have anti-viral properties [22–52]. These
results suggest that fatty acid molecules themselves and/or some
of their selective products have anti-viral activity, indicating that
the way PUFAs are metabolized is crucial for determining whether
viruses are allowed to replicate or are inhibited from replicating,
thus preventing liver damage due to HBV and HCV from occurring.
It is important to note that PGA is a vasodilator, PGE2 is a vasodila-
tor and pro-inflammatory molecule, and LTs are vasoconstrictors
and pro-inflammatory in nature, whereas PGE1, LXs resolvins, pro-
tectins and maresins are anti-inflammatory and anti-viral. Thus,



Fig. 2. Metabolism of PUFAs and formation of their pro- and anti-Inflammatory products.
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the final outcome of viral infections (especially HBV and HCV infec-
tions) of either the progression of hepatic damage and liver cirrho-
sis or the inhibition of viral replication and the resolution of
hepatic damage and the inflammatory process (induced by viruses)
depends on the presence of adequate amounts of PUFAs in the hep-
atocyte cell membranes and their release and conversion into anti-
viral (e.g., PGA, PGJ2, LTs, LXs, resolvins, protectins and maresins)
or viral replication-enhancing products (e.g., PGE2). How exactly
this balance between useful and harmful PUFA products is deter-
mined remains unclear.
Interactions among PUFAs, PGE2, LXA4 and their relationship
with HBV and HCV hepatitis

It has been well documented that the anti-inflammatory
metabolites of PUFAs (PGE1, PGA, LXs, resolvins, protectins and
maresins) are essential for wound healing and possess cytoprotec-
tive properties [58–62]. PUFAs, PGE1, LXs, resolvins, protectins and
maresins inhibit IL-6 and TNF-a, which are increased in patients
with hepatitis and exert cytotoxic effects [63–65]. These results,
coupled with the observation that those with post-viral and
alcoholic cirrhosis, HCV, and diet- and chemical-induced hepatic
dysfunction have a deficiency of n-3 and n-6 PUFAs and their
anti-inflammatory metabolites, PGE1, PGI2, LXs, resolvins, pro-
tectins andmaresins [4–15], suggest that these bioactive lipids play
a significant role in the pathogenesis of liver cirrhosis. These results
also indicate that there could be an imbalance between pro- and
anti-inflammatory bioactive lipids in cirrhosis. It is rather paradox-
ical that a decrease in the plasma level of AA, the precursor of LXA4,
and an increase in the concentration of pro-inflammatory PGE2,
which is also derived from AA, are observed in these patients. This
findings indicate that a deficiency of AA enhances the production of
pro-inflammatory PGE2 synthesis and decreases that of LXA4, its
anti-inflammatory metabolite [12]. It is noteworthy that supple-
menting AA to normal healthy subjects and those with inflamma-
tion does not increase the PGE2 level but does increase the LXA4
level [66,67], suggesting that AA (and EPA and DHA) behave as
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anti-inflammatory molecules when their concentrations are nor-
mal. On the other hand, low concentrations of these molecules
(wherein the cell membrane concentrations are low) lead to the for-
mation of pro-inflammatory molecules, such as PGE2 and PGE3
(PGE3 is also pro-inflammatory but much less potent than PGE2).
AA, EPA, DHA, LXA4, resolvins protectins, maresins and PGE2 are
inhibitors of IL-6 and TNF-a. Despite the inhibitory action of PGE2
on IL-6 and TNF-a, inflammation persists and progresses, suggest-
ing that perhaps a concomitant deficiency of LXA4, resolvins, pro-
tectins and maresins is needed for the pro-inflammatory state to
occur and continue. Hence, under such pro-inflammatory condi-
tions, supplementation with AA/EPA/DHA is the best strategy for
suppressing inflammation and restoring homeostasis.

It may be noted here that TNF-a and IL-6 have the ability to
induce a state of EFA deficiency in cells and tissues [68]. As a result,
the cellular content of various PUFAs is reduced, which can result
in the decreased formation of LXA4. This EFA-deficient state trig-
gered by excess TNF-a/IL-6 production during the inflammatory
process can further enhance TNF-a/IL-6 production, which is
expected to result in the aggravation and persistence of inflamma-
tion due to the lack of negative feedback control exerted by PUFAs
and LXA4 on TNF-a/IL-6 production. However, paradoxically, TNF-
a needs PUFAs to exert its tumouricidal effects [69,70], and under
some very specific conditions, cytoprotective properties [71,72].
AA regulates TNF receptor expression, neutrophil function and free
radical generation induced by TNF without being metabolized by
COX and lipoxygenase enzymes [73]. Thus, AA itself seems to be
capable of these actions via its incorporation into the cell mem-
brane and the consequent alteration in membrane fluidity, which
is known to alter the expression of many receptors. Another possi-
bility is that AA is metabolized into LXA4, which exerts cytoprotec-
tive effects, modulates neutrophil function, and regulates free
radical generation, properties that are similar to those of TNF-a.
Although this appears paradoxical (TNF-a induces an EFA-
deficient state and thus reduces LXA4 formation, whereas LXA4
Fig. 3. Scheme showing possible role of HBV and HCV on cytokines, PUFA metabolism
produce a deficiency of AA, EPA, and DHA. This leads to decreased formation of lipoxin
process by enhancing the formation of IL-6 and TNF-a, decreasing the formation of lip
Exercise enhances parasympathetic activity and acetylcholine (ACh) levels. Ach is a pot
inflammatory cytokines.
inhibits TNF-a production to restore homeostasis, and PUFAs are
needed for TNF-a actions), perhaps both positive and negative
feedback among PUFAs, TNF-a/IL-6 and LXA4 are needed to regu-
late the actions of all these molecules (see Fig. 3): LXA4 is needed
to control excess pro-inflammatory activity of TNF-a, whereas
TNF-a is needed to induce an apparent PUFA deficiency, which is
necessary to upregulate TNF-a synthesis and activity in inducing
an optimal inflammatory state to trigger the resolution process,
which calls for the formation of LXA4 and the synthesis of
AA/EPA/DHA from dietary LA and ALA. One of the purposes of
the PUFA-deficient state induced by TNF-a could be to induce
the excess production of PGE2 (which inhibits TNF-a and IL-6 syn-
thesis) that is needed for inflammation to reach its peak, in turn,
triggering the resolution process. It is considered that once inflam-
mation reaches its peak, surrounding normal cells release PUFAs
from their cell membrane (possibly due to PLA2 activation by
TNF-a/IL-6) that are utilized for the synthesis of LXA4/resolvins/p
rotectins/maresins to initiate the resolution of inflammation. In
addition, it has been shown that under some very specific condi-
tions, PGE2 can also exert ani-inflammatory effects [74] by enhanc-
ing LXA4 formation [75], which is understandable since both PGE2
and LXA4 are derived from AA, suggesting that the pro-
inflammatory PGE2 pathway is redirected towards anti-
inflammatory LXA4 synthesis; however, the mechanism of this
redirection from PGE2 to LXA4 synthesis is not clear.
Mechanism of anti-viral action of PUFAs and their metabolites

The fact that PUFAs and some of their metabolites exert anti-
viral effects [22–52] is not only interesting but also indicates that
they may serve as endogenous anti-microbial compounds
[24,25,28]. In such an event, decreased PUFA production or utiliza-
tion could lead to the occurrence and progression of infections. The
interactions of PUFAs and their metabolites with pro- and
and development of hepatitis. HBV, HCV, and alcohol inhibit desaturases and thus,
s, resolvins, protectins and maresins. HBV, HCV, and alcohol trigger inflammatory
oxins, resolvins, protectins and maresins and enhancing the production of PGE2.
ent anti-inflammatory molecule and enhances the formation of lipoxins and anti-
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anti-inflammatory cytokines, reactive oxygen species (ROS) and
antioxidants may form a tight network that could play a significant
role in the pathobiology of several infective and non-infective but
inflammatory disorders. This network may explain the role of
PUFAs and their metabolites in various disorders, such as diabetes
mellitus, hypertension, obesity, Alzheimer’s disease, and autism,
among others, although it is uncertain whether alterations in the
metabolism of PUFAs are the cause or effect of these diseases. In
liver cirrhosis, the role played by PUFAs is significant because the
condition is characterized by bacteraemia, endotoxaemia and
spontaneous bacterial peritonitis, which are due to increased gut
permeability, decreased resistance to infections, especially bacte-
rial infections, and increased oxidative stress [76,77]. It is notewor-
thy that PUFAs and their metabolites, such as LXs, resolvins,
protectins and maresins, can restore the gut microbiome/micro-
biota and gut permeability to normal [78-80]. It is possible that
macrophages, leukocytes and other immunocytes secrete PUFAs
and their metabolites (in addition to ROS, nitric oxide, and reactive
Fig. 4. Scheme showing possible mechanism(s) of antimicrobial action of bioactive lipi
activates phospholipase A2 (PLA2) that induces the release of PUFAs from cell memb
inflammatory PGA, PGJ2, lipoxins, resolvins protectins and maresins. PUFAs induce gener
formation of lipid peroxides that are toxic to several bacteria, viruses, fungi and intra
reductase (Fabl) that can produce their bactericidal action. AA and other PUFAs augment
action. AA and other PUFAs and their products PGA, PGJ2, lipoxins, resolvins, pr
sphingomyelinase results in enhancement of Th1-mediated cytotoxic T-cell mediated ant
and maresins that have potent anti-inflammatory, anti-tumor and microbicidal actions a
activity and IL-6 and TNF-a synthesis and NO, ROS, CO, and H2S formation and thus, aid
protectins and maresins enhance macrophage and leukocyte phagocytic activity and rem
For further information see text. Possible relationship among pro- and anti-inflammato
nitrogen species) to inactivate various microbes, and this process
may be defective in liver cirrhosis due to an altered PUFA metabo-
lism, which might be responsible for bacteraemia, septicaemia,
spontaneous bacterial peritonitis and defective wound healing
(see Figs. 4 and 5).

Although the exact mechanisms by which PUFAs and LXs, resol-
vins, protectins, maresins, PGA and PGJ2 exert their anti-microbial
effects are unclear, some possibilities include the following: dis-
rupting the cell membrane of various enveloped viruses (including
that of HCV and HBV), bacteria and fungi; enhancing the immune
response (both humoural and cellular); modulating macrophage
function; directly inhibiting fatty acid synthesis that is essential
for bacteria to survive; inducing the heat-shock response; and
inhibiting viral protein glycosylation [22–52]. AA and other PUFAs
seem to activate macrophages and augment their capacity to gen-
erate free radicals (ROS, NO, CO, H2S) that have microbicidal activ-
ity [28,81–86]. In addition, these bioactive lipids are able to
modulate macrophage function (enhancing the generation of M2
ds. On exposure to microbial organisms, immunocytes release IL-6 and TNF-a that
rane lipid pool, the precursors of pro-inflammatory PGs, LTs and TXs and anti-
ation of ROS, CO, NO, and H2S that can act on PUFAs (especially AA) to enhance the
cellular parasites. AA and other PUFAs inhibit bacterial enoyl-acyl carrier protein
neural sphingomyelinase that enhances ceramide formation, which has tumoricidal
otectins, and maresins have antimicrobial action. PUFAs-induced activation of
itumor activity. AA, EPA, and DHA can be converted to lipoxins, resolvins, protectins
nd are capable of inhibiting the formation of pro-inflammatory eicosanoids, COX-2
in the resolution of inflammation and augment wound healing. Lipoxins, resolvins,
ove debris and thus, aid in resolution of inflammation and enhance wound healing.
ry molecules is given in Fig. 5.



Fig. 5. A schematic representation of possible relationship among plasma levels of
cytokines and PGE1, PGE2, LTs, and LXA4 in inflammation and resolution of
inflammation and wound healing. Under normal physiological conditions, a delicate
balance is maintained between pro- and anti-inflammatory molecules (such as IL-6
+ TNF-a + PGE2 + LTD4 vs IL-10 + LXA4). When this balance is tilted more towards
pro-inflammatory molecules, inflammations is initiated and perpetuated. When-
ever, the synthesis and action of anti-inflammatory IL-10 and LXA4 are reduced, it
leads to an increase in the production and action of IL-6, TNF-a, PGE2, and LTD4 and
vice versa. But, under some very specific conditions, PGE2 may function as an anti-
inflammatory molecule (see text for details). Inflammation triggered by IL-6, TNF-a
and PGE2 and LTD4 is resolved by adequate formation of LXA4 and IL-10. It is not
clear how exactly tissues determine as to when resolution of inflammation should
start. It appears when inflammation attains its peak, it leads to suppression of
PGE2/LTD4 synthesis and initiation of the formation and release of LXA4 and
resolvins, protectins and maresins. It is possible, but needs firm proof, that AA,
which is the precursor of PGE2 and LTD4, is redirected to form LXA4 and so
suppression of inflammation. It is likely that IL-10 enhances the formation of LXA4
whereas IL-6 and TNF-a trigger the formation of PGE2 and LTD4. Similarly, LXA4
may trigger the formation of IL-10, whereas IL-6 and TNF-a enhance the synthesis
of PGE2/LTD4. For details see text.
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macrophages and decreasing that of M1 macrophages) to facilitate
the anti-inflammatory process and augment wound healing by
eliminating infection, enhancing the phagocytosis of debris at the
site of inflammation and suppressing the production of pro-
inflammatory PGs, LTs and TXs [28] via the inhibition of COX-2.
Thus, bioactive lipids seem to have both immunologic and non-
immunologic activities to account for their anti-microbial effects,
which have been specifically described against Staphylococci,
Streptococci, Mycobacteria, Helicobacter, and viruses, such as
HBV, HCV, herpes, influenza, Sendai, Sindbis, polio, HIV, vesicular
stomatitis, encephalomyocarditis, and measles [22–52].

Neutral sphingomyelinase (SMase), a hydrolase enzyme, plays
an important role in sphingolipid metabolism reactions. SMase
can break sphingomyelin (SM) into phosphocholine and ceramide.
AA, and possibly other PUFAs, stimulate SMase activity in
leukocytes and other cells and thus enhance intracellular ceramide
formation, which has a tumouricidal effect [28,87,88]. Altered
SMase activity drives immune evasion and facilitates tumour
growth, suggesting that PUFAs, by enhancing SMase activity, can
produce a significant enhancement in Th1-mediated and cytotoxic
T cell-mediated anti-tumour and anti-microbial immunity. This
may result in the appropriate synthesis and activity of TNF-a and
other cytokines and COX-2 expression [89–92] which, in turn,
facilitate the anti-microbial action of PUFAs and their metabolites.

In view of the complex relationships among HBV/HCV, cytoki-
nes, PUFAs and their metabolites and inflammation, a detailed dis-
cussion of the role of PGE1 (anti-inflammatory eicosanoid) and
PGE2 (pro-/anti-inflammatory eicosanoid) in the pathobiology of
liver cirrhosis is provided below.
PGE1 and its precursors in liver cirrhosis

Previously, the authors hypothesized that an imbalance in the
prostaglandin system (i.e., reduced formation of PGE1 and throm-
boxane A2 and increased formation of PGE2) may play a role in the
pathogenesis of liver cirrhosis [93]) and demonstrated that the oral
administration of GLA, the precursor of DGLA, is of significant ben-
efit to these patients [94]. This proposal was based on the observa-
tion that PGs regulate fibroblast proliferation [95] and
glycosaminoglycan and collagen synthesis [95,96] and participate
in the immune response and inflammation [97,98]. Corradini
et al. [99] showed that cirrhotic patients have higher levels of
monounsaturated fatty acids and lower levels of n-6 and n-3
PUFAs, especially DGLA, the precursor of PGE1, which were inde-
pendently associated not only with the presence of cirrhosis but
also with its prognosis, post-transfusion graft hepatocellular
necrosis and sinusoidal congestion. These results suggest that the
administration of DGLA could be beneficial to patients with liver
cirrhosis, which supports our previous observation that GLA, which
can be rapidly elongated to form DGLA, is beneficial in the treat-
ment of liver cirrhosis [94]. It has been shown that 12 of 17
patients studied responded favourably to the intravenous infusion
of PGE1 at 0.2 mg/kg per hour, increased by 0.1 mg/kg per hour
every 30 min to a maximum of 0.6 mg/kg per hour with adjustment
of the dose to the patients’ clinical response and maintained for up
to 28 days. In this study, after 4 weeks of intravenous PGE1 ther-
apy, the patients were transitioned to oral PGE2. No relapses were
observed in these patients with hepatitis A virus (HAV) and HBV
infection. Liver biopsies in all 12 surviving patients reverted to nor-
mal [100]. The remaining five non-responders showed an improve-
ment in hepatic function, but all deteriorated and died of cerebral
oedema (n = 3) or underwent liver transplantation (n = 2). These
results support the original hypothesis (93) and usefulness of
GLA in liver cirrhosis [94]. Several other studies [101–103] have
shown a significant benefit of PGE in cirrhosis. These results lend
support to the contention that a deficiency of anti-inflammatory
bioactive lipids may underlie the pathogenesis of liver cirrhosis,
whereas methods designed to enhance the formation of PGE1, an
anti-inflammatory molecule [104–106], and other anti-
inflammatory products of PUFAs, especially of GLA, which also
has anti-inflammatory activity [107,108], could be of significant
benefit to patients in this condition.
PGE2 in liver cirrhosis

One of the earliest investigations pertaining to the involvement
of eicosanoids in the pathobiology of liver cirrhosis was performed
with the idea that vasodilatory PGs could play a role in maintaining
renal perfusion in patients with cirrhosis and ascites [109]. PGE2
was decreased in 14 patients with hepatorenal syndrome com-
pared with healthy controls (2.2 ± 0.3 vs 6.3 ± 0.8 ng/h, P < 0.01),
patients with acute renal failure (9.6 ± 2.1 ng/h) and patients with
alcoholic hepatitis (9.2 ± 3.3 ng/h). In contrast, the TXB2 concentra-
tion was normal in patients with alcoholic hepatitis (0.12 ± 0.02 vs
0.15 ± 0.03 ng/mL) and minimally increased in those with acute
renal failure (0.18 ± 0.15 ng/mL) but markedly elevated in those
with hepatorenal syndrome (0.69 ± 0.15 ng/mL, P < 0.001). These
data suggest an imbalance in the levels of vasodilator and vasocon-
strictor metabolites of AA in patients with hepatorenal syndrome.
Further, it was evident PGE2 was elevated that in those with alco-
holic hepatitis compared to the normal controls (9.2 ± 3.3 ng/h vs
6.3 ± 0.8 ng/h), while there was no significant difference in the
TXB2 level between the patients and controls (0.12 ± 0.02 vs
0.15 ± 0.03 ng/mL). These results are supported by the
observations of Rimola et al. [110], who showed that patients with
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cirrhosis without functional renal failure had a significantly higher
urinary excretion of 6-keo-PGF1a (a stable metabolite of PGI2),
TXB2 and PGE2 (15.9 ± 1.7 ng/h, 3.0 ± 0.3 ng/h, and 6.2 ± 1.0 ng/h,
respectively) than did normal subjects (9.2 ± 0.9, 1.3 ± 0.1, and
2.3 ± 0.4 ng/h, respectively). The plasma renin activity, nore-
pinephrine and anti-diuretic hormone levels were significantly
increased in these patients with cirrhosis (8.0 ± 1.4 ng/mL/h,
667 ± 67 pg/mL, and 3.9 ± 0.3 pg/mL) compared to the normal con-
trols (1.3 ± 0.2, 275 ± 46, and 2.4 ± 0.2 pg/mL, respectively). These
results suggest that renal haemodynamics in cirrhosis depend
upon a critical equilibrium between the activity of endogenous
vasoconstrictors and the renal production of the vasodilators
PGI2 and PGE2, as well as the renin activity and norepinephrine
levels. It is noteworthy that renin enhances the formation of
angiotensin-II, a pro-inflammatory molecule [111–113], and that
norepinephrine has pro-inflammatory activity [114–116].

Furthermore, cirrhotic patients have an altered sympatho-vagal
balance with a reduced sympathetic predominance in response to
passive tilting [117]. In another study, patients with cirrhosis who
were awaiting liver transplantation showed significantly lower
baroreflex sensitivity than did the controls (4.2 ± 0.9 vs
21.1 ± 3.8 ms/mm Hg; P < 0.05), and baroreflex sensitivity was
lower in patients with cirrhosis with hepatic encephalopathy than
in those without hepatic encephalopathy (2.6 ± 0.9 vs
6.1 ± 1.0 ms/mmHg; P < 0.05). These results suggest that vagal tone
is markedly depressed in cirrhosis [118]. Acetylcholine, the princi-
pal neurotransmitter of the vagus nerve, is known to have anti-
inflammatory activity [119–121].

It may be noted that patients with liver cirrhosis exhibit a
hyperdynamic circulatory state, as indicated by tachycardia, and
an increase in cardiac output accompanied by an elevated sympa-
thetic tone [122]. Thus, patients with cirrhosis may have increased
sympathetic activity and reduced vagal tone, which may account
for the increased inflammatory status that is exacerbated by
enhanced plasma levels of pro-inflammatory PGE2.
PGE1 and inflammation

From the preceding discussion, it is evident that both PGE1 and
PGE2 modulate inflammation and that to a large extent, PGE1 is
anti-inflammatory, while PGE2 is pro-inflammatory. However, this
is not always true.

Using a modified Draize scoring procedure, Hall and Jaitly [123]
reported that topical application of 100 mg of PGE1 can cause con-
junctival redness (erythema due to vasodilatation), swelling
(oedema due to increased capillary permeability), discharge, lid
closure (decrease in palpebral aperture) and miosis. PGE1 and
PGE2 produced almost identical dose-related increases in the
scores of most of the inflammation parameters, although
the oedema-related responses were consistently lower after the
application of PGE2. These results suggest that under certain cir-
cumstances, both PGE1 and PGE2 have similar, if not identical,
pro-inflammatory activity. It is interesting that PGE1 has been
found to potentiate the oedema and pain thresholds of LTD4 and
LTB4 in the rat paw. LTD4 alone had no significant effect on the
development of yeast-induced paw oedema, while LTB4 signifi-
cantly reduced yeast-induced oedema, and this reduction was
reversed by the administration of PGE1. A significant decrease in
the pain threshold was caused by PGE1, which is enhanced in the
presence of LTD4. These results suggest that PGE1 plays a signifi-
cant role in producing oedema but has much less of an effect on
the pain threshold. Nevertheless, PGE1 has pro-inflammatory
activity that seems to be modified by the presence of LTs [124].

In a study of patients with scleroderma [125], the mean base-
line serum C-reactive protein (CRP) level was significantly greater
than in the patients than in the normal controls (12 ± 9.0 mg/mL vs
1.4 ± 1.7 mg/mL; P < 0.001). The mean CRP concentrations before
the administration of intravenous PGE1 infusion in the PGE1-
treated and placebo-treated groups were 14 ± 9 and 10 ± 9 mg/mL,
respectively. Surprisingly, after a three-day infusion of PGE1, the
CRP values were 109 ± 75 and 11 ± 10 mg/mL (P < 0.01) in the
PGE1-treated and placebo-treated groups, respectively. The sclero-
derma patients showed two types of responses to the PGE1 treat-
ment: some showed large increases (mean = 167 ± 32 mg/mL),
while others showed relatively smaller increases
(mean = 22 ± 17 mg/mL; P < 0.005). Those who showed greater
increases in PGE1 had a shorter duration disease and greater cuta-
neous involvement. These results suggest that a high increase in
PGE1 can induce anti-inflammatory effects and thus reduce the
duration of the disease. These and other studies have revealed that
PGE1 infusion can significantly benefit patients with scleroderma,
a chronic inflammatory condition, as well as help relieve Raynaud’s
phenomenon, improve endothelial function, restore immune dys-
function, enhance the healing of digital ulcers and ultimately
improve quality of life [126–131]. Thus, at high doses, PGE1 has
significant anti-inflammatory activity, while at low doses, it seems
to have pro-inflammatory activity or be ineffective in suppressing
inflammatory events.
PGE2 and inflammation

At times, PGE2 may have anti-inflammatory activity [132–134].
The administration of human recombinant IL-1 b (0.3 mg/kg) to
rabbits with formalin-immune complex colitis 24 h before the
induction of colitis increased the PGE2 level (231 ± 36 to
1,299 ± 572 pg/ml, P < 0.01) and reduced the subsequent inflam-
matory cell infiltration index and oedema by a significant degree
compared with those in the vehicle-matched animals. The admin-
istration of ibuprofen (10 mg/kg i.v.) together with IL-1b prevented
PGE2 production, and colonic PGE2 production was found to be
inversely correlated with severity of inflammation and oedema.
These results suggest that pretreatment with IL-1b 24 h before
the induction of colitis reduces inflammation by a mechanism that
requires PG synthesis and that PGE2 may exert anti-inflammatory
effects [135]. Furthermore, PGE2 (50 nm) attenuated the
lipopolysaccharide (LPS)-induced mRNA and protein expression
of chemokines, including monocyte chemoattractant protein 1,
IL-8, macrophage inflammatory protein 1a and 1b, and
interferon-inducible protein 10. In addition, PGE2 inhibited the
TNF-a-, IFN-c-, and IL-1b-mediated expression of chemokines. A
selective EP4 (PGE2 receptor) antagonist reversed PGE2-mediated
suppression of chemokine production, suggesting that endogenous
PGE2 plays a role in the modulation of inflammation by suppress-
ing macrophage-derived chemokine production via the EP4 recep-
tor [134]. Thus, PGE2 has an anti-inflammatory effect on
macrophages by suppressing the stimulus-induced expression of
pro-inflammatory genes, including those encoding chemokines.

Subsequent studies demonstrated that PGE2 pretreatment
inhibited LPS-induced nuclear factor kappa B1 (NF-kB1) p105 phos-
phorylation and degradation in mouse bone marrow-derived
macrophages and RAW 264.7 cells through EP4-dependent mecha-
nisms. The enhanced expression of PGE receptor type 4-associated
protein (EPRAP) inhibited NF-kB activation induced by
pro-inflammatory stimuli in a dose-dependent manner. In co-
transfected cells, EPRAP directly interacted with NF-kB1 p105/p50
and formed a complex with EP4, while in EP4-overexpressing cells,
PGE2 enhanced the protective action of EPRAP against stimulus-
induced p105 phosphorylation. On the other hand, EPRAP silencing
in RAW 264.7 cells impaired the inhibitory effect of PGE2-EP4 sig-
nalling on LPS-induced p105 phosphorylation, whereas EPRAP
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knockdown and NF-kB1 deficiency in macrophages attenuated the
inhibitory effect of PGE2 on LPS-induced MIP-1b production. Thus,
PGE2-EP4 signalling augments NF-kB1 p105 protein stability
through EPRAP after pro-inflammatory stimulation, limiting
macrophage activation [135]. These results emphasize the fact that
under certain specific conditions, PGE2 behaves as an anti-
inflammatory molecule [136–138]. In fact, it has been shown that
blocking the 15-PGDH enzyme that leads to an increase in the
half-life of PGE2 enhances tissue regeneration and repair in the
bone marrow, colon, and liver [138]. These results indicate that
the increased plasma level of PGE2 observed in those with liver
cirrhosis could be an attempt on the part of the body to augment
hepatic regeneration. In addition, the pro- and anti-inflammatory
actions of PGE2 may depend on the presence of other AA metabo-
lites, such as LTB4 and LTD4, as discussed above [124], and the
ability of PGE2 to trigger the anti-inflammatory cascade. Thus, the
pro- and anti-inflammatory actions of PGE1 and PGE2 are only
relative and depend on the dose of PGs, the duration of tissue
exposure to PGs, and the presence or absence of other PGs, LTs
and TXs. It is also noteworthy that the LXA4 level is decreased
in cirrhosis and that LXA4 protects hepatocytes from carbon
tetrachloride-induced toxicity [12,14].
Optimal inflammation is critical for the initiation of anti-
inflammatory events

It is known that excess of PGE2 and LTs production could trigger
the production of anti-inflammatory LXA4 from AA. Enhanced
production of PGE2 and LTs seen on exposure to whole-body
gamma radiation, cobalt 60, and cyclotron neutrons could stimu-
late LXA4 production at the expense of the pro-inflammatory
AA-derived LTB4. It was reported that the production of the anti-
inflammatory metabolite 15-HETE (LXA precursor) peaked at
72 h following radiation/UVB exposure coincided with the gradual
decrease in PGE2 and LT formation. Thus, there seems to be a
gradual and smooth shift in the synthesis of eicosanoids from
pro-inflammatory PGE2 and LTs to 15-HETE and LXs that could
herald the initiation of resolution of the radiation-induced damage
[139–141]. This implies that the initial enhanced synthesis of pro-
inflammatory PGE2 and LTs is essential to trigger and initiate the
formation of anti-inflammatory LXA4. Furthermore, PGE2 can
enhance the production of IL-10, an anti-inflammatory cytokine
[142]. IL-6 release is enhanced by PGE2 in the presence of IL-10,
whereas both IL-10 and PGE2 inhibited the LPS-stimulated produc-
tion of IL-6 and TNF-a, and the selective inhibition of COX-2 or the
addition of anti-IL-10 reversed these effects [143]. Additionally,
exogenous IL-10 expression suppressed COX-2 production [144].
These results suggest that PGE2 induces the production of IL-10,
which, in turn, downregulates IL-6, TNF-a, and COX-2 activity to
restore homeostasis [142–144]. PGE2, a pro-inflammatory mole-
cule, may, in fact, trigger anti-inflammatory actions by augmenting
the synthesis of LXA4 and IL-10, which may explain the paradoxi-
cal pro- and anti-inflammatory actions reported by several investi-
gators. These results suggest that the degree, progression and
resolution of inflammation depend on the local concentrations of
PGE1, PGE2, LTs, LXA4, TNF-a, IL-10 and IL-6 and the orderly
fashion in which the transition from pro- to anti-inflammatory
events/molecules occurs, allowing wound healing and homeostasis
restoration to take place (see Figs. 4 and 5).

An interesting report by O’Brien et al. [145] demonstrated that
the concentration of the pro-inflammatory and immunosuppres-
sive eicosanoid PGE2 was elevated in patients with acute decom-
pensation of cirrhosis and could be restored to normal by
albumin and indomethacin, a non-selective COX inhibitor, but
not by a 12-lipoxygenase inhibitor. These results led to the
suggestion that the intravenous administration of human serum
albumin to patients with acutely decompensated cirrhosis could
not only lead to an increase in the serum albumin level but also
enhance the amount of PGE2 bound to albumin, leading to a
decrease in free PGE2 to restore immune competence [146]. This
finding suggests that an altered PUFA metabolism and an imbal-
ance in the eicosanoid system play significant roles in the patho-
genesis of liver cirrhosis as previously proposed [93,94].
Albumin, PUFA mobilization, and TNF-a in liver cirrhosis

In this context, it is interesting that albumin mobilizes PUFAs
from the liver and aids in the formation of LXs, resolvins, and pro-
tectins that inhibit oxidative stress-induced apoptosis and COX-2
expression [147–150]. In liver cirrhosis and other critical illnesses
associated with hypoalbuminemia, the ability of albumin to mobi-
lize PUFAs is limited; thus, the formation of LXs, resolvins, and pro-
tectins will be inadequate, which may be responsible for the
increased morbidity and mortality associated with these condi-
tions. Furthermore, following albumin treatment the plasma con-
centrations of TNF-a, IL-6, and macrophage inflammatory protein
2 were significantly lower and that of IL-10 was significantly higher
in an animal model of haemorrhagic shock [149–151], suggesting
that hypoalbuminemia decreased the formation of LXs, resolvins,
and protectins, tilting the balance more towards pro-
inflammatory events. The ability of albumin to mobilize PUFAs
from the liver is dependant on the hepatic stores of PUFAs, which
could be one variable that influences the level of LX, resolvin, and
protectin production. In addition, TNF-a caused a marked decrease
in the PUFA total phospholipid (PL) content and induced an
EFA-deficient state reminiscent of long-term malnutrition [152],
as confirmed by the observation that TNF administration to healthy
well-nourished rabbits produced hypoalbuminemia [153]. Hence,
enhanced circulating levels of TNF-a and other pro-inflammatory
cytokines seen in liver cirrhosis, sepsis and other critical illnesses
cause not only hypoalbuminemia but also PUFA deficiency that
results in reduced formation of lipoxins, resolvins and protectins.

The activity of the enzymes (COX and 5-, 12-, and 15-
lipoxygenases) that are needed for the formation of LXs, resolvins,
and protectins may also vary depending on the underlying clinical
condition, which could contribute to the reported variations in the
response to albumin therapy. Albumin kinetics are altered in liver
cirrhosis and other critical illnesses such that the half-life is shorter
and the transportation rate is higher in the critically ill compared
to the controls [149], which could be yet another variable influenc-
ing the formation of LXs, resolvins and protectins.

Furthermore, it has been shown that (i) HCV induced ROS for-
mation and activated NF-jB, which mediated the activation of
COX-2 and thus enhanced the levels of PGE2 in HCV-expressing
cells, providing a mechanism by which HCV-induced inflammation
is relevant to the development of liver cirrhosis associated with
viral infection [154]; (ii) LXs, resolvins and protectins have antag-
onistic activity against PGE2, suppress PGE2 synthesis and exert
anti-fibrotic effects [7–15]; and (iii) resolvins and possibly LXs
and protectins have anti-bacterial activity [22], which may explain
why bacterial infections are common in cirrhosis, whereas PUFAs
themselves seem to have anti-bacterial, anti-viral and anti-fungal
activities [28]. In particular, AA, EPA and DHA have anti-HCV activ-
ities; AA is effective at 4 mM, which falls within the range of
physiologically relevant concentration [26,27]. HCV-infected hepa-
tocytes produce ROS, which initiate lipid peroxidation. When incu-
bated with AA without lipid-soluble antioxidants, Huh7 cells
harbouring an HCV replicon (Huh7-K2040 cells) exhibited a sharp
reduction (>95%) in HCV RNA and a simultaneous increase in lipid
peroxides that could be prevented by vitamin E.
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Thus, in the presence of AA and in the absence of lipid-soluble
antioxidants, such as vitamin E, HCV replication induced lipid per-
oxidation that reduced the level of HCV RNA. Thus, AA and possibly
other PUFAs (such as EPA and DHA) inhibit HCV (and possibly HBV)
replication via a lipid peroxidation-dependent process [26,28].
Conclusions and therapeutic implications

Based on the preceding discussion, it is suggested that (i) HCV
and HBV-enhanced TNF-a production induces a deficiency of
PUFAs (especially AA, EPA and DHA); (ii) HCV- and HBV-induced
ROS production and lipid peroxidation further aggravates the PUFA
deficiency, which, in turn, may enhance viral proliferation; (iii)
virus-triggered COX-2 activity leads to an increase in PGE2 produc-
tion; (iv) decreased hepatocyte AA, EPA and DHA levels lead to
decreased LX, resolvin and protectin production; (v) the enhanced
TNF-a production due to viral (HCV and HBV) infection causes
hypoalbuminemia that further aggravates the deficiency of LXs,
resolvins and protectins; and (vi) an imbalance between pro-
inflammatory PGE2 and anti-inflammatory LXs, resolvins and pro-
tectins (and decreased PGE1 formation due to the PUFA deficiency,
especially that of DGLA) may manifest in the form of immunosup-
pression, inflammation and inappropriate bacterial infections in
liver cirrhosis. Albumin is beneficial in patients with cirrhosis (pro-
vided there are sufficient hepatic stores of PUFAs) due to its ability
to mobilize PUFAs and enhance the formation of LXs, resolvins and
protectins. Thus, albumin complexed with PUFAs, LXs, resolvins
and protectins could be beneficial in treating liver cirrhosis. Addi-
tionally, the plasma levels of various PUFAs, PGE2, PGE1, PGI2, LXs,
resolvins and protectins may be useful as prognostic markers of
liver cirrhosis.

These observations indicate that the plasma levels of LXs, resol-
vins, and protectins may reflect the efficacy of albumin therapy;
albumin could be co-administered with EPA/DHA/PUFAs to
enhance the formation of LXs, resolvins, and protectins (apart from
reducing or quenching PGE2) and thus improve the prognosis of
cirrhosis. Thus, the plasma levels of PUFAs, PGE2, LXs, resolvins,
and protectins could be used to predict the beneficial effects of
albumin and the prognosis of cirrhosis.

Both alcohol-induced hepatitis and NAFLD are known to result
in liver cirrhosis. Alcohol (ethanol) is known to inhibit the activi-
ties of desaturases that are essential for the formation of AA, EPA
and DHA from dietary LA and ALA and thus could result in a PUFA
deficiency and the reduced formation of PGE1, LXs, resolvins, pro-
tectins and maresins, which may explain why chronic and excess
alcohol consumption leads to liver cirrhosis [3,155–157]. Similarly,
even NAFLD is characterized by a PUFA deficiency and the reduced
formation of LXs, resolvins, protectins and maresins, suggesting
that supplementation with various PUFAS, PGE1, LXs, resolvins,
protectins and maresins may resolve hepatic damage/dysfunction
[4,6,7,158–160]. Although the role of the gut microbiota in the
pathogenesis of liver cirrhosis is not discussed here, there is sub-
stantial evidence to suggest that PUFAs have a favourable influence
on the gut microbiome, which may explain yet another mechanism
by which bioactive lipids are beneficial in liver dysfunction/liver
diseases [80,161].

Our recent studies showed that obesity, type 2 diabetes mellitus
and metabolic syndrome induced by streptozotocin and high fat
diet can be prevented by supplementation of AA and its anti-
inflammatory metabolite LXA4 [58–62]. It was noted that strepto-
zotocin and high fat diet inhibit the activities of desaturases and
decrease the formation of AA and LXA4. Patients with type 2 DM
showed reduced plasma concentrations of AA and LXA4
[162,163]. These results indicate that obesity, type 2 DM and meta-
bolic syndrome, conditions in which NAFLD is common, are also
characterized by altered PUFA metabolism. This suggests that, in
all probability, bioactive lipids play a significant role in these con-
ditions and so, are likely to be of benefit in their prevention and
management [164].

Based on the preceding discussion, it is suggested that bioactive
lipids play a significant role in the pathogenesis of alcoholic liver
disease, NAFLD and virus-induced liver cirrhosis. Hence, it is sug-
gested that supplementation and/or infusion of appropriate
amounts of albumin, PUFAs, and co-factors that are needed for
the adequate formation of PGE1, PGI2, PGA, lipoxins, resolvins, pro-
tectins and maresins such as vitamin C, pyridoxine, vitamin B12
and folic acid could be employed to prevent, manage, and reverse
hepatic dysfunction/disease [4,6,7,58,59,93,94,158–160].
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