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Abstract
Stem cells give rise to all cells and build the tissue structures in our body, and heterogeneity and plasticity are the hallmarks 
of stem cells. Epigenetic modification, which is associated with niche signals, determines stem cell differentiation and 
somatic cell reprogramming. Stem cells play a critical role in the development of tumors and are capable of generating 3D 
organoids. Understanding the properties of stem cells will improve our capacity to maintain tissue homeostasis. Dissecting 
epigenetic regulation could be helpful for achieving efficient cell reprograming and for developing new drugs for cancer 
treatment. Stem cell-derived organoids open up new avenues for modeling human diseases and for regenerative medicine. 
Nevertheless, in addition to the achievements in stem cell research, many challenges still need to be overcome for stem cells 
to have versatile application in clinics.
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Introduction

The term stem cell (SC) appears in the scientific literature 
as early as 1868 in a publication written by Ernst Haeckel. 
However, it was only in the 1960s that definitive evidence 
of the existence of SCs in the hematopoietic system was 
provided, in which Till and McCulloch described the exist-
ence of clonogenic bone marrow (BM) precursors that gen-
erate macroscopic spleen colonies after being injected into 
irradiated recipient mice. Based on this eminent work, the 
two gold standard features of SCs were proposed: an SC is 
capable of long-term self-renewal and multilineage differ-
entiation [1]. SCs residing in our body are responsible for 
the maintenance of tissue homeostasis; however, identifying 
definite markers for SCs in vivo remains the biggest chal-
lenge in the field of SC research. Recent advances in lineage 
tracing have enabled the genetic labeling of a single cell or a 
set of cells in a normal physiological context and is a pow-
erful method for assaying the contribution of SCs to tissue 
in homeostasis or disease [2]. Moreover, the establishment 
of embryonic stem cells and induced pluripotent stem cells 

highlight the potential of stem cells’ application in regenera-
tive medicine.

Diversity and heterogeneity of stem cells 
in tissue

Several SCs and their niches in mammalian tissues have 
been identified, including hematopoietic SCs (HSCs) in the 
BM [3], germline SCs in the seminiferous tubules basal layer 
[4], epithelial SCs in the basal layer of the epidermis and the 
bulge of hair follicles [5], neural SCs (NSCs) in the lateral 
ventricle subventricular zone (SVZ) of the central nervous 
system [6], and muscle SCs among satellite cells under the 
basal lamina of myofibres [7].

Hematopoietic stem cells

HSCs are probably the best-characterized SC population and 
have been shown to give rise to both myeloid and lymphoid 
lineages of blood cells (Fig. 1a). Mice hematopoietic pro-
genitors can be found at 8–8.5 days postconception in the 
yolk sac and the embryo proper, after which they shift to the 
spleen and then begin to shift to the BM before birth [8]. 
By birth in humans, HSCs in BM support the vast majority 
of hematopoiesis. In contrast, the kidney is predominantly 
responsible for hematopoiesis in adult fish [9]. Not all HSCs 
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are alike; they have various physical characteristics, includ-
ing cell cycle status, cell surface marker phenotype, response 
to different extrinsic signals and different lineage outputs 
following transplantation. HSC subtypes can be classi-
fied into long-, intermediate- and short-term repopulating 

HSCs based on the reconstitution kinetics following clonal 
HSC transplantation [10]. Despite many exhaustive stud-
ies, researchers have yet to find a single molecular marker 
that is expressed exclusively by HSCs. Furthermore, HSCs 
do not express any lineage-specific antigen; thus, they are 

Fig. 1   Stem cells in tissues, organoids, and cancers. a Differen-
tiation of hematopoietic stem cells (HSCs). HSCs are composed of 
long-term and short-term self-renewing stem cells and multipotent 
progenitors. The multipotent progenitors give rise to common lym-
phoid progenitors (CLPs) and common myeloid progenitors (CMPs). 
Subsequently, CMPs and CLPs develop into myeloid and lymphoid 
lineages of blood cells, respectively. Both CMPs and CLPs can gener-
ate all dendritic cells in mice. GMPs, Granulocyte macrophage pre-
cursors. b Intestinal stem cells (ISCs) at the base of the crypt gener-
ate rapidly proliferating TA cells in the lower half of the crypt. TA 
cells subsequently differentiate into the mature lineages of the surface 
epithelium (left). Lineage tracing showed that ISCs could repopu-
late the epithelium in 5–7 days (right). c The hair follicle stem cells 
(HFSCs) reside in the bulge region and maintain quiescence during 
the telogen phase (left). HFSCs generate all cycling portions of hair 
follicles in the anagen phase (right). d Single Lgr5 stem cell from 
small-intestinal crypts build crypt villus organoids in 3D culture. e 
A homogeneous population of mouse pluripotent stem cells gener-
ates skin organoids in vitro, which stratify with epidermal and dermal 
layers, and generates de novo hair follicles in a process that recapitu-
lates embryonic hair folliculogenesis. f Two models of tumor growth. 

In the hierarchical model of tumor growth, only CSCs exhibit self-
renewal capacity, whereas TA cells confer limited proliferative poten-
tial and subsequently differentiate into nonproliferative cancer cells 
(left upper). In the clonal assay, CSCs present dominant clonal expan-
sion, whereas TA cells exhibit limited clonal expansion capacity (left 
lower). In the stochastic model of tumor growth, all cancer cells are 
equipotent and undergo either self-renewal or differentiation into non-
proliferative cancer cells stochastically (right upper). In the clonal 
assay, all equipotent cancer cells showed similar clonal expansion 
capacity (right lower). g The hypothesis of clonal evolution in tumor 
progression. First, oncogenic stimulation insults a stem cell (alter-
natively, a progenitor or even a differentiated cell) of healthy epithe-
lium, resulting in the generation of benign lesions with genetic homo-
geneity (benign lesion). Further evolution of the cells in the benign 
lesion generates a more invasive and malignant clone in the primary 
tumor (clonal evolution). Subsequently, subclone competition within 
the malignant subclones leads to further transformation, and geneti-
cally heterogeneous subclones coexist within the tumor (subclonal 
competition). Then, a final mutational insult leads to the tumor being 
thoroughly turned over by the malignant and metastatic cells that all 
behave as cancer stem cells
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referred to as lineage-negative cells [11]; while HSCs can 
be distinguished from mature blood cells by the presence of 
certain other cell-surface antigens, such as c-kit and Sca-1 
(for murine cells), CD133 and CD34 (for human cells) [12]. 
CD34 was the first differentiation marker to be recognized 
on primitive human hematopoietic cells and is still the most 
commonly used marker to obtain enriched populations of 
human HSCs and progenitors [13]. Antigens such as CD90 
and CD117 are also expressed by HSC. In line with their 
immaturity, HSCs do not express CD38, CD45RA, CD71, 
HLA-DR [14]. The heterogeneity within HSCs makes HSCs 
the most robust cell fraction at the foundation of the hemat-
opoietic system; it is currently of great interest and raises 
questions as to why HSC heterogeneity exists, how HSCs 
are developed and whether HSC heterogeneity is relevant to 
leukemogenesis or treatment options.

Gut stem cells

The most frequently self-renewing tissue in mammals is 
probably the intestinal epithelium, which is replaced every 
4–5 days. This homeostasis is maintained by the intestinal 
SCs (ISCs) that are retained in the bottom of crypt-like 
invaginations and divide every 24 h [15]. Lgr5 was iden-
tified as a specific marker of ISCs, which give rise to all 
functional cells of the villi [16]. An alternative DNA label-
retaining crypt SC is located at the + 4 position, just above 
the Lgr5+ SC niche and features Bmi1 expression (Fig. 1b). 
Bmi1+ cells expand following depletion of Lgr5+ cells to 
replace the loss of the actively cycling SC pool [17]. Secre-
tory precursor cells reside just above the + 4 position SC 
zone and express Dll1. During homeostasis, Dll1+ cells gen-
erate small, short-lived clones that contain Paneth, goblet, 
enteroendocrine and tuft cells. However, the same Dll1+ 
cells can regenerate entire crypt–villus units once the SC 
pool is ablated by irradiation [18]. Paneth cells are secretory 
cells that serve as niche cells providing Lgr5+ SCs with 
Wnt, Notch and EGF signals [19]. However, this quiescent 
SC niche cell could also be endowed with a SC state and 
generate clones comprising the main cell types of intestinal 
epithelial cells. These collective studies induce debate over 
the precise identity and function of ISCs, and it is becom-
ing apparent that there is probably no definitive answer. 
Together, the intestine seems capable of activating several 
highly plastic reserve SC populations in the lower regions of 
the crypt to maintain epithelial homeostasis and affect tissue 
regeneration following injury, rather than relying on a single 
and rigid SC compartment.

Hair follicle stem cells

The hair follicles provide excellent models for the study 
of SC biology. Hair follicles consist of a permanent bulge 

region and a cycling portion that cycles through anagen 
(growth phase), catagen (retraction phase), and telogen (rest-
ing phase). Hair follicle SCs (HFSCs) were first described 
as label-retaining cells (LRCs) in the bulge region. Elaine 
Fuchs and colleagues found that the majority of LRCs 
expressed the SC marker CD34 (Fig. 1c). The sorted and 
cultured CD34+ bulge cells were shown to regenerate the 
entire hair follicle after transplantation [20, 21]. However, 
the bulge SCs were found to not directly generate TA cells 
but rather give rise to the Lgr5+ cell population located at 
the hair germ, and the hair germ cells in turn generated TA 
cells that further differentiated into the hair shaft in the hair 
matrix [22, 23]. Further study determined that the Lgr5+ 
cells in hair germ were cycling yet long-lived and functional 
HFSCs, which are capable of generating new hair follicles 
and give rise to all cell lineages of the cycling portion of hair 
follicles. After being activated during hair follicle anagen, 
Lgr5+ progeny repopulate CD34+ bulge SC compartments 
[24]. Thus, hair follicles seem to maintain a heterogeneous 
SC pool that contains both quiescent and active SC popula-
tions in separate yet adjacent locations. The resting phase of 
the hair follicle is synchronous in mice and can last months. 
During this time, HFSCs in bulge hair germ are quiescent.

Stem cells in organoids

Organoids are SCs that form 3D structures which consist of 
organ-specific cell types and self-organize through spatially 
restricted lineage commitment. Both pluripotent SCs (PSCs) 
and restricted adult SCs (aSCs) can initiate organoids. Orga-
noids can start, but are not essential, from a single aSCs, 
while cell aggregation is typical starting material for PSC-
derived organoids. As a receptor for the secreted R-spon-
dins and Wnt target gene, Lgr5 marks active aSC in many 
epithelia, and Lgr5+ aSCs exhibit a high capacity to form 
organoids. Lgr5+ crypt SCs were first established to grow 
epithelial organoids in culture as ‘‘mini-guts’’ (Fig. 1d). 
Organoids of the stomach, liver, pancreas, mammary gland 
and taste buds from single Lgr5+ SC of the respective tis-
sue were subsequently established [25]. Organoids of lung, 
fallopian tube, salivary gland and prostate can also grow 
from single cell, but not Lgr5+ cells [26–29]. PSCs, includ-
ing embryonic SCs (ESCs) and their synthetic induced PSC 
(iPSC) counterparts, can generate more complicated orga-
noids, such as brain organoids. Additionally, organoids of 
the lung, kidney, inner ear and skin complex can also be 
generated from PSCs [30, 31]. Unlike single aSC that build 
organoids, PSC-derived organoids develop with a sphe-
roid or embryonic body intermediate stage. Activin treat-
ment of PSCs generates definitive endoderm, subsequent 
inductive signals instruct cells to various endodermal organ 
identities, including organoids of the stomach, lung, thyroid 
and small intestine [25]. The iPSC-derived skin organoids 
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spontaneously produce hair follicles in a process that mimics 
normal embryonic hair folliculogenesis, and the hair follicle 
developed in skin organoids contains HFSC niches contain-
ing cells with HFSC markers [32]. Equally developed skin 
organs in vivo even produce hair follicles that showed proper 
hair eruption and hair cycles [33] (Fig. 1e). This renders 
hair follicles the first authentic and functional mini-organ in 
PSC-developed organoids.

Cancer stem cells

The cancer SC (CSC) concept was born from the observa-
tion of explicit histological heterogeneity in tumors and the 
observation that a new tumor could initiate from a single 

mouse tumor cell [34]. In the early nineties, Dick and col-
leagues observed that most subtypes of acute myeloid leu-
kemia (AML) could be engrafted reliably in immunode-
ficient mice and that leukemic engraftment could only be 
initiated from CD34+CD38− fractions. Thus, a CSC was 
identified in AML. Moreover, the xenograft assay measured 
the frequency of the initiating cell to be one per million 
(~ 1/106) tumor cells [35]. However, the interpretation of 
these xenotransplantation studies is challenged by studies 
that infused titrated numbers of mouse tumor cells into non-
irradiated histocompatible recipient mice. These studies of 
mouse lymphomas and leukemias indicate that malignancies 
can be maintained by a relatively large proportion (> 10%) 
of tumor cells. Accordingly, some human cancers may be 
found that do not adhere to the CSC hypothesis. Thus, the 
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CSC concept, albeit imperfect, encompasses the notion that 
this cell type sustains the growth of many cancers and pos-
sesses SC properties, such as the capacity for self-renewal 
and giving rise to “differentiated” progeny [36, 37]. Solid 
tumors, such as breast cancer, brain cancer, prostate cancer, 
pancreatic cancer, colon cancer, lung cancer, and ovarian 
cancer, have been shown to contain subpopulations of tumor 
cells with great ability to propagate tumors in xenotrans-
plantation assays [38]. In addition, studies of distinct mouse 
models of tumors have validated that tumors contain cells 
that act as CSCs and substantially fuel tumor growth, irre-
spective of the oncogene utilized and the tissue origin of 
these tumors [39–41]. Consistently, a predominant clone 
could be detected in every sequenced tumor tissue, support-
ing a selective advantage conferred by independent mutation 
endowing a clone to outstrip other clones [42, 43] (Fig. 1f). 
However, the CSC concept is still contentious, namely, there 

is no consensus on whether CSCs are rare or high-frequency 
cells or whether they have fixed, hierarchical or diverse 
phenotypes [44–46]. Modern cancer biology and genome 
sequencing have identified cancer as a complex, Darwinian 
and adaptive tissue ecosystem [47] (Fig. 1g). Thus, given the 
evolutionary progression, clonal expansion and genetic het-
erogeneity in cancer, CSCs are unlikely to be fixed entities. 
Nevertheless, the relationship and dynamics among CSC-
derived predominant clones and other minor clones within 
a tumor remain poorly described.

Niches of stem cells

The SC niche is defined as a microenvironment that 
anchors SCs to maintain their stemness. Precise control 
over SC differentiation and tissue architecture is essential 
for development, organogenesis and tissue homeostasis. A 
niche is defined by anatomy and function—a local tissue 
microenvironment that directly maintains and regulates a 
particular type of SC or progenitor.

Niche of HSCs

Notable efforts have been made to uncover the regulatory 
mechanisms that maintain HSC niches. HSCs are found 
mainly around the sinusoids throughout the BM, where 
mesenchymal stromal or stem cells (MSCs) and endothe-
lial cells contribute to HSC maintenance [48, 49] (Fig. 2a). 
Although perivascular MSCs are likely to be heterogene-
ous, they generate osteoblastic cells and synthesize factors 
(such as Scf and Cxcl12) that promote HSC maintenance 
[50]. Ablation of MSCs results in BM hypocellularity, ane-
mia and attenuation of osteogenic cells [51, 52]. CXCL12-
abundant ‘reticular’ (CAR) cells were found to colocalize 
with HSCs around the sinusoids [53]. CAR cells play a 
crucial role in promoting HSC maintenance, as ablation of 
CAR cells depletes HSCs and severely decreases the osteo-
genic and adipogenic capacities of BM cells [54]. CD146+ 
skeletal SCs in the human BM also contribute to the HSC 
niche by synthesizing high levels of factors such as SCF 
and CXCL12 [55]. Although CXCL12 and SCF have been 
established as regulators of HSC maintenance, other HSC 
niche regulatory factors have also been identified, such as 
pleiotrophin, angiopoietin-1, and Notch and Wnt in TGF-β 
signaling pathways [56] (Fig. 2a). BM endothelial cells 
line the surface of blood vessels and promote HSC main-
tenance during homeostasis and regeneration after injury 
[57]. Further study found that endothelial cells are capable 
of promoting hematopoiesis via the expression of essential 

Fig. 2   Stem cell niche. a. Various cell types in bone marrow play roles 
in regulating HSC maintenance, including mesenchymal stem/stromal 
cells, endothelial cells, CAR cells, macrophages, sympathetic neurons 
and nonmyelinating Schwann cells. However, adipocytes exhibit a nega-
tive effect on HSC maintenance. b. HSC niche cells contribute to HSC 
maintenance via the release of different factors. c. The quiescence of hair 
follicle SCs at the bulge and hair germ was maintained by a set of factors, 
including BMP6 and FGF-18 from K6+ bulge cells, BMP4 produced by 
dermal fibroblasts (DFs), and BMP2 expressed by subcutaneous adipo-
cytes. At the onset of anagen, the activation factors prevailed, including 
noggin (NOG), FGF-7, FGF-10 and TGF-β2 produced by dermal papil-
lae (DP) and PDGF-α derived from adipocyte precursor cells (APCs). 
Wnt7b and Wnt10a from apoptotic resident macrophages and Jag1 from 
regulatory T cells also contribute to the activation of hair follicle SCs. 
After skin injury, TNF-a from inflammatory macrophages could induce 
the activation of hair follicle SCs. At the beginning of a new hair cycle, 
SCs in the bulge remain quiescent until SHH is expressed by the TAC 
matrix. d. The epidermis is a stratified structure that is composed of the 
basal cell layer and the underneath basement membrane, spinous layer, 
granular layer and stratum corneum layer. Self-renewing and proliferating 
epidermal stem cells are located within the basal layer. Secreted factors, 
such as dermal fibroblasts, promote the self-renewal of cells in the basal 
layer. These factors include IGF, FGF-7, FGF-10, EGF ligands and TGF-
α. Epidermal stem cells generate columnar units that undergo terminal 
differentiation via jagged activated Notch signaling. e. The essential 
components for intestine Lgr5+ stem cells to generate self-renewing epi-
thelial organoids in vitro, including laminin-rich Matrigel, a cocktail of 
niche factors including Wnt, Noggin, R-spondin 1 and EGF that recapitu-
late the ISC niche in vivo. f. Paneth cells and subepithelial fibroblasts at 
the crypt bottom constitute the niche for intestinal stem cells. g. The CSC 
niche of squamous cell carcinoma. CSCs of squamous cell carcinoma are 
frequently found at the tumor-stroma interface (left). Extracellular matrix 
ligands, such as fibronectin (FN), could activate αβ1 integrins, resulting 
in hyperactivated focal adhesion kinase (FAK) and its associated tyros-
ine kinase Src, leading to the proliferation of CSCs. However, TGF-β 
signaling maintains the quiescence of CSCs. Moreover, VEGF secreted 
by CSCs could enhance CSC proliferation and promote the formation of 
new blood vessels

◂
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surface markers such as E-selectin [58] and upregulation 
of ‘angiocrine’ factors such as FGF2, DLL1, DHH and 
EGF [59, 57, 60]. Trafficking of HSCs into the blood-
stream in the BM is closely associated with the adrenergic 
signals from the sympathetic nerves, indicating that sym-
pathetic nerves could modulate HSC function [61]. Mac-
rophages have been identified as the key niche-regulating 
cells given their effect on nestin-expressing niche cells by 
inducing CXCL12 secretion, which in turn promotes HSC 
retention [62]. Other cell types that regulate HSC niches 
include myelinating Schwann cells, adipocytes and osteo-
clasts [63, 64]. In addition, extracellular matrix and cal-
cium play a role in regulating HSCs (Fig. 2b). Unlike SCs 
in some other tissues, HSCs cannot be stably expanded 
in vitro. This greatly attenuates the potential of HSC trans-
plantation in certain clinical contexts. Further elaboration 
on how the microenvironment participates in HSC regula-
tion in normal and disease physiology will provide new 
strategies for hematological disorders.

Niche of hair follicle stem cells

HFSCs maintain a quiescent state that is synchronous with 
the rest phase of the hair cycle and only activate in the ana-
gen of hair follicles. At the telogen phase, dermal fibroblasts 
secrete BMP4, subcutaneous fat produces BMP2, and the 
BMPs contribute mainly to the quiescence state of HFSCs 
[65]. In addition, the inner bulge layer expresses high levels 
of BMP6 and FGF-18 (another quiescence factor). Together, 
these factors maintain the quiescence of HFSCs in both 
bulge and hair germ [66]. In contrast, the dermal papillae 
(DP) beneath the hair germ is an indispensable niche com-
ponent that induces HFSC activation [67]. The DP-derived 
HFSC-activating factors include TGF-β2, FGF-7, FGF-10, 
and noggin [68, 69]. In addition, adipocyte precursor cells 
underlying the dermal layer produce platelet-derived growth 
factor-α (PDGF-α), which could also contribute to the acti-
vation of SCs in hair germ [70]. WNT signaling counteracts 
BMP signaling to determine the activation and quiescence 
state of hair follicles. Nuclear β-catenin accumulates in 
the activated hair germ SCs, and β-catenin-knockout hair 
follicles arrest in telogen [71]. However, the exact cues of 
Wnt signaling remain unknown, and hair germ and dermal 
fibroblasts are potential sources of Wnt ligand(s) [22, 72]. 
Unlike the SCs in hair germ, SCs in the bulge seem to be 
activated upon alternative signals. There are data indicating 
that sonic hedgehog (SHH) secreted by the newly formed 
transient amplifying cell (TAC) matrix in hair germ affects 
Bu-SC activation. Moreover, the SHH from the TAC matrix 
induces the expression of noggin and FGF-7d in DP, and 
these factors promote the proliferative state of the matrix 
and lower ORS [68, 69]. Together, DP interacts with the 

hair germ to initiate anagen, and then the signals from the 
emerging TAC pool activate the SCs in the bulge. Addi-
tionally, skin resident macrophages and regulatory T cells 
also play a role in modulating HFSC activity [73, 74]. The 
sensory neurons adjacent to the upper bulge play a role in 
influencing the behavior of HFSCs [75, 76]. Moreover, dur-
ing mouse skin injury, TNF-α derived from inflammatory 
macrophages could activate SCs in hair germ and induce 
hair follicle regeneration [77, 78] (Fig. 2c). After the acti-
vation of HFSCs and a predictable period of time anagen 
phase, follicle growth stops, and catagen begins. The cata-
gen phase is a highly controlled process of coordinated cell 
differentiation and apoptosis. Upon catagen initiation, the 
molecules that could serve as anagen-supporting signals, 
include insulin-like growth factor I receptor (IGF-IR) and 
keratinocyte growth factor (KGF), are downregulated, while 
BDNF and TGF-β1 are upregulated [79]. After the catagen 
phase, the progeny of HFSCs in hair germ repopulate bulge 
SC compartments. In the telogen phase of the hair follicle, 
HFSCs are kept quiescent and can last months. Fgf18 has 
been found to prevent anagen entry and is essential to main-
tain quiescence of HFSCs [20].Why does the cycle end and 
when it does? Is this due to the HFSCs being instructed to be 
quiescent and stop to fuel the transit amplifying cell popula-
tion? Or increased expression of catagen inducer, including 
the dickkopf-1 (DKK1), in DP cells? Or, is it due to changes 
in activities of perifollicular mast cells, regulatory T cell and 
macrophages [73, 80, 81]? As components of HFSC niche 
continue to emerge, the interaction between the HFSCs and 
their niches should yield new insights into how SC heteroge-
neity is organized in hair follicles and how SCs are regulated 
to determine which lineage to embark upon.

Stem cell niche in the interfollicular epidermis

Mammalian skin is covered with a stratified epidermis, 
and the basal epidermal layer of interfollicular epider-
mis (IFE) contains epidermal SCs that express keratin5 
and keratin14 (K5/K14). These epidermal SCs undergo 
self-renewal and differentiate into nonproliferative, K1/
K10 and involucrin-positive outer epidermal layers [82]. 
Epidermal SCs proliferate at the basal layer and subse-
quently move upward and differentiate. Dermal fibroblasts 
are a rich source for mitogens that stimulate epidermal SC 
proliferation, including insulin-like growth factors (IGFs), 
FGF-7, and FGF-10, and especially EGF, which is a cru-
cial signaling pathway for epidermal growth [83]. Consist-
ently, activation of TGF-α or deletion of Mig6, which are 
the positive and negative regulators of EGFR signaling, 
respectively, results in epidermal hyperproliferation in 
mice [84, 85]. Epidermal stratification is achieved first by 
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the detachment of basal cells from the basement membrane 
and then by the asymmetrical cell division of basal cells, 
which generates a committed daughter and a proliferative 
basal cell [86]. The differentiation of basal cells to spinous 
cells depends on Notch signaling, and Notch1/2/3 recep-
tors and Jagged1 are expressed in the mouse suprabasal 
epidermis, whereas Jagged2 is expressed in the basal layer 
cells [87] (Fig. 2d). Consistently, elevated Notch signal-
ing in basal cells leads to massive expansion of spinous 
cells [88]. However, the cues that trigger Notch signaling 
in the mouse epidermis and their cellular source require 
further elaboration. It will be interesting to assay the cel-
lular plasticity between the basal SCs and differentiated 
spinous cells.

Dissecting the ISC niche with organoid models

SCs can generate organoids in conditions that mimic the 
SC niche of physiological SC self-renewal or tissue repair. 
Thus, organoids could be used as a powerful tool to dissect 
the niche of SCs. Early studies found that in vivo niche sig-
nals, such as Wnt/R-spondin that regulates ISCs and crypt 
homeostasis, are also indispensable for the in vitro mainte-
nance of ISCs in organoid cultures [89–91]. Moreover, by 
reconstituting aggregates containing SCs and purified Paneth 
cells, Sato and colleagues found that Wnt secretion by 
Paneth, combined with the soluble factors EGF, R-spondin, 
and Noggin, can serve as a minimal niche for maintaining 
ISCs in vitro [19]. Although Wnt3-producing Paneth cells 
are required for the maintenance of Lgr5+ ISCs in vitro, 
they are dispensable in vivo. The mesenchymal cells that 
surround SCs could provide an alternative source of Wnt 
in vivo [92, 93]. As initially described for small ISCs, the 
Wnt pathway has emerged as the major driver of epithelial 
aSCs [90, 93]. Lgr5, a receptor for Wnt agonist R-spondins 
and itself encoded by a Wnt target gene, marks active aSCs 
in many epithelia. Thus, it is not surprising that Wnt acti-
vators are key components of most aSC-derived organoid 
cultures and that Lgr5+ aSCs invariably present in such cul-
tures, such as organoids of the intestine, stomach, liver and 
taste buds, are derived from Lgr5+ SCs [25]. In contrast, 
BMP signaling is responsible for epithelial differentiation 
and negatively modulates the number of ISCs in the intes-
tine [94]. Additionally, mesenchyme-derived BMP is crucial 
for intestinal differentiation in vivo; thus, BMP antagonism, 
such as Noggin, is essential in mini-gut culture [19]. Equally, 
TGF-β also inhibits intestinal organoid proliferation, and 
small molecules are exploited for TGF-β inhibition in the 
culture of intestinal organoids. Thus, inhibition of BMP or 
TGF-β signals is a prerequisite for organoid growth. In addi-
tion, EGF signal activation is required for long-term mini-
gut organoid culture, and EGFR inhibitor treatment slows 
human intestinal organoid growth within a week [95]. In 

addition, a Notch-positive feedback in the intestinal stem cell 
niche was proved to be essential for stem cell self-renewal, 
this highlights the importance of dynamical system analysis 
and agent-based multiscale stochastic modeling mechanisms 
in studying the spatiotemporal control of the stem cell niche 
[96]. The development of organoid techniques will improve 
our understanding of the SC niche by providing efficient 
tools that could dissect the SC niche at the single-cell level.

Cancer stem cell niches

Accumulating data suggest that the growth of at least some 
cancers is driven by CSCs [97]. Tumorigenic CSCs often 
share similar phenotypic and functional characteristics with 
normal SCs in the same tissue [98]. Correspondingly, CSCs 
might be supported by specialized niches for their mainte-
nance, similar to normal SCs. However, recent effort has 
focused on identifying markers to clearly distinguish CSCs 
from other cancer cells; thus, a few CSC niches were par-
tially dissected. CSCs in mouse squamous cell carcinoma 
(SCC) have been purified and characterized [99]. SCC CSCs 
are located at the tumor-stroma interface and have high 
expression levels of integrins [100, 101]. SCC CSC prolif-
erating activities are regulated by signals from their niche, 
where TGF-β signaling interacts with signals from integrin 
and focal adhesion kinase to modulate the activity of CSCs 
[101]. In addition, SCC CSCs produce vascular endothelial 
growth factor (VEGF), which promotes vascularization in 
the tumor. Moreover, VEGF may also contribute to the CSC 
niche and maintain tumor growth by acting on CSCs in an 
autocrine fashion [102]. Therefore, the self-renewal of CSCs 
is regulated by both autocrine and paracrine niche signals 
for self-renewal and differentiation, which is similar to the 
SC counterparts of CSCs in normal tissue. Even though the 
HSC niche was extensively explored, the extent to which 
the leukemia SC niche shares physiological characteristics 
with the normal HSC niche is still largely unknown. Infiltra-
tion of human acute lymphogenous leukemia in immuno-
deficient mice changes the homing sites of healthy HSCs 
[103]. The extensive proliferation of cancer cells causes a 
hypoxic microenvironment within tumors, and the hypoxic 
niche promotes cancer cells to gain CSC properties. Inhibit-
ing hypoxia-inducible factors in hematological malignancies 
attenuates the tumor-propagating potential of leukemic and 
lymphoma CSCs [104]. Studies on brain tumor SCs found 
that these cells tend to be adjacent to blood vessels more 
often than other tumor cells, and vascular cells contribute 
to brain tumor SC maintenance in culture and facilitate 
tumor development in vivo [105]. Furthermore, MSCs can 
induce breast cancer cells with CSC properties by elevating 
miR-199a expression in cancer cells [106]. Notably, a very 
recent study found that carcinoma-associated fibroblasts pro-
mote tumor formation and chemoresistance by providing a 
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survival niche for CSCs [107]. These studies highlight the 
potential of anticancer therapies to be more efficient than 
other therapies by targeting the CSC niche in addition to 
targeting cancer cells themselves.

Plasticity and transformation of stem cells

The study of cellular plasticity initiated at the beginning of 
the new century and found that cellular identity could cross 
developmental germ layers and undergo extreme changes 
[108]. However, these notable claims were largely based on 
studies performed in vitro. It is evident that mammalian cells 
can change their cell identity under ‘natural’ conditions in 
response to intrinsic changes in the cell or physiological 
stresses. Even though the exact role of adult cell plasticity 
in vivo still needs to be evaluated on a case-by-case basis, 
the presence of many examples of cellular plasticity through-
out the animal kingdom suggests that it plays a conserved 
role during tissue homeostasis and repair.

Nuclear reprograming and nuclear plasticity

Somatic cells within a multicellular organism are progres-
sively committed to phenotypically and functionally distinct 
fates during development. Somatic cells are considered to be 
stably restricted in differentiated status throughout the lifes-
pan of the organism. In the 1960s, Gurdon transferred the 
nuclei from highly differentiated tadpole intestinal cells into 
ultraviolet-light-irradiated oocytes and successfully gener-
ated normal adult frogs [109, 110]. Gurdon’s reports pro-
vided strong evidence that differentiation might be revers-
ible. Three decades later, Wilmut and colleagues succeeded 
in a cloning mammal, a sheep named Dolly. A year later, 
the cloning of mice was accomplished [111]. The process of 
somatic cell nuclear transfer (SCNT) (Fig. 3a), in addition to 
being used to clone sheep and mice, was soon used to clone 
a wide range of other species, such as cattle, dogs, goats, 
pigs and wolves [112, 113, 36, 114]. However, it was not 
until 20 years after Dolly was cloned that primates, two cyn-
omolgus monkeys, were cloned by SCNT [115]. Although 
it is evident that nuclear reprogramming is crucial for the 
outcome of cloning, various questions remain unanswered 
regarding the low efficiency of SCNT. Improving the effi-
ciency of SCNT would greatly promote the development 
of regenerative medicine. Remarkably, in the early part of 
the new century, Shinya Yamanaka and colleagues found 
that nuclear reprogramming of mouse fibroblasts could be 
accomplished by the ectopic expression of four transcrip-
tion factors (OCT4, SOX2, KLF4 and MYC, as OSKM), 
known as iPSCs [116] (Fig. 3b). Human iPSCs were estab-
lished within a year by overexpression of the same com-
bination of these four factors or different but overlapping 

factors [38, 37]. Intriguingly, retroviral transgenes overex-
pressing these four factors only need to be present at the 
generation of iPSCs. Once these cells are established, the 
exogenous genes are silenced, and the endogenous genes 
of the four factors are activated [117]. Moreover, PSCs 
could also be induced from mouse somatic cells using a 
combination of several small-molecule compounds [118]. 
Most small molecules used to date that facilitate somatic 
cell reprogramming are capable to substitute three of the 
four master regulators, SKM. The identification of mol-
ecules that can compensate directly for Oct4 transduction 
has proved difficult, until the first successful reprogramming 
experiment using only six small-molecule compounds. Two 
of these compounds were found using phenotypic cellular 
screening, a promising approach for further optimization of 
reprogramming conditions. [119, 118]. Despite the recent 
progress, a barrier remains to rapid and reliable induction of 
iPSCs from somatic cells, limiting their use in clinical set-
tings. Future studies should emphasize on the incorporation 
of well-validated chemical probes and more sophisticated 
pharmacological approaches to discover optimal reprogram-
ming conditions. In addition, further elaboration is required 
for a complete profile of how programing is initiated and 
subsequently consolidated.

Trans‑differentiation

Yamanaka’s induced reprogramming also highlights a new 
type of trans-differentiation approach known as direct repro-
gramming, whereby terminally differentiated cells could 
convert to other cell types. Transdifferentiation of pancre-
atic exocrine cells into insulin-producing β-cells has been 
described and was accomplished via forced expression of 
a series of transcription factors [120]. In addition, massive 
β-cell loss in the pancreas evoked some α-cells to transdif-
ferentiate into β-like cells, in which alteration of cellular 
identity proceeded as a natural response to injury [121] 
(Fig. 3c). Naturally occurring transdifferentiation could also 
be perfectly illustrated in lens regeneration in newt. Once 
the lens is removed, the epithelial cells of the dorsal iris 
can undergo transdifferentiation and regenerate the missing 
lens [122]. Natural transdifferentiation occurs in two steps: 
first, the cell dedifferentiates and generates precursor cells. 
Then, the natural developmental program begins, directing 
the cell to generate into the new lineage [123]. However, it 
has been found through experimental induction of transdif-
ferentiation that one cell type directly converts into another; 
in some cases, cells pass through an unnatural intermediate 
phase (Fig. 3d). Graf and colleagues found that monocytes, 
B cells, myeloid cells, and erythroid cells can convert into 
one another without undergoing an intermediate multipo-
tent state within the blood lineage [124, 125]. Transdiffer-
entiation offers new strategies for regenerative medicine, for 
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Fig. 3   Stem cell plasticity. a Somatic cell nuclear transfer (SCNT) for 
nuclear reprogramming. The nucleus of a somatic cell (diploid, 2n) 
is transplanted into an enucleated oocyte (haploid, 1n). In the oocyte, 
the somatic cell nucleus is reprogrammed; thus, the cells derived 
from it are pluripotent stem cells. b Transcription factor transduc-
tion (Oct4, Sox2, Klf4 and cMyc, OSKM) or small molecule-induced 
pluripotent stem (iPS) cells. c Two transdifferentiation models. The 
first model presumes that a cell must first dedifferentiate into a pre-
cursor stage before it converts to a lineage. In the second model, 
cells transdifferentiate to generate new cells directly, in some cases 
mediated via an unnatural intermediate phase and in which genetic 
programming of two cell types is simultaneous. d Pancreatic islets 
have β-, α- and δ-cells. In adult mouse islets, α-cells transdifferen-
tiate directly into insulin-producing cells after ablation of β-cells. 
However, in juvenile islets, δ-cells generate β-cells following abla-
tion of β-cells. e During homeostasis, the hair follicle stem cell com-

partment is maintained by distinct stem cells, and ablated bulge cells 
(CD34+) can be replenished by cells in both the upper pilosebaceous 
unit and the hair germ (Lgr5+). Correspondingly, CD34+ bulge stem 
cells could compensate for the loss of Lgr5+ stem cells in hair germ. 
f Crypt stem cells give rise to all cell lineages in the mammalian 
intestinal epithelium during homeostasis. Radiation injury ablates 
ISCs, which stimulate dedifferentiation of DLL1+ cells to generate 
new ISCs. g Basal stem cells in the trachea give rise to differentiated 
secretory cells and Clara during homeostasis. Ablation of basal stem 
cells induces the dedifferentiation of Clara cells and generates new 
basal stem cells; h EMT is a transition of polarized epithelial cells 
into mobile mesenchymal cells. Several commonly used markers of 
epithelial and mesenchymal cells are listed. i Lgr5+ CSCs prolifer-
ate and differentiate into KRT20+ CRCs at steady state, depletion of 
CSCs results in the reduction of tumor size, some KRT20+ cells con-
vert to Lgr5+ CSCs, and tumor regrowth occurs
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example, fibroblasts in the heart can transdifferentiate and 
thus replace damaged cardiomyocytes.

Stem cell plasticity in hair follicle

Tissue regeneration in mammals is more limited than in 
amphibians and invertebrates. Nevertheless, recent stud-
ies found that mammalian aSCs could display remarkable 
plasticity and reversibility, such as SCs in hair follicles, 
intestines, and the lung airway. The bulge of telogen hair 
follicles maintains heterogeneous and hierarchical SC com-
partments. The SCs located at the upper and lower bulges 
express CD34, whereas Lgr5-expressing SCs are restricted 
to the lower bulge and the hair germ [126]. During anagen, 
Lgr5+ SCs undergo more divisions than upper bulge cells 
[24] and give rise to the rapidly and asymmetrically dividing 
cells in the matrix that generate hair shaft [66]. At the end 
of hair cycling, the progeny of Lgr5+ SCs repopulate the 
CD34+ SC compartment in the upper bulge [24]. However, 
the Lgr5+ SCs in the hair germ do not contribute to another 
hair cycle. Instead, bulge cells constitute an alternative 
source of SCs that can give rise to new SCs in hair germ for 
the next cycle [66]. Although the bulge normally gives rise 
to hair germ SCs, hair germ can replenish an empty bulge 
niche following bulge cell ablation [127]. Furthermore, 
killed Lgr5+ HFSCs could be restored by CD34+ bulge SCs 
[128] (Fig. 3e). These studies underscore the close relation-
ship between Lgr5+ hair germ SCs and CD34+ bulge SCs 
and their remarkable capacity to interconvert under certain 
circumstances.

Intestine stem cell plasticity

The intestinal epithelium’s rapid self-renewing and turnover 
tissue in mammals is fueled by daily symmetric division of 
SCs in crypt bottoms to produce rapidly dividing daugh-
ter cells. These cells will further differentiate into secre-
tory cells or absorptive enterocytes [129]. Animal models 
inducing apoptosis in proliferative cells of crypt units via 
irradiation and cytotoxic damage have proved a rapid resto-
ration of crypt units, indicating that plasticity of nonprolif-
erative or rarely dividing cells contributes to the regenera-
tive process [130]. Consistently, crypt epithelial homeostasis 
is not perturbed by genetic ablation of Lgr5+ SCs, which 
could be compensated by the Bmi1+ SC population [17]. 
In addition, Dll1+ cells neighboring the SCs that are nor-
mally committed to the secretory lineage could convert to an 
ISC state after crypt damage [18]. Similarly, other quiescent 
cells in the crypt, which are committed precursors of Paneth 
cells and the enteroendocrine lineage during homeostasis, 
can give rise to all the major epithelium cell types follow-
ing intestinal injury [131] (Fig. 3f). Thus, Lgr5+ ISCs are 
required for maintaining crypt integrity in a stable state, 

while under conditions in which the intestinal epithelium 
is severely damaged, such as gamma irradiation, context-
dependent cellular plasticity enables the replenishment of 
ISCs and restoration of crypt.

Cellular plasticity in trachea

In the mouse trachea, keratin 5 (K5)-expressing epithelial 
basal SCs are responsible for cellular replenishment. Basal 
cells have the potential to self-renew and give rise to Clara 
cells and ciliated cells during homeostasis and after injury, 
rendering basal SCs at the top of the cellular hierarchy in the 
tracheal epithelium [132]. Intriguingly, ablation of basal SCs 
results in the proliferation of differentiated secretory cells. 
Moreover, lineage tracing indicates that committed secretory 
cells convert to basal SCs. The converted cells were indistin-
guishable from SCs in phenotypical characteristics, and they 
could take part in repairing epithelial injury similarly to their 
endogenous counterparts [133] (Fig. 3g). Further ex vivo 
assays showed that secretory cells can dedifferentiate into 
basal SCs when basal cells are not present. However, direct 
cell contact of secretory cells with basal SCs is sufficient to 
inhibit secretory cell dedifferentiation [133]. The capacity of 
basal cells to inhibit the dedifferentiation of secretory cells, 
even with a single basal cell, exhibits many implications 
for general tissue biology, in which SCs and their progeny 
can interact with each other to modulate their relative ratios 
in tissue, and ensures a precise orchestration of epithelium 
architecture.

Stem cells in EMT

The plastic transition between the epithelium and mesen-
chyme is called epithelial–mesenchymal transition (EMT) 
and is integral to normal development and cancer progres-
sion, in which epithelial cells acquire mesenchymal proper-
ties and exhibit decreased intercellular adhesion, enhanced 
motility and resistance to apoptosis [134]. EMT and cancer 
stem cell CSCs formation are two fundamental and well-
studied processes that contribute to cancer metastasis and 
tumor relapse. EMT has been shown to modulate ES cell 
differentiation, induce reprogramming and CSC behavior. 
Correspondingly, the pluripotent ESCs in the inner mass of 
the blastocyst have epithelial features [135]. As these pluri-
potent epithelial epiblast cells form, the primary mesoderm 
proceeds through EMT during gastrulation. Thus, EMT 
is an initial differentiation event in the formation of three 
germ layers from PSCs [136]. In contrast, the reprogram-
ming of fibroblasts into iPSCs represents the transition of a 
mesenchymal phenotype into an epithelial phenotype [137]. 
Moreover, induction of an EMT in immortalized human 
mammary epithelial cells results in the expression of mam-
mary epithelial SC markers. Furthermore, these cells exhibit 
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an increased capacity to form mammospheres, a property of 
mammary epithelial SCs [138]. Consistently, differentiated 
cancer cells could convert to CSCs through EMT, endowing 
oncogenic mutations in differentiated cancer cells to inte-
grate into CSCs [139]. This scenario capacitates CSCs with 
updated oncogenic mutations to clonally expand and dissem-
inate in evolutionary tumors [140]. Accumulating studies 
support that neoplastic cells within individual carcinomas 
often exhibit considerable phenotypic heterogeneity in their 
epithelial versus mesenchyma-like cell states, in which the 
cells can undergo a partial EMT to attain a hybrid epithe-
lial/mesenchymal (E/M) phenotype or a complete EMT to 
attain a mesenchymal one [141–143]. And the plasticity in 
cell states is regulated by signaling pathways such as Notch. 
For example, certain breast cancer cells can reside stably 
in a highly tumorigenic, hybrid E/M state driven by Snail 
and canonical Wnt signaling [144, 145]. Moreover, these 
hybrid E/M breast cancer cells had a combination of several 
stem-like traits since they displayed increased plasticity, 
self-renewal and mammosphere formation [146, 145]. And 
the acquisition of a hybrid E/M state is essential for tumori-
genicity of basal breast cancer cells [145]. Interestingly, the 
cells with hybrid or intermediate E/M state can shift towards 
either end (i.e., E or M) of the EMT spectrum, creating a 
window of opportunity for stemness (Stemness window). 
The size of the window is controlled by three input signals: 
NF-κB signaling level, EMT induction, or Notch activation. 
With different combinations of the three signals, various 
possible combinations of different types of cells can exist. 
For instance, a strong EMT induction narrows the window 
while a NF-κB activation can enlarge the window. A small 
window implies limited opportunities for stemness, result in 
the entire EMT space containing only epithelial cells or/and 
mesenchymal cells [147, 148]. And Jagged-Delta asymmetry 
in Notch signaling can result in a Sender/Receiver hybrid 
phenotype [149, 150]. In addition, the gene-expression pro-
files of mesenchymal-like and epithelial-like breast cancer 
stem cells resemble those of distinct basal and luminal stem 
cells found in the normal breast. And the plasticity of breast 
cancer stem cells might endow these cells with the capacity 
for tissue invasion, dissemination, and growth at metastatic 
sites [143]. Simulation study showed that the more mes-
enchymal CSCs lie at the invasive edge, while the hybrid 
epithelial/mesenchymal CSCs reside in the tumor interior 
[150]. These findings suggest that the design of future thera-
peutic strategies will need to consider the different subpopu-
lations of carcinoma cells that reside at various positions 
along the epithelial–mesenchymal spectrum.

Thus, EMT confers SC traits to carcinoma cells that are 
associated with high-grade self-renewal, malignancy and 
resistance to apoptosis, which are dangerous for cancer 
patients. Conclusively, EMT programs are associated with 
the acquisition of SC characteristics in both normal and 

neoplastic cells (Fig. 3h). However, the relationship between 
EMT and SCs is largely unknown, which is why epithelial 
SCs always express a wide array of markers of mesenchymal 
cells. Intriguingly, a study showed the generation of iPSCs 
from mouse fibroblasts requires a mesenchymal-to-epithelial 
transition (MET) regulated by suppressing pro-EMT sig-
nals from the culture stimulus and promoting an epithelial 
program within the cells. Specifically, Sox2/Oct4 suppress 
the Snail (EMT mediator), cMyc inhibit the expression of 
TGF-β1 and TGF-β receptor 2, and Klf4 induces epithelial 
genes including E-cadherin. Consistently, preventing EMT 
in epithelial cells cultured with serum can generate iPSCs 
without cMyc and Klf4 [151]. This study indicates that MET 
as a key cellular mechanism toward induced pluripotency.

Plasticity of CSCs

In addition to cellular plasticity in homeostasis and repair, 
studies in cancer biology found that CSCs and non-CSCs 
could undergo phenotypic transitions with certain stimuli. 
Breast cancer cell lines consist of cell populations that dis-
play SC-, basal-, or luminal-like phenotypes. All three sub-
populations were capable of generating cells of the other 
two phenotypes [152]. Thus, CSC and non-CSC identities 
are plastic in this case. Recently, CSC plasticity has been 
further evaluated in xenografted human cancer models. 
An inducible version of the suicide gene caspase 9 was 
used to delete Lgr5+ CSCs in human colorectal cancer 
xenografts. Additionally, deletion of Lgr5+ CSCs reduced 
tumor size, while removal of the apoptosis inducer resulted 
in the regrowth of tumors. Additionally, the proliferation of 
KRT20+ and differentiated tumor cells occurred simultane-
ously with tumor regeneration. Further assays via lineage 
tracing of the differentiated tumor cells demonstrated that 
these cells restored the LGR5+ CSC pool [153] (Fig. 3i). 
In contrast, the hierarchy of glioblastoma appears to be uni-
directional and irreversible. The ablation of CSCs ceased 
tumor growth without CSC regeneration from other glio-
blastoma cells [154]. Consistently, several transcription fac-
tors are essential for the maintenance of glioblastoma CSC 
identity. Once these transcription factors are re-expressed, 
differentiated glioblastoma cells can be converted into CSCs 
with fully tumorigenic capacity [155]. In conclusion, CSC 
hierarchies are not rigid but rather plastic, and non-CSCs 
reprogramming to CSCs might be a common phenomenon 
that is induced by various environmental stimuli. Thus, the 
plasticity of CSCs might be a potential therapeutic target in 
some human cancers.
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Epigenetic regulation of stem cells

The embryonic development of mammals is a tightly regu-
lated process in which distinct cell types are generated in a 
highly ordered manner, and this process is established by 
tight transcriptional and epigenetic manipulation. Epigenet-
ics is a stably heritable yet reversible phenotype of altera-
tion in a chromosome without changes in the DNA sequence 
[156]. DNA methylation is a major epigenetic modification 
that plays a crucial role in transcriptional suppression. In 
addition, chromatin is subject to a diverse array of posttrans-
lational modifications at the histone tails. DNA methyla-
tion and histone modifications and their crosstalk affect the 

activity of specific regulatory elements, such as promoters 
and enhancers. Promoters are the platform on which the tran-
scription factors and RNA polymerase II (RNAPII) assemble 
during the initiation of transcription. Enhancers are typically 
200–300 bp in length and defined based on an assay of his-
tone modifications and proximity to the gene body [157].

Epigenetic traits during stem cell differentiation

Epigenetic regulation is highly dynamic during the differ-
entiation of mouse PSCs and human PSCs (hPSCs), espe-
cially at the initial transition from the pluripotency state to a 
lineage-committed cell [158]. In PSCs, the activity of master 
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pluripotency factors such as OCT4, SOX2, and NANOG is 
focused on the super-enhancers of the target genes, with the 
assistant of the mediator and cohesin complexes, to control 
target gene expression [159]. However, the super-enhancer 
complex is precisely sensitive to cellular state, and inter-
ruption of mediator activity or attenuation of master pluri-
potency factors results in dramatic downregulation of the 
target genes [160]. With the onset of PSC differentiation, 
the pluripotency-associated enhancer architecture is disas-
sembled in a stepwise manner, initiated with the removal of 
histone modifications and encroachment of nucleosomes, 
and followed by culmination of the methylation at DNA- 
and repression-associated histone residues [161]. The 
nucleosome remodeling and deacetylase (NuRD) complex, 
including LSD1 and methyl CpG-binding domain protein 3 
(MBD3), counteract the activity of histone acetyltransferases 
and leads to the disassembly of pluripotency-associated 
enhancers [162, 163, 161]. Loss of histone acetylation and 
methylation modifications, associated with transcriptional 
activity in enhancers, results in a similar decommission-
ing of promoter-associated activating modifications [164] 
(Fig. 4a). Simultaneously, the enhancers and promoters 
of the pluripotency state are shut down, and chromatin is 
compacted.

Activation of silent pluripotency genes 
of differentiated cells

Transcription factors tend to bind within open chromatin. 
However, pioneering factors can directly bind to related 
DNA motifs, evict nucleosomes and initiate enhancer acti-
vation, even in compact chromatin [165]. Thus, the intro-
duction of a minimal set of pioneer factors into a somatic 
nuclear environment, in which the majority of the pioneer 
factors (OSKM) target loci are repressed, initiates prelimi-
nary epigenetic remodeling and induces nuclear reprogram-
ming [166, 167]. In the context of reprogramming, OSKM 
cooperatively bind to nucleosomal DNA without obvious 
histone modifications and maintains recognition motifs 
for these pioneer factors [168]. However, similar loci with 
repressive epigenetic modifications tend to be intransigent 
to the binding of pioneer factors [168]. Moreover, unlike 
canonical pioneer factors, OSKM lack a DNA-binding 
domain that could outcompete nucleosomes to establish a 
region of open chromatin, and OCT4, SOX2, and KLF4 
(OSK) seem to cooperatively bind to outwardly facing par-
tial motif sequences of their shared somatic targets within 
the nucleosome [169]. The initial binding of OSK within 
somatic cell chromatin appears to be the earliest step in 
initiating the pluripotency network; however, the extended 
latency between OSK binding and the induction of pluri-
potency genes suggests that these primary interactions are 
insufficient [170]. By contrast, cMyc is unique among the 

Fig. 4   Epigenetic regulation of stem cells. a Active regulatory ele-
ments are typically enriched for 5hmC, H3K27ac, H3K4me, and 
bound Mediator complex. During gene repression, the activating 
histone modifications are eliminated, and repressive marks, such as 
H3K27me3 and nucleosomal compaction, are established. In pluri-
potent stem cells, multiple enhancers combined with master pluripo-
tency transcription factors, such as OCT4, SOX2 and KLF4, establish 
a super-enhancer, which supports the activation of pluripotency genes. 
The absence of master pluripotency factors could induce the disassem-
bly of the enhancer–promoter complex in the assembly of repressive 
inputs. The nucleosome remodeling and deacetylase (NuRD) complex 
induces nucleosome formation at the binding region of pluripotency 
factors and alters the histone modifications that correspond to transcrip-
tional activity. Similar disassembly of activating modifications occurs 
in the promoter by PRC2-associated histone demethylases KDM2B 
and KDM5A. Furthermore, H3K9me2 or H3K9me3 is deposited in 
the enhancer by G9A in complex with GLP and SETDB1, and DNA 
methylation by DNMT3A. Equally, PRC2 deposits H3K27me3 in pro-
moters, which initiate chromatin compaction by recruiting the canoni-
cal PRC1 complex and monoubiquitylate H2AK119 (H2AK119ub). 
K27ac, Lys27 acetylation; Pol II, RNA polymerase II. PRC2, Polycomb 
repressive complex 2. GLP, G9A-like protein. DNMT3A, DNA meth-
yltransferase 3A. CCTC-binding factor (CTCF). DNMT, DNA meth-
yltransferase; HDAC, histone deacetylase; HAT, histone acetyltrans-
ferase; MED, mediator complex; MBD, methyl-DNA-binding domain 
protein; POL II, RNA polymerase II; TET, ten eleven translocation 
dioxygenase; TrxG, trithorax group complex. TF, transcription factor. 
b In differentiated cells, H3K27me3 and H2AK119ub are enriched in 
CpG island-containing promoters of some pluripotency genes. At the 
initiation of reprogramming, OCT4, SOX2 and KLF4 (known as OSK) 
bind to partial motif sequences of some select enhancers to engage pio-
neer factor-like activity. These OSK binding sites are modified with 
H3K4me1 and H3K4me2. OSK binding also promotes H3K4 methyla-
tion at the promoter via the MLL component WDR5 and is associated 
with local erasure of H3K27me3 by the histone demethylase UTX. 
Subsequently, OSK cooperates with unknown factors to establish a 
canonical enhancer architecture, including H3K4me2 and H3K27ac, 
and stable topological cognation to the promoter via the cohesin and 
Mediator complexes. Embryonic stem cell-specific BAF (esBAF) 
further stabilizes the enhancer-promoter complex, and the activating 
inputs predominate at this stage and direct the expression of the target 
genes. LSD1, Lys-specific demethylase 1; MBD3, methyl CpG-binding 
domain protein 3; MLL, mixed lineage leukemia. Pol II, RNA poly-
merase II, WDR5, WD repeat-containing protein 5. c The mechanisms 
of DNA methylation and demethylation. Cytosine is converted to 5mC 
by DNMTs. TET1 is responsible for the conversion of 5mC to 5hmC. 
Three TET family proteins could subsequently oxidize 5hmC to 5fC 
(5-formylcytosine) and then to 5caC (5-carboxylcytosine). Moreover, 
5hmC can be converted to 5hmU (5-hydroxymethyluracil) by deami-
nase activation-induced cytidine deaminase (AID) and apolipopro-
tein B mRNA-editing enzyme catalytic polypeptides (APOBECs). 
5fC, 5caC and 5hmU can be excised by thymine DNA glycosylase 
and replaced by an unmodified cytosine via the base-excision repair 
(BER) pathway. d Key epigenetic regulators that are involved in HSC 
self-renewal and lineage commitment during differentiation, and DNA 
methylation levels changes during hematopoietic lineage commitment. 
CLP, common lymphoid progenitor; CMP, common myeloid progeni-
tor; DNMT, DNA methyltransferase; DNA me, DNA methylation; 
GLP, G9A-like protein. GMP, granulocyte–monocyte progenitor; MPP, 
multipotent progenitor; PRC, polycomb repressive complex; TET, Ten-
eleven translocation; TrxG, Trithorax group. e In the embryonic neu-
rogenesis of mice, neuroepithelial cells develop into radial glial cells 
(RGCs) around embryonic day 14. RGCs can either produce neurons 
directly or give rise to intermediate progenitor cells (IPCs), which in 
turn generate neurons. During later embryonic development, RGCs 
also give rise to oligodendrocytes (OligoD) and astrocytes
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reprogramming factors, as it is neither a component of the 
core pluripotency network nor definitely necessary for repro-
gramming to iPSCs [171]. Even though cMyc is a crucial 
factor in many various biological processes, including cell 
growth and differentiation. And there are studies strongly 
support that cMyc is a nonlinear amplifier of transcriptional 
outputs that acts universally on active genes containing the 
E box DNA motif [172, 173]. Therefore, cMyc occupies the 
core promoter regions of many active genes in ESCs/iPSCs 
and is typically not present at enhancers [167]. Chromatin 
remodeling could be further achieved by additional regula-
tors, such as cell-type specific BAF complexes, which evict 
nucleosomes around the loci of transcription factor binding 
and stabilize a nucleosome-depleted site [170, 165]. Consist-
ently, aberrant expression of the ESC-specific BAF (esBAF) 
complex components during reprogramming promotes iPSC 
generation [174]. Moreover, primary genomic binding of 
OSK in somatic cells seems to depend on corresponding 
chromatin status, such as OCT4 preferentially binding at 
distal cis-regulatory sequences that lack DNA methylation 
but are nucleosomal [175]. The binding of OCT4 initiates 
chromatin modification at the enhancer, which interacts with 
cognate CpG island-containing promoters to induce targeted 
deposition of H3K4 methylation and H3K27 demethylation 
[176, 177]. Thus, the preliminary enhancer activation must 
be followed by the assembly of coregulators to eventually 
induce the activation of target genes (Fig. 4b). Additional 
chromatin regulators that are essential for the process have 
been found. For example, the H3K27me demethylase Utx 
also interacts with OSK and is important for the deletion of 
this repressive H3K37me3 from pluripotency loci. While 
these additional regulatory factors need to function collabo-
ratively with OSKM for binding to repressed pluripotency 
genes, such an opportunity may arise during normal cell 
division, immediately following DNA replication before 
nucleosome assembly. It is still elusive whether replication 
is essential for changing gene expression patterns at every 
stage of the reprogramming process [178].

Together, these chromatin dynamics are likely crucial for 
the turn-off of the somatic expression program and the tran-
sition to pluripotency. The exact nature of the interactions 
among these coregulators is still unclear, although current 
studies have highlighted a number of crucial players that 
direct the reprogramming process. However, with manipu-
lation of several pioneer factors, we could generate iPSCs 
from somatic cells.

Epigenetic regulation in hematopoiesis

HSCs give rise to the highly specialized cell types in the 
mammalian blood system [9]. Accordingly, the cell types of 
hematopoietic systems can be distinguished based on their 
differential epigenetic modification [179, 180]. Likewise, 

genes that are subject to demethylation and transcriptional 
activation during lineage commitment always have a func-
tional role that is specific to the corresponding lineage [181]. 
Differentiation of HSCs toward the myeloid lineage showed 
less global DNA methylation than commitment toward the 
lymphoid lineage. This suggests that myeloid commitment 
may be a ‘default’ state of HSCs, whereas HSC commit-
ment along the lymphoid lineage requires proper DNA 
methylation, which could repress myeloid lineage-defining 
genes [182]. DNA methyltransferases (DNMTs) catalyze the 
transfer of a methyl group to carbon 5 of the cytosine ring 
to form 5-methylcytosine (5mC), which can be hydroxy-
lated to 5-hydroxymethylcytosine (5hmC) by ten-eleven 
translocation (TET) dioxygenases [183] (Fig. 4c). DNMT1 
plays an important role in HSC maintenance and lymphoid 
lineage commitment, whereas DNMT3A and DNMT3B 
are indispensable for HSCs to exit the multipotent state 
[184, 185]. TET2 oxidizes 5mC to 5hmC and is highly 
expressed in HSCs, and deletion of TET2 increases the 
level of 5mC. However, the phenotype of TET2 ablation in 
HSCs resembles a combinative phenotype of DNMT1 loss 
and DNMT3A and DNMT3B deficiency [186]. Therefore, 
DNA methylation and hydroxymethylation intricately inter-
act to modulate proper gene expression and cellular func-
tion (Fig. 4d). Thus, predicting phenotypic outcomes based 
on the global state of methylation and hydroxymethylation 
is insufficient. Instead, DNA methylation of unique loci 
specifically affects HSC function. Additionally, the expres-
sion of key components of polycomb repressive complexes 
(PRCs) is associated with the status of HSC differentiation. 
For example, BMI1, a component of PRC1 that monoubiq-
uitylates H2AK119, is highly expressed in HSCs [187]. The 
loss of BMI1 leads to progressive hematopoietic failure by 
inducing HSC cell cycle arrest, apoptosis, premature differ-
entiation and defective self-renewal [188, 189]. In contrast, 
ectopic BMI1 expression promotes HSC self-renewal and 
expansion of the HSC pool [190].

Histone acetylation favors transcriptional activation by 
leading to the loosening of chromatin. The histone acetyl-
transferase cofactor TRRAP promotes HSC self-renewal, 
and its ablation leads to BM failure [191]. Histone dea-
cetylases (HDACs) HDAC1 and HDAC2 counterbalance 
the activity of histone acetylation (Fig. 4d). Likewise, a 
combined loss of HDAC1 and HDAC2 results in extensive 
hematopoietic failure with the phenotypes of severe anemia 
and cytopenias [192, 193]. Intriguingly, these phenotypes 
are similar to the characteristics of aged HSCs, which sug-
gests that there might be an association between aged HSCs 
and deregulated histone acetylation and that aged HSCs 
could potentially be restored by HDAC inhibitors.
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Epigenetic regulation in ISCs

The cell fate of ISCs and non-SCs in the intestinal epithe-
lium SC pool showed extensive plasticity [129]. Accumu-
lating data indicate that epigenetic regulation plays a role in 
the plasticity of SC hierarchies within intestinal epithelium. 
Loss of HDAC enzymes (HDAC1/2) perturbs cell lineage 
commitment in the intestine [194]. Histone marks that per-
mit chromatin accessibility surprisingly do not significantly 
differ between ISCs and their progeny cells, both of which 
showed prominent histone marks in many intergenic reg-
ulatory regions [195]. This implies the underlying epige-
netic mechanism of ISC plasticity, namely, the regulatory 
regions of intestinal cells are continuously accessible to 
lineage-specifying transcription factors, niche factors and 
other environmental factors to alter cell fate via dedifferen-
tiation or transdifferentiation. DNA methylation surrounding 
transcription start sites (TSS) typically correlates with gene 
repression [196]. Furthermore, DNA methylation is gener-
ally most dynamic at regulatory regions outside the TSS, 
although the functional significance of these dynamics is 
often unclear. DNA methylation was found to be static at 
TSS during ISC differentiation, and minimal changes were 
detected mainly at enhancer elements [197]. However, dele-
tion of Dnmt1, an enzyme that maintains DNA methylation, 
led to crypt expansion, indicating the crucial role of global 
DNA methylation in ISC differentiation [197]. Given that 
Dnmt3b knockout, which leads to loss of de novo methyla-
tion, exhibits a negligible effect on intestine homeostasis 
[198], the functional importance of these minimal local 
DNA methylation changes during differentiation require fur-
ther investigation. Moreover, additional studies are needed 
to explore the role of other epigenetic factors, such as chro-
matin remodelers, in intestinal cell plasticity.

Epigenetic mechanisms in neurogenesis

Neurogenesis is the process in which NSCs or neuronal 
progenitor cells (NPCs) generate new neurons [199]. In 
mouse embryonic neurogenesis, neuroepithelial cells are 
transformed into radial glial cells (RGCs) in the ventricu-
lar zone (VZ) and SVZ [200]. Initial RGCs function as 
fate-restricted NPCs that either directly generate nas-
cent neurons or produce neuronal intermediate progeni-
tor cells (IPCs), which in turn give rise to neurons [200, 
201]. During later development, RGCs also give rise to 
astrocytes and oligodendrocytes [200]. Even though most 
RGCs terminally differentiate into mature neural cells, a 
small portion of RGCs remain quiescent during embry-
onic development, and these preserved RGCs eventually 
become aSCs that are responsible for SVZ neurogenesis 
[202]. Many intrinsic signals, such as rapid epigenetic 
changes, work synergistically to support robust embryonic 

neurogenesis [203]. As DNMTs are the primary writers 
of DNA methylation, proper function of DNMTs is cru-
cial for neurogenesis. DNMTs exhibit dynamic spatial and 
temporal expression during neurogenesis, during which 
DNMT1 is extensively detected in the ventricular neuro-
genic layer in the embryonic mouse brain and responsi-
ble for maintaining DNA methylation status during rapid 
cell replication [204]. DNMT3B is robustly expressed in 
the VZ between E13.5 and is undetectable after E15.5. In 
contrast, DNMT3A is initially detected primarily in NPCs 
within the VZ and SVZ from E10.5 to E17.5 and is con-
stantly expressed in postnatal neurons [205]. Deletion of 
Dnmt1 and Dnmt3b in ESCs leads to embryonic lethality 
[206]. In addition, genome-wide analyses of DNMT3A-
mediated site-specific DNA methylation in embryonic 
NPCs have uncovered its direct epigenetic regulation in 
many neurogenic genes [207]. DNA methylation can be 
‘passively diluted’ during cell replication, and TET1 was 
only recently found to catalyze the conversion of 5mC to 
5hmC. Additionally, 5mC can be converted into unmodi-
fied cytosine by TET family proteins and other proteins 
[208] (Fig. 4e). TET proteins are the major players in 
DNA demethylation and play crucial roles in neurogen-
esis. Tet1 expression is higher in mESCs than in NPCs; 
however, Tet2 expression is comparable between ESCs and 
NPCs, while Tet3 is upregulated in NPCs and expressed 
minimally in mESCs [209]. Tet1 knockout mice func-
tion in embryonic and postnatal development and show 
normal morphology [186]; however, Tet1−/− adult mice 
exhibit a decreased number of NPCs in the SGZ and spe-
cific impairments in extinction learning and short-term 
memory [210, 211]. Tet3 is important in early embryonic 
development; Tet3 deletion results in embryos that either 
arrest and do not survive or mice that survive embryonic 
development but die perinatally for unknown reasons, par-
tially because Tet3 deletion impairs the expression of key 
epigenetic reprogramming genes, such as Oct4 and Nanog 
[212].

Histone methylation/demethylation is precisely orches-
trated to ensure expression of the correct set of genes at 
different neurogenic stages [213]. During neocortical 
development, the polycomb group (PcG), which is respon-
sible for producing active histone modifications such as 
H3K4me3, plays important roles in the NSC neurogenic-
to-astrogenic transition. Consistently, depletion of PcG 
components, such as Ring1b or Ezh2, leads to an extended 
neurogenic phase and delayed onset of astrogenesis dur-
ing neocortical development of embryonic mice [214]. 
Lysine-specific histone demethylase 1 (LSD1) was the 
first identified histone lysine demethylase and selectively 
demethylates H3K4me2 and H3K4me1, and knockdown 
of LSD1 extensively attenuates NPC proliferation in the 
DG of adult mice [215]. Similar to histone methylation, 
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histone acetylation is a reversible process that is triggered 
by HDACs. More than 18 HDACs have been found to reg-
ulate histone deacetylation in the mammalian genome, and 
some HDACs are involved in neurogenesis. For example, 
the expression of HDAC2 increases during the differentia-
tion of NSCs into neurons, whereas HDAC1 is detected 
at high levels in glial cells in the adult brain [216]. Many 
small-molecule HDAC inhibitors have been developed to 
manipulate histone acetylation, including valproic acid, 
which promotes NPC differentiation in the adult hip-
pocampus by regulating the expression of a neurogenic 
differentiation factor [217]. However, despite the impres-
sive progress that has been made, a more comprehensive 

picture of the participation of HDACs in neurogenesis is 
still desired and requires further investigation.

Epigenetics in pancreatic cancer stem cells

Pancreatic Cancer (PDA) is an aggressive malignancy 
characterized by early metastasis and a high mortality. 
using lineage tracing markers or by assessment of tumo-
rigenesis in xenograft, CSCs in PDA were empirically 
defined [39, 218]. These CSCs and their progeny also 
exhibit a significantly altered epigenetic profile with 
distinctive patterns of DNA methylation, and the CSCs 
of PDA showed higher overall DNA methylation lev-
els than the remaining cancer cells. DNMT1 inhibition 
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results in dose-dependent reduction of the CSCs popu-
lation and reduced self-renewal marker, and the CSCs 
showed increased commitment and epithelial-like differ-
entiation [219, 220]. Thus, efforts to disrupt DNA meth-
ylation should form a part of our therapeutic strategy to 
destroy the pancreatic CSC compartment. In addition, 
several preliminary studies in established pancreatic 
cancer cell lines support that interference with histone 
modifications can obviously inhibit the CSC proliferation 
and potentially synergize with existing chemotherapy to 

inhibit pancreatic tumor growth [221, 222]. In addition, 
several mechanisms of interaction between epigenetic 
and metabolic pathways in PDA were found and which 
ultimately result in the observed cellular plasticity and 
enhanced tumorigenesis [223]. An example of metabolic 
and epigenetic crosstalk is the alterations in metabolism 
pathway that produces high levels of glycolysis and serine 
biosynthesis in PDA consequently led to generation of 
large amounts of S-adenosylmethionine, which in turn 
promotes hypermethylation in specific retrotransposon 
elements and associated with transcriptional silencing 
[224]. In the future study, it will be important to elaborate 
these findings with more high-fidelity models of pancre-
atic cancer, such as primary patient-derived xenografts 
and tumor organoids.

Stem cell application and perspectives

SCs, which build all the structural and functional units in the 
human body, are promising treatments for many incurable 
diseases, such as hematological disorders, cardiac disease 
and Alzheimer’s disease. Among the SCs that present at var-
ious stages of life (embryonic, fetal, and adult), aSCs exhibit 
great potential and are the safest for clinical application.

HSCs in clinical applications

BM transplantation is widely applied in SC-based therapy 
for the treatment of malignant and nonmalignant hemato-
logical disease. Edward Donnall Thomas performed the first 
human BM transplant in the 1950s [225]. HSCs, derived 
from BM as well as from mobilized peripheral blood (MPB) 
and umbilical cord blood (UCB), have been used for the 
treatment of hematological disorders, hemoglobinopathies, 
immune system disorders, myeloproliferative disorders and 
inherited metabolic disorders [226]. Additionally, by sup-
plying hematopoietic transcription factors, hematopoietic 
cells can be generated from cells as diverse as fibroblasts, 
endothelial cells, and differentiated blood cells [227–229]. 
Moreover, PSCs, including ESCs and iPSCs, provide alter-
native sources for obtaining HSCs. However, generating 
functional human HSCs from PSCs is a challenge. Recently, 
George Daley and colleagues differentiated hPSCs to the 
hemogenic endothelium via a morphogen-based approach, 
and then seven transcription factors were identified to suf-
ficiently convert hemogenic endothelium into hematopoietic 
SCs and progenitor cells that allow engraftment of myeloid, 
B and T cells in primary and secondary mouse recipients 
[230] (Fig. 5a). This approach holds promise for recapit-
ulating hematopoietic disease in humanized mice and for 

Fig. 5   Stem cell application and perspectives. a Two distinct pro-
cedures to collect HSCs for transplantation. HSCs are isolated from 
donor blood cells, in which the HSCs are mobilized with G-CSF, 
GM-SCF or plerixafor, and enriched with HSCs marker of CD34+/
CD38−. Alternatively, protocols have established to produce HSCs 
ether from endothelial cells, or from human pluripotent stem cells 
(PSCs), these two protocols treated initiate cells with overlapping 
cocktails of transcription factors. The primary HSCs need to receive 
as-yet-unknown extracellular signals for further maturation. b MSC 
immunosuppressive capacity and immunogenicity are affected by 
levels of systemic or local inflammatory cytokines. High immuno-
suppressive potential of MSCs is achieved via suppression of T cell 
activation and inhibition of antigen-presenting cell (APC) maturation. 
Whereas, MSCs that do not tip the balance toward immunosuppres-
sion are prone to immunogenicity and result in immune detection and 
destruction, as debris from apoptotic MSCs are processed by APCs in 
the context of danger signals. The rate of immune detection of alloge-
neic MSCs is determined by the balance between relative expression 
of immunogenic and immunosuppressive factors in MSCs. IFN-γ, 
interferon gamma; MHC, major histocompatibility complex; PGE2, 
prostaglandin E2; sHLA-G5, soluble human leukocyte antigen-g5; 
TCR, T cell receptor; TGF-β, transforming growth factor beta; TNF-
α, tumor necrosis factor alpha; TSG-6; TNF-stimulated gene 6 pro-
tein. c Organoids generated from patient-derived healthy and tumor 
tissues can be genetically characterized and used for drug screening, 
and can be cryopreserved and stored in living organoid biobanks. 
Organoids developed from healthy tissue of the same patient can be 
used to screen drugs that are less toxic to healthy cells while selec-
tively kill tumor cells. Moreover, hepatocyte organoid cultures may 
be used to test for hepatotoxicity. In this schematic example, drug 
C could specifically kills tumor organoids and does not show hepa-
totoxicity, and thus it seems most suitable for treating the patient. d 
CSC model of cancer relapse. Intrinsic and extrinsic mechanism 
contribute to the CSCs resistance to the medical therapy, in addition, 
non-CSCs may convert to CSCs and replenish the CSCs pool, ether 
CSCs drug resistance or replenish result in cancer relapse. The CSC 
model suggests that inhibiting CSC self-renewal, inducing CSC spe-
cific cell death, inducing CSC differentiation or targeting CSC niche 
would lead to the depletion of the CSCs pool and subsequent tumor 
regression. Nevertheless, if the CSC is reversed from no-CSCs, fur-
ther specific and no-specific therapies will be needed the for the final 
regression of tumor. e The principle of interspecies blastocyst com-
plementation for the generation of human–animal chimaeras. Human 
PSC-derived organ could help to solve the severe shortage of organ 
donors. Additionally, Human–animal chimaeras could be useful for 
modeling human diseases and for testing the efficacy and safety of 
a candidate drug in vivo. f The principle of tissue complementation 
chimera. In this example, human-pig integumentary chimera was 
achieved via transplanting human skin progenitors to the skin incision 
of newborn pig. The engraftment of human progenitors will develop 
to mature human skin tissue with appendage organs, such as hair fol-
licle

◂
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therapeutic strategies to restore hematopoietic function in 
genetic blood disorders.

MSCs in clinical trials

Mesenchymal stem cells (MSCs) are characterized by their 
regenerative properties and capacity for differentiation of 
multiple cell lineages and hold extensive promise in cell-
based therapies for various diseases. MSCs were initially 
identified in 1967 by Friedenstein as fibroblast-like clo-
nogenic cells from mouse BM and named colony-forming 
unit-fibroblasts (CFU-F); later, these cells were referred to 
as MSCs [231]. However, to date, a rigorous in vivo demon-
stration of MSC origins and phenotypes has not been estab-
lished. Indeed, assays to identify and characterize MSCs are 
mostly based upon in vitro work, typically based on cell 
surface markers and multiple-lineage differentiation poten-
tial. Irrespective of these uncertainties, the clinical value of 
MSCs is achieved via their trophic and immunomodulatory 
properties, namely, MSCs produce extracellular vesicles, 
including exosomes, and a mass of cytokines and growth 
factors that inhibit immune responses (Fig. 5b) [232, 233]. 
Based on the immunomodulatory capacity of MSCs, the first 
clinical trial of MSCs was administered to a boy who suf-
fered grade IV GvHD (graft versus host disease) after BM 
transplantation, and encouraging outcomes were observed in 
this case [234]. Since then, clinical trials using MSCs have 
soared. Today, more than 300 clinical trials of MSCs are 
underway investigating the treatment of various diseases, 
such as myocardial infarction, GvHD, amyotrophic lateral 
sclerosis (ALS) and diabetes. In 2011, MSC therapy for 
acute myocardial infarction gained approval in South Korea 
as the first MSC therapy with regulatory approval [235]. 
Whereas clinical studies of a small number of patients have 
shown MSCs with great clinical potential, hard evidence of 
a beneficial effect of MSCs from a large placebo-controlled 
trial remain elusive. Several placebo-controlled trials have 
provided disappointing results, with marginal or no benefit 
over placebo. To realize the potential of MSC therapy, MSCs 
should be optimized to extend their persistence and to avoid 
the production of alloreactive antibodies. Specifically, fur-
ther studies should emphasize the elaboration of MSC char-
acteristics in immunogenicity, potency and disease-specific 
mechanisms of action.

Promising translational application of organoids

In addition to the potential of ISCs in regenerative medicine, 
SCs can give rise to organ-like structures known as orga-
noids, which hold great promise for studying normal devel-
opment and disease processes and open up new avenues 
for medical research and drug discovery. Disease research 

commonly involves animal models and experiments. How-
ever, profound differences in genetics, metabolism, size and 
life span all contribute to the fact that most pharmaceuticals 
developed in animals ultimately fail in human clinical tri-
als. Organoids provide an alternative to animal-associated 
research strategies and exhibit human cell metabolism and 
homeostasis, and organoids have already been used success-
fully for the establishment of personalized human cancer 
models and for the assessment of patient-specific therapeutic 
efficacies of cystic fibrosis drugs (Fig. 5c) [236, 237]. Trans-
plantation of organoids to repair damaged organs has been 
highlighted in liver SC-derived organoids, as liver organoids 
represent an available and lasting hepatocyte source; thus, 
organoids potentially provide revolutionized prospects for 
patients with liver disease [238, 239] The exploration of 
organoids was highlighted by the study in which intestinal 
crypt villus units can be built from a single stem cell in the 
absence of a non-epithelial cellular niche [91]. And orga-
noids derived from a single Lgr5+ ISC can engraft onto 
injured intestinal mucosa and promote its recovery in a 
mouse IBD model [240]. In addition, long-term growth of 
primary kidney tubular epithelial organoids also has been 
established, which is valuable for personalized disease 
modeling [241]. Moreover, human pluripotent-stem-cell-
derived intestinal tissues with a functional enteric nervous 
system have been established, which highlights the poten-
tial to develop organoids with more complicated cellular 
composition [242]. Despite the explosively developing field 
of stem cell-based organoids, current versions of organoids 
have clear limitations, e.g., innervation, blood vessels, 
and immune cells are still absent, thus disease processes 
are only partially recapitulated. In further investigations, 
more organoid-based regenerative therapies will be devel-
oped with improved culture and transplantation procedures, 
nontumorigenicity and economical expansion of organoids. 
Organoids remain genetically and phenotypically stable for 
a long time, which allows organoids to be used for a wide 
spectrum of applications in cancer research. Currently, 
large collections of patient-derived organoids of tumors and 
matched healthy tissue have been generated and biobanked 
(Fig. 5c). Recently, an organoid biobank of breast cancer 
tissues from > 100 patients was established. These organoids 
not only represent genetic and histopathological features of 
breast cancer but also maintain the expression of breast 
cancer biomarkers. Consistently, a proof-of-principle drug 
screen in these organoids with different drugs that target 
HER signaling showed that drug sensitivity status typically 
correlates with HER2 levels [243]. These data support that 
organoid biobanks have predictive value for drug efficacy in 
the treatment of individual patients. In addition, profiling of 
patient-derived organoids may uncover the underlying epi-
genetic and/or genetic mechanism of drug resistance, after 
which individual patients could be stratified for personalized 
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cancer treatment. For example, a colorectal cancer organoid 
biobank was used to explore the efficacy of various RAS 
pathway inhibitors, in either a single or combinatorial man-
ner, that have been used in the clinic [244]. Moreover, single 
SC-derived and long-term-cultured organoids were used to 
determine the genome-wide mutation patterns in distinct 
healthy SCs, and the related results suggest that tissue-spe-
cific mutagenic processes contribute to the accumulation of 
specific types of somatic mutations during malignant trans-
formation [245]. Despite these advantages and applications, 
organoids also exhibit limitations. One of the intrinsic limi-
tations is the lack of stroma, blood vessels and immune cells 
in cultured organoids, especially the immune cells in can-
cer organoid, as increasing evidence supports that much of 
tumor progression is intimately connected to its interaction 
with the immune system. Notably, a recent study employed 
iPSC-derived tissue engineering and integrated an intestinal 
organoid with functional neural cells [242]. Future studies 
should explore the possibility of establishing organoids with 
more complex structures.

Target cancer stem cells

CSCs are characterized by their capacity to fuel tumor prop-
agation and may contribute to tumor relapse and metastasis, 
and CSCs that are intrinsically or extrinsically instructed 
by the tumor microenvironment are more resistant to medi-
cal therapy than are ‘differentiated’ tumor cells [246]. An 
increasing number of studies have demonstrated that CSCs 
are enriched after chemo- or radiotherapy; for example, 
radiation therapy results in the enrichment of CSCs in xeno-
grafts GBM and breast tumors [247, 248]. In addition, CSCs 
appear to be resistant to DNA damage-induced cell death, 
similar to their counterparts in normal tissue [249, 250]. 
However, targeting CSCs necessitates a more comprehensive 
understanding of the mechanisms that support their resist-
ance to therapies. CSCs have been shown to exhibit one or 
more aberrations in various signaling pathways, including 
Notch, Wnt and Hedgehog (HH) pathways, which are most 
likely crucial to the tumorigenicity of CSCs [251]. There-
fore, targeting CSCs via regulation of the Wnt, HH and 
Notch signaling pathways holds the promise of inhibiting 
disease relapses. It is now clear that all signaling pathways 
function as a coordinated network [252]. The phenotype of 
CSCs is an output of the overall signaling network. Thus, the 
development of CSC-targeting agents should be based on a 
functional understanding of key nodes in the CSC signaling 
network. Consistently, effective antitumor activity was not 
detected by targeting CSCs with Notch, Wnt or HH inhibi-
tors, either as single agents or in combination, in clinical 
trials. However, comprehensive approaches to modulate the 
interaction among Notch, HH and Wnt pathways, as well 

as other signaling pathways, showed promising antitumor 
effects in preclinical models [251].

If CSCs fuel tumor propagation, killing CSCs, target-
ing CSC proliferation or forcing CSCs to differentiate are 
alternative and independent approaches that potentially 
inhibit tumor growth (Fig. 5d). Practically, most patients 
with acute promyelocytic leukemia are treated with regimens 
that promote the differentiation of leukaemic cells [253]. 
The discovery of drugs that are able to inhibit CSC pro-
liferation without assaulting the pool of normal SCs is the 
basic criterion for new anticancer therapies [254]. However, 
CSC-targeting therapies assume a rigid SC hierarchy, and 
therefore, the dedifferentiation of non-CSCs to CSCs could 
attenuate the clinical applications of such therapies. Indeed, 
using tumor organoid models, genetic lineage tracing and 
ablation systems, a recent study provided definite proof of 
functional plasticity within human CRC cells. The tempo-
ral effect of CSC targeting was eventually overwhelmed by 
the robust reversion of nontargeted cancer cells [153]. Thus, 
given the potential treatment relapse from non-CSC plastic-
ity, it remains unknown whether a single CSC-targeting ther-
apy is sufficient to eradicate cancers. A deep understanding 
of the molecular mechanism underlying cellular plasticity 
in cancer niche environments will be helpful for producing 
better strategies for CSC-targeting cancer therapy.

Stem cells and interspecies chimaeras

Recent progress with various organoids has demonstrated 
the enormous self-organizing capacity for PSCs to form 
whole tissues. However, it remains particularly challenging 
to build real organs in vitro. Xenograft chimeras provide 
a possible solution for generating real organs. Typically, a 
chimaera is defined as an organism composed of cells that 
derive from more than one zygote. Based on whether cell 
derivatives from two zygotes are from different or the same 
species, chimaeras can be categorized as interspecies or 
intraspecies, respectively. In SC research, an interspecies 
chimaera is generated by transplanting SCs from the donor 
into an animal recipient at different stages of development 
[255]. Currently, research on interspecies chimaeras has 
gained increasing attention among researchers and the public 
due to its potential for generating functional human organs. 
In the 1970s, Gardner and colleagues generated mouse-rat 
chimaeras in which the rat inner cell masses were trans-
planted into mouse blastocysts and then transferred to the 
mouse uterus. In these chimaeras, extensive rat-derived cells 
could be observed in the fetuses; however, very few rat cells 
were detectable in the adult chimaeras [255]. The first PSC-
derived interspecies chimaeras were generated by injecting 
ESCs of the wood mouse Apodemus sylvaticus into Mus 
musculus blastocysts. Notably, viable chimaeras contained 
a wide variety of donor cells in all major organs, including 



4062	 X. Wang 

1 3

germ cells, of the host [256]. Furthermore, H. Nakauchi and 
colleagues recently achieved great progress in rodent chime-
ras by injecting mouse PSCs into Pdx-1-deficient rat blasto-
cysts, and rat-sized pancreata consist of mouse PSC-derived 
cells. Subsequently, islets isolated from chimeric pancreata 
were transplanted into mice with streptozotocin-induced 
diabetes. The chimera-derived islets efficiently normalized 
host blood glucose levels for over 370 days without immu-
nosuppression. These data provide rigorous evidence of the 
therapeutic potential of PSC-derived tissues and organs in 
chimeras [257].

Similar to chimera generation via interspecies blastocyst 
complementation with naive rodent PSCs, naive hPSCs have 
the potential to generate interspecies chimeras for study-
ing human development and producing functional human 
tissue. To date, many studies have investigated the genera-
tion of hPSC-derived interspecies chimeras; however, the 
human–mouse chimera is rather inefficient because only 
a few human cells were detected in few chimeric embryos 
[258, 259]. Consistently, in human-ungulate chimeras, even 
naive hPSCs robustly implanted in both pig and cattle pre-
implantation blastocysts, and the contribution of hPSCs to 
postimplantation pig embryos was very limited [260]. To 
improve the inefficiency of chimerism achieved from hPSCs, 
several important factors need to be considered. First, the 
chimera host should be evolutionarily closely related to 
humans. Second, the pluripotent status of human SCs 
should match the developmental timing of the host. Third, 
both host animal SCs and hPSCs should be modified for 
better survival of hPSCs and efficient integration of hPSCs 
into targeted organs and to minimize the contribution of 
hPSCs to unwanted host organs, especially to the CNS and 
reproductive system [255] (Fig. 5e). In addition to blastocyst 
complementation, alternative SCs and host complementa-
tion strategies should be developed to regenerate various 
tissues and cells for clinical application. The integumentary 
chimera, for instance, has been established to generate intact 
skin tissue and its appendage organs [24, 261]. This chi-
mera transplants interspecies or intraspecies SCs to the skin 
incision of adult or newborn animal and should be termed 
“tissue complementation chimera”, providing a feasible and 
alternative method to regenerate functional tissues and cells 
and even mini organs, such as hair follicles (Fig. 5f).

Concluding remarks

Heterogeneity is the hallmark of SCs in normal and early 
neoplastic tissues, and the hierarchy that is established 
among heterogeneous SCs seems to be strictly regulated by 
the niche environments. However, cellular plasticity ren-
ders the SC hierarchy reversable and provides an alternative 

cellular mechanism through which tissues can regenerate 
when SCs are damaged. In addition, the robust plasticity of 
nontargeted cancer cells observed in CRC cells challenges 
the strategy of CSC-targeting cancer therapy. Epigenetic 
modifications play a crucial role in the underlying mecha-
nism of cellular plasticity, and relevant epigenetic patterns 
have been well dissected in the context of cell reprogram-
ming and differentiation. However, a more comprehensive 
picture of in vivo epigenetic modification in normal and 
disease cells requires further investigation. Organoids open 
new avenues for human cancer models and are promising for 
drug discovery. In addition to the potential of patient-derived 
organoids in basic biological research and regenerative 
medicine, these organoids can be used as a relevant model 
for personalized cancer treatments. While SCs are used to 
generate differentiated functional cells and 3D organoids, 
they are also used to generate interspecies chimaeras and 
have carved out new paths for fundamental biology studies 
as well as potential applications in regenerative medicine.
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