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SUMMARY
This study develops a method combining a convolutional neural network model, INSIGHT, with a self-atten-
tion model, WiseMSI, to predict microsatellite instability (MSI) based on the tiles in colorectal cancer patients
from amulticenter Chinese cohort. After INSIGHT differentiates tumor tiles from normal tissue tiles in a whole
slide image, features of tumor tiles are extracted with a ResNet model pre-trained on ImageNet. Attention-
based pooling is adopted to aggregate tile-level features into slide-level representation. INSIGHT has an
area under the curve (AUC) of 0.985 for tumor patch classification. The Spearman correlation coefficient of
tumor cell fraction given by expert pathologist and INSIGHT is 0.7909. WiseMSI achieves a specificity of
94.7% (95% confidence interval [CI] 93.7%–95.7%), a sensitivity of 84.7% (95% CI 82.6%–86.9%), and an
AUC of 0.954 (95% CI 0.948–0.960). Comparative analysis shows that this method has better performance
than the other five classic deep learning methods.
INTRODUCTION

Colorectal cancer (CRC) is the thirdmost common cancer world-

wide and the fourth most common malignancy in China.1,2

Mismatch repair (MMR) deficiency, which causes microsatellite

instability (MSI), is recognized as a distinct mechanism promot-

ing tumorigenesis in 15% of CRC.3 MSI and MMR defect are

associated with a poor response to chemotherapy in intermedi-

ate stage CRC.4 Increased neoantigen load is a result of defec-

tive MMR,5 so MSI has been used to predict immune checkpoint

blockade (ICB) therapy response, which is a major early break-

through for precision oncology.6–10 ICB alone and in combina-

tion with other therapy targets have shown great promise; as a

result, MSI has been increasingly used to guide chemotherapy

and immunotherapy of CRC.11–14

Conventionally, multiplex polymerase chain reaction (PCR)

assays or multiplex immunohistochemistry (IHC) panels for eval-

uating the expression of the most common gene products asso-

ciated with MMR (MLH1, MSH2, MSH6, and PMS2) are used to

examine MSI of CRC patients.15–17 Meanwhile, MSI PCR assays

have a sensitivity of 100% and specificity of 61.1% or a
Cell Rep
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specificity of 92.5% and sensitivity of 66.7%.18,19 IHC is more

commonly used clinically compared with PCR assays, and its

sensitivity and specificity range from 80.8% to 100% and

80.5% to 91.9%, respectively.20,21 Despite a high sensitivity

and specificity of PCR assays and IHC for MSI in CRC, these ap-

proaches could be labor intensive and require pathologists with

years of experience to achieve high accuracy and consistency.

Artificial intelligence has revolutionized pathological diag-

nosis. Distinct pathomorphological features of whole slide im-

ages (WSIs) of CRC, such as tumor-infiltrating lymphocytes

and mucinous differentiation, are indicative of underlying molec-

ular events such as defective MMR and could be explored by a

deep learning approach for supervised feature extraction of MSI

status in cancer patients.22–28 Deep learning models using WSIs

for prediction of MSI status in CRC26–31 and other cancer pa-

tients have emerged.22,32 The AUROC values of MSI predictions

in CRC patients by deep learning aremostly between 0.7 and 0.9

with training and validation datasets varying from about 300 to

about 1,500 WSIs (Table S1). The performance increased to

0.96 for AUROC value when a training and testing dataset

increased to 8,836 patients.24
orts Medicine 4, 100914, February 21, 2023 ª 2023 The Authors. 1
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Figure 1. The flowchart for the disposition of patient WSI

(A) A total of 2,708 patient WSIs in the TSMCC cohort were included. Among them, 499 WSIs were excluded for quality issues. The remaining 1,579 WSIs were

used for WiseMSI training and testing, including 997 MSSs and 582 MSIs.

(B) A total of 616WSIs of the COAD and READ cohorts were downloaded from TCGA. 311WSIs were excluded for quality reasons. The remaining 305WSIs were

used for external testing of WiseMSI.

(C) In total 300WSIs were randomly selected from the TSMCC cohort, and 46 of themwere excluded in the following quality check step. The remaining 254WSIs

were used for INSIGHT training and testing.

(D) The WSIs of 210 extra patients were involved in the reader experiment. TongShu MSI Colorectal Cancer; WSI: whole slide image.
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The methods in these studies generally adopted two types of

strategies: classical weakly supervised approach and multiple

instance learning (MIL) approach.33 The first stepwas image pre-

processing, which tessellates the digitizedWSIs into small image

tiles, typically of 5123 512 pixels, followed by quality control and

color normalization. Different WSIs produce different numbers of

tiles, varying from hundreds to tens of thousands of tiles. The

classical weakly supervised approach presumes each tile in-

herits the slide’sMSI status and randomly selects a fixed number

of tiles. Convolutional neural network (CNN) models were then
2 Cell Reports Medicine 4, 100914, February 21, 2023
trained to make tile-level prediction of MSI status. Patient-level

predictions were made by aggregating the tile-level predictions,

except Cao’s study, which adopted an ensemble-learning

approach to optimize the prediction accuracy.

Instead of sub-sampling a fixed number of tiles, the MIL ap-

proaches use all tiles from a patient as a ‘‘bag’’ without assuming

every single tile in the bag reflects the MSI status of the patient in

order to address the issue of heterogeneous tiles from different

regions of the WSI. However, the benchmark analysis of these

two approaches by Laleh et al.33 showed that classical weakly



Figure 2. Schemas showing the data acquisition workflow and training and testing of neural networks INSIGHT and WiseMSI

(A) In the randomly selected 254 WSIs, 178 were used for training, 25 for validation, and 51 for testing. These WSIs were cut into square patches of 512-pixel

length and were color normalized with staintools. A pathologist labeled tumor and normal patches that were fed into the ResNet18 tumor detection model.

(B) Patches from 1,579WSIs were passed to INSIGHT, and only the tumor patches predicted by INSIGHT were further fed into the ImageNet pre-trained ResNet

50model for feature extraction. The extracted feature matrix for each patchwas passed to the self-attentionmodel. The 1,579WSIs were split into a 7:1:2 ratio for

training, validation, and testing of the self-attention model.

(C) Plot illustrates the architecture of the self-attention model in WiseMSI. MSI, microsatellite instability; MSI-H, high MSI; MSS, microsatellite stability.
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supervised methods unexpectedly outperform the more sophis-

ticated MIL approach. One likely reason is that MIL-based

methods assigned the highest prediction scores to image tiles

with tissue edge and other artifacts. A few studies, including Ya-

mashita et al.26 and Bilal et al.,31 combined two CNN models:

one for tissue classification and one using only tumor tiles as

input to improve MSI prediction accuracy (Table S1).

Self-attention models are a class of neural network that can

learn features from supervised data. The major advance of the

self-attention mechanism lies in its capability to enable the

decoder to access thewhole of the encoded information, assign-

ing attention weights over the input data, which captures the

importance of each token and prioritizes them for generating

output tokens at each step. The self-attention mechanism,

whose receptive field is the whole image, employs self-captured

features for prediction and enables the interpretation of the

output.34 Self-attention networks, which are widely used for nat-

ural language processing, have been shown to be superior to

other deep learning approaches in analyzingpathology reports.35
In this study, we constructed a hybrid method WiseMSI by

combining a CNN model with a self-attention model to predict

MSI based on the tiles in CRC patients from cohorts from multi-

ple medical centers across China. After a trained CNN model

differentiated tumor tiles from normal tissue tiles from aWSI, fea-

tures of tumor tiles were extracted with a ResNet model trained

on ImageNet, with bags of tiles labeled following patient’s MSI

status, like the MIL-based methods. Attention-based pooling

was adopted to aggregate tile-level features into slide-level rep-

resentation like CLAM36 but with dot product attention replaced

by cosine similarity, which works better for image summaries.

RESULTS

Construction and performance of a CNN tumor detector
model, INSIGHT
In the current study, we developed a self-attention-based CNN

for prediction of MSI in colorectal adenocarcinoma. To construct

a highly accurate model for tumor detection, we first trained the
Cell Reports Medicine 4, 100914, February 21, 2023 3



Table 1. Diagnostic performance of the self-attention-based CNN for prediction of microsatellite instability in colorectal

adenocarcinoma with 10-fold cross-validation with the TSMCC cohort

0 1 2 3 4 5 6 7 8 9

MSS 185/199 192/199 189/199 191/199 189/199 185/199 191/199 190/199 188/199 184/199

MSI-H 97/116 93/116 100/116 97/116 93/116 102/116 97/116 101/116 103/116 100/116

Specificity 0.9296 0.9648 0.9497 0.9598 0.9497 0.9296 0.9598 0.9548 0.9447 0.9246

Sensitivity 0.8362 0.8017 0.8621 0.8362 0.8017 0.8793 0.8362 0.8707 0.8879 0.8621

AUC 0.9466 0.9504 0.9504 0.9656 0.9346 0.9604 0.9594 0.9606 0.9542 0.9562
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tumor detector model INSIGHT with ResNet-18 on 254 WSIs

including 117 MSS and 137 MSI-H WSIs from the TongShu

MSI Colorectal Cancer (TSMCC) Cohort (Figure 1), with a total

of 25,349 normal patches and 25,235 tumor patches labeled

by experienced pathologists. The overall architecture is shown

in Figure 2. INSIGHT was then tested on the test set consisting

of 51 WSIs with a total of 2,549 normal patches and 2,373 tumor

patches. The tumor detector achieved an area under the curve

(AUC) of 0.985.

Construction and performance of a self-attention-based
CNN MSI prediction model
The TSMCC cohort included 1,579 WSIs, with 997 MSS and 582

MSI-H WSIs. These 1,579 WSIs tessellated into patches and

were color normalized with staintools. Through random sam-

pling, patches from 1,107 randomly selected WSIs, including

699 MSS WSIs and 408 MSI-H WSIs, were assigned as training

set. Patches from 157 WSIs including 99 MSS WSIs and 58

MSI-H WSIs worked as the validation set. And patches from

315 WSIs were randomly assigned to the internal test set,

including 199 MSS and 116 MSI-H WSIs (Data S1). All the

patches from the training set, the validation set, and the test

set were fed into the trained ResNet18 tumor patch detector

INSIGHT. The patches categorized by INSIGHT as tumor

patches were then passed onto the ResNet50 pre-trained on

the ImageNet. The feature matrix derived from tumor patches

predicted by INSIGHT in the training set and validation set was

fed to the self-attention model with standard cross-entropy

loss function. The model with the minimum loss in validation

set was selected as the optimized MSI classifier WiseMSI. Wise-

MSI is the combination of the ResNet50 CNN model for feature

vector encoding and the self-attention model that processes

the feature vectors and output attention score and MSI score.

WiseMSI’s performance was then evaluated with the internal

test set.

To evaluate the variability of our dataset, and the reliability of

WiseMSI, 10-fold cross-validation was conducted by randomly

dividing the 1,579 WSIs into 10 subsets. The entire training and

testing process of WiseMSI was repeated 10 times with each

time using eight different subsets as training and validation

sets, and two different subsets as internal test set. WiseMSI

achieved with the internal test set a mean specificity of 94.7%

(95% confidence interval [CI] 93.7% to 95.7%) and a mean

sensitivity of 84.7% (95% CI 82.6% to 86.9%), with an accuracy

rate of 91.1% and an AUC of 0.954 (95% CI 0.948 to 0.960)

(Table 1 and Figure 3A I). If no pre-selection of tumor region
4 Cell Reports Medicine 4, 100914, February 21, 2023
patches was applied, and all the normalized patches were

passed onto the ResNet50 CNN model for feature extraction

and the self-attention model for MSI prediction, there was an

average of AUC 0.93 (95% CI 0.91 to 0.94), specificity 95.7%

(95% CI 93.2% to 98.2%), and sensitivity 77.4% (95% CI

72.5% to 82.3%). The pre-selection of tumor region tiles

improved MSI-H prediction sensitivity from 77.4% to 84.7%

and AUC value from 0.93 to 0.954.

We also examined 609 WSIs, including 523 MSS and 86

MSI-H WSIs, from TCGA-COAD and TCGA-READ as the

external test set for our WiseMSI model trained based on the

TSMCC cohort, including 12 Asian individuals, 68 Black individ-

uals, 283 White individuals, and 245 individuals of unknown

ethnic group. A mean specificity of 35.3% (95% CI 27.5% to

43.1%) and a mean sensitivity 71.5% (95% CI 53.1% to

89.9%) was achieved, and the mean AUC was 0.632 (95% CI

0.703 to 0.733) (Figure 3AII). When only the 305 WSIs scanned

with 40x objective lens, including 252 MSS and 53 MSI-H

WSIs, was used as the external test set, the mean AUC

increased to 0.718 (95% CI 0.703 to 0.733), specificity to

46.5% (95% CI 33.3% to 59.8%), and sensitivity to 76.6%

(95% CI 65.3% to 87.9%) (Table 2 and Figure 3A III). Among

different ethnic groups, the Asian group had sensitivity and spec-

ificity, both being 100% in nine out of ten testing rounds. The

White group had a specificity of 86% but sensitivity of only

50.2%. The Black and not reported populations have a similar

pattern to the White population (Table S3).

We further trained the self-attention model with TCGA-STAD

cohort and tested its performance by cross-validation

(Table S4). The AUC values of the self-attention model are

0.750 (95% CI 0.699 to 0.802) in 10 rounds of testing. The spec-

ificity of MSI-H prediction is high, with an average value of 96.3%

and 95%CI from 93.6% to 99.1%. The sensitivity is poor with an

average value of 18.5% and 95% CI from 6.2% to 30.7%. This

cohort was used to train and test the ViT methods, which have

the top performance in Laleh’s benchmark analysis33 for CRC

MSI prediction. Similar results were obtained with an average

AUC value of only 0.682 (95% CI 0.635 to 0.729), average spec-

ificity 0.972 (95% CI 0.948 to 0.997), and average sensitivity

13.1% (95% CI 3.01% to 23.1%).

An attention scoremap of tumor region reflects the differences

in tumor region between MSI-H and MSS WSIs captured by

WiseMSI (Figure 3B). The red dots with high attention score

contributed more to the predictions of MSI status than the blue

dots with low attention scores. The morphologies of cells in the

red dots from MSI-H WSIs have poor differentiation, and the



Figure 3. The performance and visualization of WiseMSI and INSIGHT

(A) The ROC curve of the self-attention-basedCNN forMSI prediction in the internal test set from the TSMCC cohort (I). The ROC curve of the self-attention-based

CNN for MSI prediction in the external test set from the TCGA-COAD and TCGA-READ cohorts (II). The ROC curve of the self-attention-based CNN for MSI

prediction in the external test set from the 305 WSIs scanned with a 40x objective lens (III).

(legend continued on next page)
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ones from MSS WSIs have high differentiation. This is similar to

previous findings by Greenson37 and Kather.22 This finding

further confirmed that histopathological features could work as

predictors of MSI status and illustrated the rationale of detection

of MSI from hematoxylin and eosin (H&E) stained slides by deep

learning methods. Therefore, the area highlighted by attention

score provides a way to visualize and explain the prediction of

the deep learning model.

We further studied the robustness of WiseMSI’s prediction

performance across heterogenous clinicopathologic subgroups

of CRC patients. The CRC patients in the TSMCC cohort

comprise seven demographically, anatomically, and/or patho-

logically distinct subgroups, including colon cancer, rectum

cancer, right- and left-sided colon cancer, low and median path-

ological differentiation degree, having or not having Lynch syn-

drome, and different cancer stage, age, and gender. There are

some variations of WiseMSI’s performance regarding disease

stage and patient age: the AUC valuewas 0.79 for stage 1 cancer

(n = 35WSIs), 0.94 for stage 2 (n = 164WSIs), 0.95 for stage 3 (n =

133 WSIs), 0.87 for patients’ age % 40 years old (n = 58 WSIs),

0.90 for patients with 40 < age % 70 (n = 823 WSIs), and 0.80

for patients older than 70 years (n = 216 WSIs). Variations in

WiseMSI’s classification performance related to anatomic fea-

tures are relatively small: AUC value of 0.92 for colon cancer

(n = 753 WSIs), 0.85 for rectum cancer (n = 247 WSIs), 0.85 for

left-sided cancer (n = 228 WSIs), and 0.93 for right-sided cancer

(n = 58 WSIs). WiseMSI’s classification performance was very

stable (AUC value around 0.90) across subgroups related to

pathological differentiation degree, Lynch syndrome, and

gender. Overall, the WiseMSI model had a good predictive per-

formance of MSI across all subgroups examined (Figure 4).

Comparative analysis of WiseMSI with four other
computational pathology MSI classifiers
We systematically estimated the performance difference be-

tween WiseMSI; two representative classical weakly supervised

methods, EfficientNet and ViT; two MIL methods, MIL and

AttMIL, which have the top performances in Laleh’s benchmark

analysis; and VarMIL in DeepSMILE. Cross-validation within

TSMCC cohort was carried out, and the performance metrics

are given in Table 3. The performances of ViT and EfficientNet

are slightly better than their performance in Laleh’s study (ViT

0.939 vs. 0.885, EfficientNet 0.905 vs. 0.883), and ViT remains

the method with the best performance among the four methods

being compared. But the performance difference between clas-

sical weakly supervised approach and MIL approach is not as

obvious as in Laleh’s study as the AUC values of MIL and

AttMIL are all close to 0.90 as well. The specificities of these

five methods are all very high (ViT 97.8%, EfficientNet 97.3%,
(B) Attention score map for tumor regions in two WSIs. I is the original tumor regio

are pixels with high attention score, and blue dots are pixels with low attention sc

corresponding attention score map. V and X are enlarged regions in II and Ⅳ, as

(C) The workflow of INSIGHT’s tumor purity prediction (I) and the scatterplot (II) o

tumor purities predicted by INSIGHT (x axis). In the prediction of tumor purity, first

of containing tumor cells is evaluated by INSIGHT for each patch. Patches with pr

non-tumor patches. Tumor purity is calculated as the percent of tumor patches

(D) Spearman correlation coefficient between manual estimation and INSIGHT pr
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MIL 97.0%, AttMIL 99.5%, VarMIL 99.2%), but their sensitivities

are relatively poor, with AttMIL at 63.2%, MIL at 66.8%, ViT at

74.3%, VarMIL at 62.4%, and EfficientNet only at 36.0%. The

low sensitivity is due to MSI score threshold and could be

adjusted. The AUC value of WiseMSI, 0.954, is higher than these

five methods. With the same MSI score threshold of 0.5,

WiseMSI achieved similar specificity and much better sensitivity

than the other five methods. In general, the hybrid approach

WiseMSI has better performance than both classical weakly su-

pervised and MIL approaches, as demonstrated in Table 3 and

Figure S1.

We also benchmarked the Moco V2 feature extractor with the

ImageNet pre-trained feature extractor model by re-training

Moco V2 with 622 WSIs from TCGA-COAD + READ cohorts

and 400 WSIs from our in-house TSMCC data. Replacing the

feature extraction model with the in-house trained Moco V2

model did not significantly improve the performance, with an

AUC value of 0.937 for Moco V2 version of WiseMSI and AUC

value of 0.954 for ImageNet version of WiseMSI, as demon-

strated in Table 3 and Figure S1.

The running time for thesemodels was also evaluated by using

these 1,579 WSIs for validation. As shown in Table S2, the

average running time of WiseMSI from tumor tile detection,

feature extraction, and MSI classification is 807.8 s per WSI,

slightly shorter than MIL and AttMIL on Intel I9 10900K with

3,090 GPU. A more powerful GPU server could be used to

shorten the running time to be less 10 minutes, an acceptable

time for clinical application, though longer than EfficientNet

and ViT. The shorter time of WiseMSI even with an extra step

is due to the smaller number of tumor tiles passed onto feature

extraction. Classical weakly supervised approaches only used

a fraction of tiles from WSIs and need a much shorter time to

give MSI prediction, with ViT being around 3.3 seconds and

EfficientNet at 4.0 seconds.

Survival of CRC patients according to MSI status by
molecular typing and by WiseMSI prediction model
We additionally investigated the diagnostic performance of

WiseMSI model for survival of CRC patients. 293 patients from

the TSMCC cohort had demographic and clinical information.

We excluded 63 CRC patients who had no survival data, and

226 CRC patients were included in the survival analysis. Their

demographic and baseline variables are shown in Table S5. 21

patients had MSI-H and 205 patients had MSS as measured

by PCR + capillary electrophoresis assays (see STAR Methods).

Thirty-three disease-free survival (DFS) events occurred in the

MSS patients and none in the MSI-H patients. MSI-H patients

had a higher 60-month DFS rate than MSS patients (MSI-H:

100.0% vs. MSS: 83.9%) (Figure S2A). The WiseMSI model
n for a MSS patient, and II is the corresponding attention score map. Red dots

ores. Similarly, III is the original tumor region for an MSI-H patient, andⅣ is the

shown by white squares and lines.

f the tumor purities manually estimated by an expert pathologist (y axis) vs. the

the model detects the patches with sample tissue present; then the probability

obability value larger than 0.5 are grouped into tumor patches and otherwise as

among non-blank patches.

ediction is given on the top of the scatterplot. And the red line is the diagonal.



Table 2. Diagnostic performance of the self-attention-based CNN for prediction of microsatellite instability in colorectal

adenocarcinoma with 10-fold cross-validation with the TCGA-COAD and TCGA-READ cohort

0 1 2 3 4 5 6 7 8 9

MSS 89/252 132/252 227/252 129/252 86/252 50/252 124/252 130/252 114/252 91/252

Specificity 0.3532 0.5238 0.9008 0.5119 0.3413 0.1984 0.4921 0.5159 0.4524 0.3611

MSI-H 46/53 38/53 18/53 42/53 45/53 48/53 43/53 42/53 42/53 42/53

Sensitivity 0.8679 0.7170 0.3396 0.7925 0.8491 0.9057 0.8113 0.7925 0.7925 0.7925

AUC 0.7504 0.6816 0.7206 0.7378 0.6898 0.7096 0.7100 0.7162 0.7315 0.7285
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had 14 MSI-H patients and 212 MSS patients in the cohort. Pa-

tients with predictedMSI-H also had a higher 60-month DFS rate

than patients with predicted MSS (MSI-H: 100.0% vs. MSS:

84.4%) (Figure S2B). Furthermore, MSS patients had a DFS

comparable to patients with predicted MSS (MSS: 58.3 ±

1.5 months, 95% CI 55.3 to 61.3 months vs. predicted MSS:

58.6 ± 1.5 months, 95% CI 55.7 to 61.5 months) (Figure S2C).

The effect of MSI status on prognosis is associated with tumor

stage.MSI is a positive prognostic factor in stage II–III CRC. Sub-

group survival analysis was performed to control the stage

confounder and investigate the survival benefit of MSI status de-

tected by PCR and AI. In stage II and stage III subgroups, both

the predicted MSI-H and labeled MSI-H subgroups had higher

60-month DFS rate than patients with predicted or labeled

MSS (Figure S3). In the stageⅣ subgroup, there are no predicted

or labeled MSI-H patients.

Tumor purity prediction by INSIGHT is highly correlated
with pathologist estimation
Our model training procedures produced two models, the

ResNet18 model INSIGHT and WiseMSI, consisting of the

ResNet50 CNN model and the self-attention model. INSIGHT

differentiated tumor tissues from normal tissues and classified

a patch as tumor patch or normal patch. The patches predicted

to be tumor patches by INSIGHTwere passed toWiseMSImodel

to predict their MSI status. Based on INSIGHT’s classification of

patches as tumor patch or normal patch, the tumor purity of a

WSI could be estimated by calculating the percentage of tumor

patches among the patches from a CRC WSI. Therefore, we

compared tumor purity prediction function by INSIGHT with

the tumor purity estimation done by human pathologists. The

final estimation was confirmed and scored by an independent,

seasoned pathologist.

The cohort for this purpose was another cohort with 208

filtered WSIs. Pathologist tumor purity estimations were re-

corded in the format of 0 to 5 on unit place, while INSIGHT pro-

vided estimation with more refined decibels but at the same total

range.

The spearman correlation coefficient was 0.7909 (Figure 3D).

Manual inspection by the independent certified pathologist

inspector with more than 15 years’ experience was conducted

for the 41 slides with either estimated tumor purity difference be-

tween pathologist and INSIGHT larger than 0.20 or non-zero tu-

mor purity by INSIGHT but tumor-free designation by the

pathologist. For 16 slides, the tumor purity predicted by

INSIGHT was judged to be more accurate than the pathologist’s

manual estimation. These slides usually have scattered tissues
on them, which makes it difficult for a pathologist to estimate

the overall tumor purity, or they contain infiltrating normal cells

in the tumor, leading to a pathologist’s overestimate, as illus-

trated by the example case in Figure 3C. In this example, the

pathologist gave 50% tumor purity, but there aremany infiltrating

normal cells in the darkly stained tumor regions, and 50%was an

overestimation. INSIGHT’s binary classification of small-size

patches into tumor and non-tumor helps to overcome this prob-

lem and give a more accurate prediction, which was determined

to be 21% tumor purity.

However, in another example, INSIGHT gave 20% tumor pu-

rity for one slide that was eventually judged as tumor free.

Manual re-inspection by the independent pathologist inspector

found that this slide was a rare sample that contained a lot of ad-

enoma cells. Adenoma cells are morphologically similar to can-

cer cells but are treated as normal cells by pathologists. This

type of cell is underrepresented in our training dataset and there-

fore leads to the misjudgment by INSIGHT. In addition, INSIGHT

gave tumor purity values between 0 and 0.05 for the other six

slides that are tumor free. The non-zero predictions of

INSIGHT are the result of a small fraction of glandular tube cells

and lymphocytes being treated as tumor cells by the tumor de-

tector model.

The values predicted by INSIGHT were smaller than the

manual ones because of the omission of mucinous adenocarci-

noma cells for 14 slides. The true tumor purities for two slides

should lie between the values given by pathologist and

INSIGHT. And for three slides, INSIGHT’s prediction values

were higher than the manual ones as a result of miscounting

small fractions of glandular tube cells and lymphocytes as tumor

cells by the tumor detector model.

DISCUSSION

In this study, we built a MSI prediction model that combines a

self-attention model with a CNN model. This multicenter study

demonstrated that WiseMSI has a good diagnostic performance

in MSI prediction and achieved prediction levels similar to those

of PCR assays and IHC methods currently used for detection of

MSI in CRC.18,19 Notably, MSI predicted by WiseMSI, similar to

MSI by PCR assays and IHC methods, could stratify the clinical

outcome of colorectal adenocarcinoma patients38–43 WiseMSI is

a hybrid method combining a CNN model with a self-attention

model to predict MSI. The CNNmodel INSIGHT differentiates tu-

mor tiles from normal tissue tiles. The self-attention model en-

ables an improved feature extraction and aggregate tile-level

features into slide-level representation similar to CLAM,36 but
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Figure 4. Performance of WiseMSI on MSI prediction across heterogenous clinicopathologic subgroups of CRC patients

(A–G) The ROC curves for male (left panel) or female patients (right panel) (A); patients aged no more than 40 years (left panel), between 41 and 64 years (mid

panel), or at least 65 years (right panel) (B); patients with stage I (left panel), II (mid panel), or III CRC (right panel) (C); patients with poorly (left panel) or moderately

differentiated CRC (right panel) (D); patients with colon (left panel) and rectum cancer (right panel) (E); patients with left (left panel) or right CRC (right panel) (F); and

patients with (left panel) or without Lynch syndrome (right panel) (G).
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with dot product attention replaced by cosine similarity, which

works better for image summaries. Comparative analysis of

WiseMSI with five other representative methods of classical

weakly supervised methods and MIL methods showed that

WiseMSI has better performance. The internal test set perfor-

mance of WiseMSI achieved a specificity of 94.7% and a sensi-

tivity of 84.7%, which is comparable to PCR assays and IHC

methods currently used for detection of MSI in CRC pa-

tients.20,21 In particular, the proposed model generally had a

high accuracy rate (91.1%), illustrating the model’s predictive

reliability. We also tried to make MSI prediction by directly

feeding the entire WSIs including both tumor and normal tissues

into the self-attention model and got an AUC of the model of

0.84, which is comparable to the AUC of 0.85 in an Asian

ancestry cohort in the study by Cao et al. that combined

patch-level MSI prediction and WSI-level prediction.28 The

AUC value increased to 0.954 by exclusion of normal tissue

and only using detected tumor tissue by INSIGHT forMSI predic-

tion. Utilization of INSIGHT to exclude non-tumor regions not

only helps to improve the performance metrics, but it also helps

to reduce the computing time as only tumor tiles are passed onto

the feature extraction step.

The quality and the sample size of the training data are critical

for the success of deep learningmodels. In this study, we utilized

data sets from different medical centers and open databases to

secure sufficient disparities in our training and reflect heteroge-

neous patient features.44 The MSI prediction model was also

tested in multiple cohorts from different medical centers,

showing consistent performance of the model across different

cohorts. In addition, we examined the performance of the

WiseMSI prediction using WSIs from TCGA-COAD and TCGA-

READ in which WSIs were prepared from formalin-fixed and

paraffin-embedded tissues of mainly White CRC patients. Our

MSI prediction model using the TCGA-COAD and TCGA-READ

cohort as the external test set showed an AUC of 0.718 and a

sensitivity of 76.6%. Training and cross-validation of the self-

attention model of WiseMSI and VIT displayed similar perfor-

mance on the TCGA-STAD cohort. But the sensitivity and spec-
8 Cell Reports Medicine 4, 100914, February 21, 2023
ificity on the 12 Asian ancestry WSIs in TCGA-COAD and TCGA-

READ cohorts are both 100%. This external Asian ancestry

cohort is very small in size, but it reflects the reality that many

so-claimed diversified cohorts only contain very limited Asian

ancestry samples for their model training. In Laleh’s benchmark

study, ViT and other methods were trained with European

descendant cohorts. The AUC value of ViT decreased slightly

from 0.906 to 0.885 in external validation since both the training

cohort and validation cohort were mostly European descen-

dants. But when we trained these methods with our Chinese co-

horts in this study, ViT showed significantly decreased perfor-

mance, with the AUC value only being 0.682 (Table S4). This is

an interesting ethnicity-related observation and emphasized

the importance of WiseMSI for the Asian population, which has

large absolute number but is still underrepresented in the

research literature. Cao et al. found that their deep learning

model ensemble patch likelihood aggregation (EPLA) that was

trained on TCGA-COAD showed reduced performance in Asian

individuals with CRC in the absence of transfer learning.28 A

deep learning MSI model that had been trained on TCGA

achieved an AUC less than 0.70 in a Japanese cohort.22 These

findings highlight the need for a high-performance prediction

model that can be universally applied across different ethnicities

and diverse healthcare settings.

MSI is becoming a theragnostic marker to guide the therapy of

CRC.45 Our study further showed that MSI predicted by the self-

attention-based CNN model could stratify the DFS of CRC pa-

tients, suggesting that predicted MSI could be potentially useful

as a theragnosticmarker to guideCRCmanagement. In addition,

WiseMSI has a high specificity, and its performance is compara-

ble to that of an MSI assay based on PCR-capillary electropho-

resis (Tongshu Biotechnology Co.). The current study indicates

that the self-attention-based CNN model, WiseMSI, could be

employed for early screening of MSI status in CRC patients as

a substitute or supplement for PCR-capillary electrophoresis

assays.

The high correlation between the tumor detection model

INSIGHT and expert pathologists on percent tumor purity



Table 3. Performance statistics of the fiveMSI classificationmodels and two feature extractors for comparative analysis andWiseMSI

on TSMCC cohort

Model Specificity (95% CI) Sensitivity (95% CI) AUC (95% CI)

EfficientNet 0.973 (0.920, 1.026) 0.3603 (0.071, 0,650) 0.9050 (0.865, 0.946)

ViT 0.978 (0.966, 0.990) 0.7431 (0.681, 0.806) 0.9385 (0.928, 0.949)

MIL 0.9698 (0.950, 0.990) 0.6680 (0.635, 0.701) 0.9073 (0.884, 0.931)

AttMIL 0.9950 (0.989, 1.001) 0.6318 (0.579, 0.685) 0.8993 (0.872, 0.927)

VarMIL 0.992 (0.983, 1.000) 0.624 (0.577, 0.671) 0.903 (0.890, 0.915)

WiseMSI (Moco V2 version) 0.926 (0.871, 0.980) 0.793 (0.723, 0.863) 0.937 (0.920, 0.95)

WiseMSI (ImageNet version) 0.947 (0.937, 0.957) 0.847 (0.826, 0.869) 0.954 (0.948, 0.968)

Performance is reported onWSI level and 95%confidence level (CI) is calculated based on 5-fold cross-validation for EfficientNet, Vit, MIL, and AttMIL,

and 10-fold cross-validation of WiseMSI.
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estimation provides the possibility to support pathologists and

lighten their load of routine tedious and time-consuming work

by giving an AI’s evaluation first followed by the pathologist’s

re-inspection and confirmation. INSIGHT’s performance could

be further improved if some detailed, cell-level labeling data

could be provided for tumor detection model training. For sam-

ples with scattered tissues on the slides, or samples with infil-

trating normal cells in tumor, INSIGHT’s estimation tends to be

more accurate than that of pathologists. Inter- and intra-pathol-

ogist variation can also be minimized by an AI’s prompt and high

reproducibility. However, INSIGHT’s ability to differentiate tumor

tissues from normal tissues depends on the training WSIs. It

could not handle rare cases like cancerous adenoma cells, which

are not included in the training set. Cells like glandular tube cells

and lymphocytes may be mis-identified as cancer cells because

of nonnormal H&E staining. More detailed tumor and normal re-

gion-based annotation rather than patch-based annotation by a

pathologist would help overcome this problem.

In summary, we have constructed a powerful and explainable

MSI prediction model, WiseMSI, that demonstrates excellent

diagnostic performance across multiple cohorts of CRC patients

including both Chinese and White individuals. In the future, we

plan to evaluate the model by examining clinicopathologic vari-

ables and clinical outcomes so that an optimized MSI prediction

model can be constructed.
Limitations of the study
The histological andmolecular features ofWSIs from the TSMCC

have both been validated by an expert pathologist and NMPA-

approved gold-standard PCR test set. The hybrid approach of

WiseMSI, using tumor patches predicted by INSIGHT, helps to

reduce the impact of within-slide tissue heterogeneity. However,

current molecular testing is on the per-patient level. Therefore,

labeling of MSI status is at the per-slide level, and the unknown

within-slide intratumor heterogeneity may lead to noise. The self-

attention mechanism enables WiseMSI to learn well-annotated

histopathological features and assign attention scores to

different regions of the slide. However, we have not used these

learned features to generate captions for the users for full trans-

parency. WiseMSI has excellent performance on Asian ancestry

samples, including the Asian ancestry samples from TCGA co-

horts, and is a complement to the research literature for the
underrepresented Asian population. However, a larger, multi-

ethnicity training dataset will help to boost the prediction perfor-

mance of WiseMSI on European or African descendants’

samples.
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PCR + capillary electrophoresis assays Tongshu Biotechnology Co. CFDSM 20213400070

Deposited data

TCGA National Cancer Institute https://portal.gdc.cancer.gov

Software and algorithms

staintools N/A https://github.com/Peter554/StainTools

ImageNet Deng J et al., 200946 https://image-net.org

INSIGHT This paper https://github.com/woshihang01/WiseMSI

WiseMSI This paper https://github.com/woshihang01/WiseMSI

MoCo v2 Olivier et al., 202047 https://github.com/facebookresearch/

moco

ResNet N/A https://github.com/facebookarchive/fb.

resnet.torch

PyTorch N/A https://pytorch.org/

EfficientNet Tan MX et al., 202148 https://github.com/google/automl/tree/

master/efficientnetv2

MIL Ghaffari Laleh et al., 202133 https://github.com/KatherLab/HIA

AttMIL Ilse et al., 201849 https://github.com/AMLab-Amsterdam/

AttentionDeepMIL

ViT N/A https://github.com/google-research/

vision_transformer

VarMIL Schirris et al., 202230 https://github.com/NKI-AI/

dlup-lightning-mil

Other
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RESOURCE AVAILABILITY

Lead contact
Any further information and requests for resources and codes should be directed to and will be fulfilled by the lead contact, Xueping

Quan (quanxueping@tongshugene.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All data reported in this paper will be shared by the lead contact upon request. The original codes have been deposited onGitHub:

https://github.com/woshihang01/WiseMSI and are publicly available. Any additional information required to reanalyze the data

reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODELS AND SUBJECT DETAILS

The study protocol was approved by theMedical Ethics Committee of each participating institution. No patient consent was required

given the retrospective nature of the study. The H&E� WSIs of 2078 deidentified patients [the TongShu MSI Colorectal Cancer
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(TSMCC) Cohort] who underwent primary colorectal adenocarcinoma resection were obtained. TSMCC cohort consist of paraffin

section, and H&E staining, and slide scanning data frommultiple medical centers across China ( Acknowledgments). For quality con-

trol, we excluded 372 non-CRC WSIs. Fourteen tumor-free WSIs and 113 tumor WSIs were evaluated by two experienced pathol-

ogists under 203 objective lens as a central pathological review. In total, 1579 WSIs were included in this study. The level of MSI at

microsatellite loci BAT-25, BAT-26, D5S346, D2S123 and D17S250 of each sample was determined using commercially available

PCR + capillary electrophoresis assays (Tongshu Biotechnology Co., Changzhou, Jiangsu China, CFDSM 20213400070). Samples

showR2 positive loci were deemed to be highMSI (MSI-H) per ESMO recommendations,7 otherwise the sample was categorized to

be MSS. The WSIs were tessellated into non-overlapping square patches of 512-pixel edge length and saved at a resolution of

�0.5 mm per pixel. All image patches were color normalized using staintools (https://staintools.readthedocs.io/en/latest/index.

html;https://github.com/Peter554/StainTools). These patches were manually annotated by experienced pathologists as tumor

patches or normal patches.

The flowchart for patient disposition is shown in Figure 1. First, we randomly chose 300 WSIs from the TSMCC Cohort. We

excluded 2 WSIs that were not classifiable, and 44 WSIs with insufficient numbers of patch. Two hundred and fifty-four WSIs

were used for the tumor detector model INSIGHT. And 1579 WSIs from the TSMCC Cohort were also used for MSI prediction model

WiseMSI.

Additionally, 616 WSIs of colorectal adenocarcinoma were acquired from TCGA-COAD and TCGA-READ (https://portal.gdc.

cancer.gov/projects/TCGA-READ; https://portal.gdc.cancer.gov/projects/TCGA-COAD). For quality control, 3 WSIs were

excluded due to lack of MSI analysis conclusion, and additionally 55 WSIs were excluded as they were deemed to be MSI-L.

Finally, 4 WSIs were excluded for missing tumor tissue in the slides. Both WSIs scanned under 20x objective lens and 40x

lens were included. In total, 609 WSIs, 523 labeled as MSS and 86 labeled as MSI-H, were used as the external test set for

the self-attention model.

An extra 210 WSIs were obtained frommulti-centers for the tumor purity reader experiment to check the consistency between our

trained tumor detection model INSIGHT and expert pathologist.

METHOD DETAILS

Neural network training and testing
Figure 2 shows theworkflow of the data, training, and testing of the neural networks. A residual convolutional neural network INSIGHT

(ResNet-18,38 the tumor detector model) was trained and tested on the image patches coming from 254WSIs. Each patch was cate-

gorized as normal patch or tumor patch by experienced pathologists. These patches were randomly assigned in a 7:1:2 ratio to the

training set, the validation set and the test set. Then patches of the training set and the validation set was fed into the ResNet18 tumor

patch detector. Maximally 20 iterations of training were undertaken, and the learning rate was 2e-5. Binary cross-entropy loss was

calculated upon completion of each iteration and the minimal loss was updated. Training was terminated when no further decreasing

on binary cross-entropy loss in 5 uninterrupted iterations with at least 10 training iterations. The network architecture was optimized

in the validation set and the model weights were preserved when minimal loss was achieved and this model with minimal loss was

used as the tumor detector model named as INSIGHT. The precision rate, recall rate or sensitivity, and area under the curve (AUC) of

the network were obtained using the test set. Precision predicted the correct value in the case of predicting positive samples while

recall predicted the correct value in instances with positive labels.

Furthermore, 1579 WSIs from the TSMCC Cohort were tessellated into patches and normalized as described above, and then the

patcheswere randomly assigned in a 7:1:2 ratio to the training set, the validation set and the test set and fed into the trainedResNet18

tumor patch detector INSIGHT. A SoftMax layer was used as the output layer to obtain the probabilities of each patch belonging to a

tumor class; an input patch whose p value was R0.5 was classified as a tumor patch. The tumor patches were then entered into

Residual Network with 50 layers (Resnet50) that had been pre-trained on the ImageNet.39 We chose to encode each tissue patch

with a 1024-dimensional feature vector, yielding a feature matrix with a size of N 3 1024, where N represented the number of tumor

patches.

The feature matrix derived from the 1579 WSIs was fed into the Self-Attention model. The Self-Attention model was trained on the

training set and verified on the validation set. Standard cross-entropy loss was calculated and the minimal loss was updated upon

completion of each iteration. Training was terminated when no further decreasing on cross-entropy loss in 40 uninterrupted iterations

with at least 100 training iterations. The precision rate, recall rate and AUC of the Self-Attention model were then obtained using the

test set.

The Rectified Linear Unit (ReLU), as the activation function of the Self-Attention neural network, was used to define the nonlinear

output of the neuron after linear transformation. The 1024-dimensional feature vector was reduced to 512-dimenional vector after two

linear transformations using the equation:

hk = ReLUðW2ðReLUðW1Zk + b1ÞÞ + b2
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whereW and b represent the summed learnable weight matrix and bias of fully connected layers, respectively, and Zk represents the

1024-dimensional feature vector and hk the 512-dimenional vector after two linear transformations with activation of ReLU. Then, the

attention score for the corresponding patch was obtained by attention pooling using the formula:

ak =
exp fWaðtanhðVhk + cÞ๏sigmðUhk +dÞÞg

PN

j = 1

exp
�
WaðtanhðVhj + cÞ๏sigmðUhj +dÞÞ�

where V and U represent the summed learnable weight, and c and d represent the bias, respectively, and ak represents the attention

score of patch k. ๏ represents cosine similarity: Then, the 512-dimenional vector of a WSI was obtained by calculating the weighted

sum of ak of all the patches of a WSI using the equation:

hslide =
XN

k = 1

akhk

where hslide represents the 512-dimenional vector of a WSI. The MSI score was obtained by projecting the vector of a WSI using the

classification layer followed by the softmax activation:

p = softmax ðWcls hslide + bclsÞ
whereWcis and bcis represent the summed learnable weight, and bias of linear layers, respectively. SoftMax function was applied with

default threshold 0.5 of MSI score used to classify a WSI into MSS or MSI-H.

The self-attention model of WiseMSI was separately tested as well using all the patches of the 1579 WSIs without the tumor pre-

selection step.

Comparative analysis of WiseMSI with other models
For direct comparison of the performance of WiseMSI with other published methods, we select two classical weakly supervised

methods EfficientNet40 and ViT41 and two MIL methods MIL and AttMIL42,43 which have been proved to have the top performance

in Laleh’ benchmark analysis.33 DeepSMILE30 uses two-stagemultiple instance learning approach, with a self-trained CNNmodel for

feature extraction and VarMIL model for MSI classification. Only the untrained code of DeepSMILE was available to the public. The

VarMILmodel was included in our comparative analysis aswell. Benchmark testing of these fivemethods vs.WiseMSI was carried on

TSMCC cohort for end-to-end prediction of MSI status. The source codes of these methods were downloaded and re-trained and

tested using TSMCC cohort data randomly assigned in a 7:1:2 ratio to the training set, the validation set and the test set. The training-

validation-testing process was repeated for five iterations for eachmethod. Similar toWiseMSI, fixed threshold 0.5 of MSI score were

used in these four methods to classify a WSI into MSS or MSI-H.

Saillard C et al.44 used a self-trained RestNet50 model Moco V2 for feature extraction to improve dMMR/MSI detection, and open

sourced the untrainedMoco V2model to public. Saillard trainedMoco V2 using the same parameters and data augmentation scheme

as the description in Dehaene et al.45 but a bigger ResNet backbone. We downloaded the untrained Moco V2model and self-trained

it following Dehaene’s description using 622WSIs from TCGA COAD + READ cohorts and 400WSIs from TSMCC. Standard ResNet

50 backbone was used in our training. Each WSI was divided into 20 tiles. Each model was trained for 600 epochs. The obtained

features have a dimension of 1024. This self-trained Moco V2 feature extractor was benchmarked with the ImageNet pre-trained

ResNet 50 model in WiseMSI.

WiseMSI on other cancer type
Performance of the self-attention model in WiseMSI and the classical weakly supervised method ViT on other cancer type were esti-

mated by the TCGA-STAD cohort. 442WSIs of stomach adenocarcinoma FFPE samples were acquired. 35WSIs were excluded due

to poor image quality. Of the remaining 407 WSIs, 342 were labeled as MSS and 65 as MSI-H by TCGA. 286 WSIs were randomly

selected into training set, 40 into validation set, and 81 into testing set. TheseWSIs were tessellated into patches at 5123 512 pixels,

normalized, and passed into the Resnet50 pre-trained on the ImageNet for feature extraction. MSI prediction were made by the self-

attention model of WiseMSI. Similarly, these patches were passed to ViT for MSI prediction.

Tumor purity reader experiment
Tumor purity is the fraction of cancer cells in tumor tissue. Tumor purity estimation by expert pathologist is a critical step of sample

selection and result interpretation in cancer molecular test. To compare the performance of our tumor detection model INSIGHT on

tumor purity estimation with that of pathologists, we carried a reader experiment in which the tumor purity of an additional external

cohort with 210 WSIs were estimated by a board-certified, experienced pathologist, and by the tumor detect model INSIGHT inde-

pendently. TwoWSIs were excluded from performance comparison due to slide damage andwrong tumor type. The pathologist esti-

mated tumor purity by reading the H&E stained hispathological slides. Tumor purity from INSIGHT was the percentage of patches
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with detected tumor among the patches from a CRC WSI. Spearman correlation coefficient was used for performance evaluation.

The slides with larger than 20% difference in tumor purity estimations between the pathologist and INSIGHT were further inspected

by another independent experienced pathologist.

QUANTIFICATION AND STATISTICAL ANALYSIS

For performance evaluation, in both the internal and external validation of WiseMSI, and in the comparative analysis of different

models, ten-fold cross-validation was conducted by randomly dividing the input WSIs into 10 subsets. The entire training and testing

process of WiseMSI were repeated 10 times with each time using 8 different subsets as training and validation sets, and 2 different

subsets as internal test set. The 95% CI for the mean specificity, sensitivity, and AUC value were calculated.

Statistical analysis was undertaken using _IBM SPSS Statistics 22. Disease-free survival (DFS) was calculated as the duration from

the date of surgery to the date of recurrence, second cancer, or death from any cause, whichever occurred earlier. The data cutoff

date was July 31, 2021. Kaplan-Meier survival analysis was used to determine whether there were differences in the survival distri-

bution for the different group.
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