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Abstract

Cofilin is a major regulator of actin dynamics involved in the regulation of cell spreading and 

migration through its actin depolymerizing and severing activities. V-Src is an activated Src 

tyrosine kinase and a potent oncogene known to phosphorylate a variety of cellular proteins in cell 

transformation process including altered cell adhesion, spreading and migration. Recently, it has 

been suggested that cofilin is a potential substrate of v-Src (Rush et al., 2005). Here, we show 

direct tyrosine phosphorylation of cofilin by v-Src and identify Y68 as the major phosphorylation 

site. Cofilin phosphorylation at Y68 did not change its activity per se, but induced increased 

ubiquitination of cofilin and its degradation through the proteosome pathway. Furthermore, the 

negative effect of cofilin on cellular F-actin contents was inhibited by co-expression of v-Src, 

whereas that of cofilin mutant Y68F (Y68 mutated to F) was not affected, suggesting that v-Src-

mediated cofilin phosphorylation at Y68 is required for degradation of cofilin in vivo. Lastly, 

inhibition of cell spreading by v-Src was rescued partially by co-expression of cofilin, and to a 

greater extent by the Y68F mutant which is not subjected to v-Src induced degradation through 

phosphorylation, suggesting that v-Src mediated changes in cell spreading is, at least in part, 

through inhibiting the function of cofilin via phosphorylating it at Y68. Together, these results 

suggest a novel mechanism by which cofilin is regulated by v-Src through tyrosine 

phosphorylation at Y68 that triggers degradation of cofilin via ubiquitination-proteosome pathway 

and consequently inhibits cofilin activity in reducing cellular F-actin contents and cell spreading.
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Introduction

Cell migration is an essential cellular activity for various biological and disease processes 

such as embryonic development, wound healing, angiogenesis and cancer metastasis 
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(Caswell & Norman, 2006; Christopher & Guan, 2000; Lauffenburger & Horwitz, 1996). It 

is a multi-step process initiated by forward extension of cell membrane, called lamellipodia, 

which is also considered to be similar to the membrane protrusion in cell spreading 

(Wakatsuki et al., 2003). Lamellipodia plays a major role in cell migration by forming new 

attachments to the substrate and pulling the cell body forward (Condeelis, 2001; Zigmond, 

2004). The force for membrane protrusion is provided by localized actin filament elongation 

and branching at the leading edge of lamellipodia, which requires coordinated functions of 

both actin-polymerizing and -depolymerizing factors (Pollard & Borisy, 2003; Stossel et al., 

2001).

Cofilin is a major regulator of actin dynamics in cell spreading and migration (Bamburg, 

1999; Bamburg et al., 1999; Carlier et al., 1999; Huang et al., 2006; Ichetovkin et al., 2002). 

It plays a key role in enhancing cell membrane protrusion at the leading edge of migrating 

cells by disassembling F-actin from the rear part of actin network to recycle G-actins to the 

front for further rounds of polymerization. In addition, F-actin severing activity of cofilin 

also promotes actin filament elongation by creating filament ends that are used as new 

nucleation sites for filament growth (Bailly & Jones, 2003; Carlier et al., 1997; Dawe et al., 

2003). The activity of cofilin is tightly regulated due to its crucial function in the regulation 

of actin dynamics (Bailly & Jones, 2003; Bamburg & Wiggan, 2002). Phosphorylation of 

the conserved serine 3 (S3) residue of cofilin has been identified as a critical regulatory 

mechanism for cofilin (Agnew et al., 1995; Moriyama et al., 1996). LIM kinase (LIMK) and 

the related testicular kinase (TESK) have been shown to phosphorylate cofilin at this site 

specifically, which inhibits its actin binding activity and mediates various signals to remodel 

actin cytoskeleton (Gungabissoon & Bamburg, 2003; Meberg, 2000). Conversely, 

Chronophin and Slingshot (SSH1L) act as specific phosphatases for cofilin at S3 and 

mediate dephosphorylation of cofilin by several stimuli (Niwa et al., 2002; Samstag et al., 

1996). A recent report using proteomic analysis of v-Src transformed NIH3T3 cells has 

identified phosphorylation of Y140 of cofilin in these cells, although the functional 

consequence of Y140 phosphorylation was not further investigated (Rush et al., 2005). It is 

also unclear whether cofilin could be regulated by other post-translational modifications and 

whether these may play a role in the regulation of cofilin activity in actin dynamics during 

cell spreading and migration.

The Src family tyrosine kinases are implicated in a variety of signaling pathways, leading to 

the stimulation of DNA synthesis, cell proliferation and cytoskeletal reorganization (Bjorge 

et al., 2000; Brown & Cooper, 1996; Thomas & Brugge, 1997). A highly activated viral 

counterpart of Src, v-Src, is responsible for the transforming properties of Rous Sarcoma 

virus (Yeatman, 2004). A number of cellular substrates have been identified for v-Src, 

whose phosphorylation contributes to the altered cell adhesion, migration and invasion of 

the transformed cells that likely play a role in cancer metastasis in vivo (Brown & Cooper, 

1996; Frame, 2002; Lin et al., 2006). These substrates include FAK, Cas and paxillin, 

proteins that are localized in focal adhesions and important for the regulation of cell 

adhesion, spreading, migration and invasion (Brown & Turner, 2004; Defilippi et al., 2006; 

Mitra & Schlaepfer, 2006; Parsons, 2003). They also include proteins that regulate actin 

dynamics directly such as cortactin, whose activity for actin filament cross-linking is 
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inhibited by Src-mediated tyrosine phosphorylation (Huang et al., 1997; Wu & Parsons, 

1993). In addition, the activity of Ste20-like kinase (SLK) to induce actin stress fiber 

disassembly was shown to be inhibited by v-Src kinase activity (Chaar et al., 2006; Sabourin 

et al., 2000).

While these results have clearly shown multiple potential mechanisms by which v-Src may 

influence actin dynamics in cell spreading and migration, it is not clear whether v-Src could 

target other and potentially more direct major regulators of actin assembly or disassembly. 

Given the key functions of cofilin in the disassembly of F-actin in cell migration, we have 

examined potential regulation of cofilin by v-Src through phosphorylation. We identified 

Y68 of cofilin as a major phosphorylation site for v-Src and showed that this 

phosphorylation induced degradation of cofilin through the ubiquitination-proteosome 

pathway. Consistent with this, we found that co-expression of v-Src with cofilin, but not the 

Y68F mutant significantly inhibited the function of cofilin to reduce cellular F-actin 

contents and that the inhibitory effect of v-Src on cell spreading was partially rescued by co-

expression of cofilin, but not Y68F mutant. These results establish cofilin as a key substrate 

of v-Src in the regulation of actin dynamics and cell adhesion.

Results

Phosphorylation of cofilin by v-Src at Y68

To study the potential regulatory mechanism of cofilin by v-Src, we first determined 

whether v-Src can mediate tyrosine phosphorylation of cofilin. 293T cells were transfected 

with plasmids encoding HA-tagged v-Src and His-Myc-tagged cofilin. The overexpressed 

cofilins were then pulldown with Ni-beads, followed by immunoblotting with anti-

phosphotyrosine antibody, 4G10. Fig. 1A shows that cofilin is specifically phosphorylated 

on tyrosine in cells co-transfected with v-Src (compare lane 2 with lane 1). To identify the 

site of phosphorylation by v-Src, each of the 6 tyrosine residues in cofilin was mutated to 

phenylalanine and the mutants were examined for their phosphorylation by v-Src. As shown 

in Fig. 1A, the Y68F mutant exhibited the greatest reduction in phosphorylation by v-Src 

(compare lane 3 with lanes 2 and 4–8), suggesting that Y68 is the major phosphorylation site 

of v-Src. Mutation of all six sites completely abolished cofilin phosphorylation by v-Src, as 

expected (lane 9). Co-transfection of plasmids encoding HA-FAK and Myc-cofilin or its 

mutants in similar experiments did not result in tyrosine phosphorylation of cofilin (data not 

shown), providing further support for the specificity of cofilin phosphorylation by v-Src. We 

then examined whether v-Src could directly phosphorylate cofilin at Y68. In vitro 

phosphorylation assay was performed using purified GST fusion proteins GST-cofilin or 

GST-Y68F, and recombinant HA-v-Src or HA-FAK immobilized on agarose beads by 

immunoprecipitation of lysates from 293T cells expressing the kinases, as described in the 

Materials and Methods. Fig. 1B shows that GST-cofilin was phosphorylated by v-Src in an 

ATP-dependent manner in vitro (lanes 1–4). Interestingly, mutation of Y68 to F 

significantly decreased cofilin phosphorylation by v-Src in vitro (compare lane 5 and lane 

4), suggesting that Y68 is a major phosphorylation site by v-Src. The weak signal in lane 5 

could be due to phosphorylation of GST-Y68F mutant at other sites by v-Src. We also 

observed a lower band in both lanes 4 and 5, which is probably a degradation product of 
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GST-cofilin with the GST part degraded at least partially as this lower band was not 

recognized by anti-GST (lower panel). Consistent with the co-transfection studies, 

recombinant FAK did not phosphorylate either GST-cofilin or GST-Y68F in vitro (lanes 6 

and 7). Lastly, we examined whether v-Src could associate with its substrate cofilin by co-

immunoprecipitation of lysates from 293T cells that had been transfected with plasmids 

encoding Flag-tagged v-Src and HA-tagged cofilin, Y68F mutant, or vector alone. Fig. 1C 

shows that v-Src associated with both its substrate cofilin and the Y68F mutant, suggesting 

that the lack of phosphorylation of the Y68F mutant was not caused by a disruption of v-Src 

association with the mutant. Taken together, these results demonstrate that v-Src binds to 

cofilin and phosphorylates it at Y68.

Phosphorylation of cofilin at Y68 by v-Src regulates its ubiquitination and degradation

During the course of studies on cofilin phosphorylation by v-Src, we noticed that the 

expression level of cofilin and the S3A mutant, but not the Y68F mutant, was reduced 

specifically in the presence of co-expressed v-Src (Fig. 2A). Because the ectopically 

expressed cofilin is under the control of an exogenous promoter, these results suggest that v-

Src likely affects the expression level of cofilin through posttranscriptional mechanisms. 

This possibility is supported by the observation that treatment of the cells with an inhibitor 

of protein synthesis cycloheximide did not affect the decreased protein level of cofilin 

induced by v-Src (Fig. 2B, lanes 1–3). We then examined the effects of v-Src on the protein 

levels of endogenous cofilin using a NIH 3T3 cell line stably expressing v-Src. Fig. 2C 

shows that expression of cofilin in these cells is also decreased compared to the control NIH 

3T3 cells both in the presence and absence of cycloheximide (lanes 1–4). The expression 

level of endogenous cofilin is also reduced by expression of v-Src with or without treatment 

of cycloheximide in 293T and CHO cells (data not shown). Together, these data suggest that 

phosphorylation of cofilin by v-Src at Y68 may regulate the expression of cofilin by 

stimulation of its degradation.

The proteosome-mediated degradation of ubiquitinated proteins is a major pathway that 

regulates expression of various proteins in cells. To examine whether the effect of v-Src 

phosphorylation of cofilin on its degradation could be through such a mechanism, we first 

tested the influence of the proteosome inhibitor, MG132, on the expression level of cofilin 

and Y68F mutant in the presence of v-Src. As shown in Fig. 2B, treatment of cells with 

MG132 reversed the decrease of cofilin expression by v-Src (lanes 4–6). Similarly, 

treatment of cells with MG132 reversed the degradation of endogenous cofilin induced by v-

Src in NIH 3T3 (Fig. 2C, lanes 5 and 6) and 293T cells (data not shown). We then examined 

potential ubiquitination of cofilin and the Y68F mutant with or without v-Src co-expression 

in 293T cells. Fig. 2D shows that cofilin could be ubiquitinated in the cells, which was 

significantly increased by co-expression of v-Src (lanes 2 and 4). Co-expression of v-Src 

with the Y68F mutant also increased its ubiquitination slightly but at a much reduced extent 

compared to the induction for the wild type cofilin (lanes 3 and 5), suggesting that v-Src-

mediated phosphorylation at Y68 may stimulate ubiquitination of cofilin. Furthermore, we 

also found an elevated ubiquitination of endogenous cofilin in the NIH 3T3 cell line stably 

expressing v-Src compared to the control NIH 3T3 cells (Fig. 2E). Taken together, these 
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results suggest that v-Src-mediated tyrosine phosphorylation of cofilin at 68Y can induce its 

ubiquitination resulting in its degradation through the proteosomes.

v-Src-mediated phosphorylation inhibits cofilin activity in vivo

To study the physiological role of v-Src-mediated degradation of cofilin in vivo, we first 

analyzed the effect of co-expression of v-Src on the function of cofilin to reduce the cellular 

F-actin contents. HeLa cells were co-transfected with Myc-tagged cofilin or Y68F mutant 

and HA-tagged v-Src, and examined by immunofluorescence staining with Texas-Red 

conjugated phalloidin to detect cellular F-actin in stress fibers. Consistent with a previous 

report (Yap et al., 2005), over-expression of cofilin reduced the cellular F-actin contents 

compared with the control cells while transfection of the control vector did not affect it 

(Figs. 3A and 3B). Over-expression of the Y68F mutant also reduced F-actin contents to a 

similar extent (Fig. 3C), suggesting that mutation at this residue did not affect the cofilin 

activity per se in reducing F-actin contents. Interestingly, co-expression of v-Src with cofilin 

reversed its function to reduce the F-actin contents (Fig. 3E) whereas expression of v-Src 

alone did not affect stress fiber formation under the experimental conditions (Fig. 3D). In 

contrast, co-expression of v-Src with the Y68F mutant did not prevent the reduction of stress 

fibers by the Y68F mutant (Fig. 3F). We next measured the ratio of F-actin and G-actin (F/G 

actin) directly to quantify the effect of v-Src-mediated phosphorylation of cofilin on its 

activity to reduce F-actin contents. Consistent with data from the immunofluorescence, 

expression of cofilin reduced F/G actin significantly whereas expression of v-Src alone did 

not affect it under the experimental conditions (Figs. 3G and 3H). Furthermore, co-

expression of v-Src with cofilin, but not the Y68F mutant, inhibited cofilin function to 

reduce F/G actin in cells. These results suggest that v-Src inhibits cofilin function to reduce 

F-actin contents through phosphorylation-mediated protein degradation in vivo.

v-Src inhibits cell spreading through phosphorylation of cofilin at Y68

Cofilin has been shown to promote cell spreading by stimulating actin cytoskeleton 

dynamics and membrane protrusion (Bamburg, 1999; Bamburg et al., 1999; Carlier et al., 

1999; Huang et al., 2006; Ichetovkin et al., 2002). V-Src is also known to reduce cell 

spreading in many cell types through phosphorylation of target cellular proteins, even 

though the precise mechanisms are still not well understood (Brown & Cooper, 1996; 

Frame, 2002; Lin et al., 2006). Therefore, we investigated whether v-Src could regulate cell 

spreading through its phosphorylation of cofilin at Y68 by examining the effects of co-

expression of v-Src with cofilin or its Y68F mutant on cell spreading. CHO cells were co-

transfected with Myc-tagged cofilin or the Y68F mutant, and HA-tagged v-Src or control 

vector, along with a plasmid encoding GFP as a transfection marker. Cell spreading was 

assessed for the transfected cells after plating on fibronectin (FN), as described previously 

(Yoo et al., 2006). As shown in Figs. 4A and 4B, expression of v-Src in CHO cells reduced 

its spreading as expected. Consistent with the possibility that v-Src inhibits cell spreading 

through its induction of degradation of cofilin which plays a positive role in cell spreading, 

co-expression of cofilin with v-Src partially reversed the decrease in cell spreading induced 

by v-Src. Interestingly, co-expression of the Y68F mutant, which showed reduced 

phosphorylation by v-Src and consequent degradation (see Figs. 1 and 2), almost completely 

abolished the inhibitory effects by v-Src. Western blotting analysis of aliquots of the 
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transfected cells confirmed the higher expression of the Y68F mutant (due to less 

degradation) compared to the wild type, when co-expressed with v-Src (Fig. 4C). Together, 

these results suggest that inhibition of cell spreading by v-Src, at least in part, is through its 

phosphorylation of cofilin at Y68 and subsequence induction of cofilin degradation via 

ubiquitination-proteosome pathway.

Discussion

As a major actin regulatory protein with depolymerizing and severing activity, cofilin plays 

a key role in many cellular processes in which reorganization or rapid turnover of actin 

filaments are required. Consistent with its important role in actin cytoskeleton dynamics, 

cofilin is tightly regulated by multiple mechanisms in the cell (Bamburg, 1999; Carlier et al., 

1999; Ono, 2003). Phosphorylation of cofilin at S3 is well established as a major regulatory 

mechanism that inhibits its cellular activities (Agnew et al., 1995; Moriyama et al., 1996). In 

the present study, we report a novel regulatory mechanism of cofilin through its tyrosine 

phosphorylation at Y68 that triggers degradation of cofilin via ubiquitination-proteosome 

pathway and consequently inhibits cellular function of cofilin in reducing cellular F-actin 

contents and cell spreading.

A previous proteomic analysis showed phosphorylation of Y140 in v-Src transformed cells 

(Rush et al., 2005). However, the potential biological significance of this potential event was 

not assessed. Indeed, our mutational analysis suggested that changing Y140 to F did not 

affect the overall tyrosine phosphorylation of cofilin to any significant extent, suggesting 

that Y140 is probably a minor phosphorylation site of cofilin. While the potential biological 

significance of Y140 phosphorylation remains to be established, our results suggest that Y68 

is a major phosphorylation site by v-Src whose phosphorylation is critical in the regulation 

of cellular function of cofilin. First, mutation of Y68 to F almost completely abolished 

tyrosine phosphorylation of cofilin by v-Src. Secondly, co-expression of v-Src with the wild 

type cofilin, but not the Y68F mutant, led to increased cofilin ubiquitination, degradation, 

and reduced its function to decrease cellular F-actin contents. Lastly, co-expression of wild 

type cofilin, but not the Y68F mutant, partially reversed inhibition of cell spreading by v-

Src. Therefore, to our knowledge, this report is the first to demonstrate a role for tyrosine 

phosphorylation in the regulation of cofilin and its cellular functions.

Both protein phosphorylation and ubiquitination are important posttranslational regulatory 

mechanisms for a variety of proteins. Increasing evidence suggest that these two proteins 

modifications may crosstalk to each other in either a positive or negative manner (Hunter, 

2007). Protein phosphorylations have been shown to serve as markers to target the modified 

proteins to the ubiquitination-proteosome pathway (Bao et al., 2003; Levkowitz et al., 1999; 

Martinez-Moczygemba et al., 2007; Scaglioni et al., 2006; Yan et al., 2006). For example, 

Src-induced tyrosine phosphorylation of cbl could lead to its ubiquitination and subsequent 

degradation (Bao et al., 2003; Levkowitz et al., 1999). It has also been reported that Src 

directly phosphorylates FHIT, a tumor suppressor, which induces its ubiquitination and 

protein degradation (Bianchi et al., 2006). Jak-mediated tyrosine phosphorylation of 

IL-5RβC-sharing receptor also induces its degradation through ubiquitination (Martinez-

Moczygemba et al., 2007). Our findings of increased ubiquitination and degradation of 
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cofilin upon Src phosphorylation at Y68 suggested that such a positive crosstalk between 

protein phosphorylation and ubiquitination is also used in the cellular regulation of actin 

dynamics. Interestingly, LIMK, the upstream kinase for cofilin phosphorylation at S3, has 

also been shown to be regulated by ubiquitination-proteosome pathway, although it is not 

clear whether polyubiquitination of LIMK by its ubiquitin ligase RNF6 is affected by 

potential phosphorylation of LIMK itself (Tursun et al., 2005).

Phosphorylation of cofilin at S3 reduces its actin binding and depolymerization activity 

(Agnew et al., 1995; Moriyama et al., 1996). In contrast, tyrosine phosphorylation of cofilin 

at Y68 by v-Src appears not to affect its activity per se. We found that the Y68F mutant 

exhibited similar activity as the wild type cofilin in reducing cellular F-actin contents (see 

Fig. 3). Furthermore, neither the mutation of Y68 to F nor co-expression of v-Src with 

cofilin affected the status of S3 phosphorylation of cofilin (data not shown), suggesting that 

tyrosine phosphorylation at Y68 did not influence serine phosphorylation at S3 or cofilin 

activity indirectly. Instead of affecting cofilin activity itself, our data suggested that tyrosine 

phosphorylation at Y68 induces cofilin degradation through the ubiquitination-proteosome 

pathway thus affecting its cellular functions in actin dynamics. The precise control of the 

protein level of cofilin is important for its regulation of cell spreading and migration. RNAi-

mediated knockdown of cofilin and slingshot, a phosphatase that activates cofilin, resulted 

in inhibition of cell spreading of Drosophila S2 cells (Rogers et al., 2003), suggesting that 

cofilin activity is required for cell spreading. On the other hand, inhibition of a negative 

regulator of cofilin, TESK1, by either actopaxin (LaLonde et al., 2005; Tsumura et al., 

2005) or Spry4 (Tsumura et al., 2005), resulted in the inhibition of cell spreading, 

suggesting that over-activation of cofilin may also lead to reduced cell spreading. A biphasic 

relationship between cofilin protein level and cell migration has also been reported (Yap et 

al., 2005). Cells producing a moderate amount of cofilin increase the locomotion rate, 

whereas cells displaying higher amount of cofilin decrease the locomotion speed. The 

critical importance of cellular levels of cofilin suggests that both its regulation by 

phosphorylation-dependent ubiquitination-proteosome pathway as well as that by the 

phosphorylation at S3 are likely to serve as a major, although independent, regulatory 

mechanisms.

Activated Src family members such as v-Src are potent oncogenes that induce cellular 

transformation by tyrosine phosphorylation of multiple cellular proteins (Bjorge et al., 2000; 

Brown & Cooper, 1996; Thomas & Brugge, 1997). Altered cell adhesion and migration are 

likely important determinants of cancer invasion and metastasis and tyrosine 

phosphorylation of several cellular proteins by v-Src has been implicated to mediate these 

activities of v-Src (Brown & Turner, 2004; Defilippi et al., 2006; Mitra & Schlaepfer, 2006; 

Parsons, 2003). Our results here suggest an additional mechanism by which v-Src may 

regulate actin dynamics and cell spreading and migration. Consistent with previous studies 

that showed a negative effect of v-Src on cell spreading (Boschek et al., 1981; Kellie et al., 

1986; Shriver & Rohrschneider, 1981), we found that v-Src over-expression inhibited 

spreading of CHO cell on FN. This inhibition was rescued by co-expression with cofilin, 

and to a greater extent by the Y68F mutant which is more stable due to its resistance of 
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phosphorylation by v-Src, suggesting that v-Src down-regulates cell spreading, at least in 

part, through its phosphorylation of cofilin.

Our findings of tyrosine phosphorylation of cofilin at Y68 by v-Src raise the interesting 

question on whether this site could be a target for other tyrosine kinases. We did not detect 

tyrosine phosphorylation of endogenous cofilin in 293T cells (data not shown) and cofilin 

was not phosphorylated by FAK in vitro (see Fig. 1A). Nevertheless, it will be interesting to 

determine whether cofilin could be phosphorylated and regulated by other cellular tyrosine 

kinases under appropriate conditions and how such regulation is involved in normal 

physiological processes besides transformation by an active oncogene like v-Src. Likewise, 

it would also be interesting to investigate the role and mechanisms of cofilin 

phosphorylation by activated Src in tumor development and progression in vivo in future 

studies.

Materials and Methods

Plasmid construction

Mammalian expression vectors pKH3, pHan, pKH3-FAK and pKH3-v-Src have been 

described previously (Abbi et al., 2002; Chen et al., 1996; Cooper et al., 2003; Gan et al., 

2005). To clone the cDNA of cofilin, 5′-

CGGGATCCAAGCTTATGGCCTCCGGTGTGGCTGTCTCTGATGGT-3′ and 5′-

GGAATTCCTCACAAAGGCTTGCCCTCCAGGGAGATGAC-3′ were used for the PCR 

from cDNA library prepared from 293T cells using the Qiagen RNeasy kit and the 

Superscript III reverse transcription -PCR kit.(Qiagen, valencia,CA, Invitrogene) according 

to the manufacturer’s manuals. The PCR product was digested with BamH1 and EcoR1, and 

then ligated to a linearlized pKH3 vector ad sequenced to generate pKH3-cofilin. BamH1-

EcoR1 fragment digested from pKH3-cofilin was ligated to a linearlized pHan and pGex2T 

to generate pHan-cofilin and pGex2T-cofilin, respectively. To generate point mutant of 

cofilin at each tyrosine residue, site-directed mutagenesis was performed using pKH3-cofilin 

as template and primers, 5′-ACTGTCGACGACCCCTTCGCCACCTTTGTCAAGATG-3′ 

and 5′-CATCTTGACAAAGGTGGCGAAGGGGTCGTCGACAGT-3′ for pHA-cof-Y68F, 

5′-GATAAGGACTGCCGCTTTGCCCTCTATGATGCAACC-3′ and 5′-

GGTTGCATCATAGAGGGCAAAGCGGCAGTCCTTATC-3′ for pHA-cof-Y82F, 5′-

TGCCGCTATGCCCTCTTTGATGCAACCTATGAGACC-3′ and 5′-

GGTCTCATAGGTTGCATCAAAGAGGGCATAGCGGCA-3′ for pHA-cof-Y85F, 5′-

CTCTATGATGCAACCTTTGAGACCAAGGAGAGCAAG-3′ and 5′-

CTTGCTCTCCTTGGTCTCAAAGGTTGCATCATAGAG-3′ for pHA-cof-Y89F, 5′-

AAGAGCAAAATGATTTTTGCCAGCTCCAAGGACGCC-3′ and 5′-

GGCGTCCTTGGAGCTGGCAAAAATCATTTTGCTCTT-3′ pHA-cof-Y117F, 5′-

TTGCAAGCAAACTGCTTCGAGGAGGTCAAGGACCGC-3′ and 5′-

GCGGTCCTTGACCTCCTCGAAGCAGTTTGCTTGCAA-3′ for pHA-cof-Y140F, 5′-

CGGGATCCATGGCCGCCGGTGTGGCTGTCT-3′ and 5′-

CAGCCACACCGGCGGCCATGGATCCCG-3′ for pHA-cof-S3A. All primers were used 

sequentially for site-directed mutagenesis to make pHA-cof-YallF. Each PCR product was 
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cloned to pKH3 vector with the same method as pKH3-cofilin. BamH1-Cla1 fragment from 

pKH3-v-Src was ligated to pCDNA3.1-N-Flag to generate pFlag-v-Src.

Antibodies

The mouse monoclonal α-phosphotyrosine antibody (4G10) was obtained from upstate 

Biotechnology (Lake plasmid, NY). The rabbit polyclonal α-HA (Y11), the mouse 

monoclonal α-c-Myc (9E10), the goat polyclonal α-cofilin, the goat polyclonal α-actin and 

the mouse monoclonal α-ubiquitin antibodies were obtained from Santa Cruz Biotechnology 

(Santa Cruz,CA). The rabbit polyclonal α-GST antibody was described previously (Wu et 

al., 2004; Yoo et al., 2006). The mouse monoclonal α-Flag and the mouse monoclonal α-

vinculin antibodies were obtained from Sigma. Texas-red conjugated phalloidin was 

obtained from Molecular Probes.

Cell culture and transfection

293T and HeLa cells were cultured in DMEM supplemented with 10% FBS. NIH3T3 and v-

Src-NIH3T3 cells were maintained in DMEM with 10% CS. CHO cells were cultured in 

Ham’s F-12 with 10% FBS. Transient transfections were performed using lipofectamin 

(invitrogen) according to the manufacturer’s manual. In case of co-transfection, each 

plasmid was used in a 1:1 ratio. In cell spreading assay, GFP-encoding plasmid was used for 

transfection marker. The ratio between GFP, HA-tagged-, and Myc-tagged protein-coding 

plasmid was 1:3:3. For some experiments, cells were incubated with MG132 (5μM) and 

cycloheximide (10μg/ml) for 4–5 hours before lysis.

Immunoprecipitation and western blotting

Subconfluent cells were washed two times with cold PBS and lysed with Nonidet P-40 lysis 

buffer (20mM Tris, pH8.0, 137mM Nacl, 1% Nonidet P-40, 10% Glycerol, 1mM 

phenylmethylsulfonyl fluoride, 10mg/ml aprotinine and 20mg/ml leupeptin). Lysates were 

centrifuged for 20 min. at 4 °C, and protein concentration was determined by Bio-Rad 

protein assay. Immunoprecipitations were performed by incubating the lysate with 

appropriate antibody for >2hrs at 4°C. For detection endogenous protein, 

immunoprecipitation was followed by incubation with protein A-sepharose for another 2hrs. 

After washing five times with lysis buffer, the immune complex was resolved by SDS-

PAGE. Western blotting was carried out using horseradish peroxidase-conjugated IgG and 

the ECL system for detection.

Preparation of GST fusion protein and in vitro kinase assay

GST-fusion proteins were produced and purified as described previously (Reiske et al., 

1999). HA-tagged v-Src and FAK were prepared by immunoprecipitation from 293T cell 

lysates that was transfected with pKH3-v-Src and pKH3-FAK, respectively. Purified GST-

fusion protein and HA-tagged v-Src or FAK protein were incubated in the kinase reaction 

buffer (10mM Hepes, pH7.4, 3mM MnCl2, 3 mM MgCl2, 1mM Na3VO4) with or without 

100 mM ATP for 20 min. at room temperature. The reactions were then stopped by addition 

of SDS sample buffer. The samples were resolved on SDS-PAGE and analyzed by western 
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blotting using anti-phosphotyrosine antibody 4G10 to detect tyrosine-phosphorylated 

proteins.

Fluorescent Microscopy

Cells were processed for immunofluorescent staining as described previously (Wu et al., 

2004). Briefly, cells were fixed with 3.7% formaldehyde and treated with 0.5% triton X-100 

for 10 min. mouse monoclonal anti-Myc and FITC-conjugated rabbit anti-mouse antibody 

were used as primary and secondary antibody, respectively. Texas-red conjugated phalloidin 

was used to detect F-actin.

F- and G-actin fractionation

F/G actin fractionation was performed as described previously (Tu et al., 2003). Briefly, 

cells were washed with PBS twice and lysed in F-actin stabilizing (LAS) buffer (50mM 

Pipes, pH6.9, 50 mM NaCl, 5mM MgCl2, 5mM EGTA, 5% glycerol, 0.1% NP-40, 0.1% 

triton X-100, 0.1% Tween20, 0.1% 2-mercaptoethanol, 0.001% antifoam, protease inhibitor 

cocktail, 1mM ATP) by homogenizing with 26.5G syringe. The lysates were centrifuged at 

100,000g for 1 hr at 37°C. The supernatants (G-actin) were collected and placed on ice. The 

pellets (F-actin) were resuspended with the same volume as the supernatant of dH2O 

containing 2μM cytochalysin D and incubated on ice for 1 hr. Equal amount of G and F 

actin were subjected to immunoblotting assay with anti-actin antibody. The intensity of 

bands were quantified with image J software. Three independent experiments were 

performed, and the student’s t test was used to determine the statistical significance.

Cell spreading assay

Cell spreading assays were performed as described previously (Yoo et al., 2006). Cells were 

lifted by trypsin treatment, pelleted, resuspended in serum-free media and incubated at 37 °C 

for 1hr. The cells were replated and allowed to spread on the fibronectin (10μg/μl)-coated 

plates. After 1 hr, cells were fixed with 3.7% formaldehyde and photographed in random 

field. Spread cells were defined as cells with irregular morphology and lacking phase 

brightness, whereas non-spread cells were rounded shape and phase-bright under the 

microscope. Multiple fields were monitored and more than 200 transfected cells were 

counted blindly for each experiment. Three independent experiments were performed, and 

the student t test was used for statistical significance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We are grateful to Dr. Xiaoyang Wu for discussions during the initial stages of the project. We thank our colleagues 
Huijun Wei, Ming Luo, Huaping Fan, Fei Liu, Chenran Wang, Richard Liang, Ann Park and Xiaofeng Zhao for 
their critical reading of the manuscript and helpful comments. This research was supported by NIH grant GM48050 
to J.-L. Guan.

Yoo et al. Page 10

Oncogene. Author manuscript; available in PMC 2010 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

Abbi S, Ueda H, Zheng C, Cooper LA, Zhao J, Christopher R, Guan JL. Mol Biol Cell. 2002; 
13:3178–91. [PubMed: 12221124] 

Agnew BJ, Minamide LS, Bamburg JR. J Biol Chem. 1995; 270:17582–7. [PubMed: 7615564] 

Bailly M, Jones GE. Curr Biol. 2003; 13:R128–30. [PubMed: 12593812] 

Bamburg JR. Annu Rev Cell Dev Biol. 1999; 15:185–230. [PubMed: 10611961] 

Bamburg JR, McGough A, Ono S. Trends Cell Biol. 1999; 9:364–70. [PubMed: 10461190] 

Bamburg JR, Wiggan OP. Trends Cell Biol. 2002; 12:598–605. [PubMed: 12495849] 

Bao J, Gur G, Yarden Y. Proc Natl Acad Sci U S A. 2003; 100:2438–43. [PubMed: 12604776] 

Bianchi F, Magnifico A, Olgiati C, Zanesi N, Pekarsky Y, Tagliabue E, Croce CM, Menard S, 
Campiglio M. Proc Natl Acad Sci U S A. 2006; 103:18981–6. [PubMed: 17142325] 

Bjorge JD, Jakymiw A, Fujita DJ. Oncogene. 2000; 19:5620–35. [PubMed: 11114743] 

Boschek CB, Jockusch BM, Friis RR, Back R, Grundmann E, Bauer H. Cell. 1981; 24:175–84. 
[PubMed: 6263486] 

Brown MC, Turner CE. Physiol Rev. 2004; 84:1315–39. [PubMed: 15383653] 

Brown MT, Cooper JA. Biochim Biophys Acta. 1996; 1287:121–49. [PubMed: 8672527] 

Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D. J Cell 
Biol. 1997; 136:1307–22. [PubMed: 9087445] 

Carlier MF, Ressad F, Pantaloni D. J Biol Chem. 1999; 274:33827–30. [PubMed: 10567336] 

Caswell PT, Norman JC. Traffic. 2006; 7:14–21. [PubMed: 16445683] 

Chaar Z, O’Reilly P, Gelman I, Sabourin LA. J Biol Chem. 2006; 281:28193–9. [PubMed: 16837460] 

Chen HC, Appeddu PA, Isoda H, Guan JL. J Biol Chem. 1996; 271:26329–34. [PubMed: 8824286] 

Christopher RA, Guan JL. Int J Mol Med. 2000; 5:575–81. [PubMed: 10812004] 

Condeelis J. Trends Cell Biol. 2001; 11:288–93. [PubMed: 11413039] 

Cooper LA, Shen TL, Guan JL. Mol Cell Biol. 2003; 23:8030–41. [PubMed: 14585964] 

Dawe HR, Minamide LS, Bamburg JR, Cramer LP. Curr Biol. 2003; 13:252–7. [PubMed: 12573223] 

Defilippi P, Di Stefano P, Cabodi S. Trends Cell Biol. 2006; 16:257–63. [PubMed: 16581250] 

Frame MC. Biochim Biophys Acta. 2002; 1602:114–30. [PubMed: 12020799] 

Gan B, Melkoumian ZK, Wu X, Guan KL, Guan JL. J Cell Biol. 2005; 170:379–89. [PubMed: 
16043512] 

Gungabissoon RA, Bamburg JR. J Histochem Cytochem. 2003; 51:411–20. [PubMed: 12642619] 

Huang C, Ni Y, Wang T, Gao Y, Haudenschild CC, Zhan X. J Biol Chem. 1997; 272:13911–5. 
[PubMed: 9153252] 

Huang TY, DerMardirossian C, Bokoch GM. Curr Opin Cell Biol. 2006; 18:26–31. [PubMed: 
16337782] 

Hunter T. Mol Cell. 2007; 28:730–8. [PubMed: 18082598] 

Ichetovkin I, Grant W, Condeelis J. Curr Biol. 2002; 12:79–84. [PubMed: 11790308] 

Kellie S, Patel B, Wigglesworth NM, Critchley DR, Wyke JA. Exp Cell Res. 1986; 165:216–28. 
[PubMed: 3011478] 

LaLonde DP, Brown MC, Bouverat BP, Turner CE. J Biol Chem. 2005; 280:21680–8. [PubMed: 
15817463] 

Lauffenburger DA, Horwitz AF. Cell. 1996; 84:359–69. [PubMed: 8608589] 

Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, Lavi S, Iwai K, Reiss Y, 
Ciechanover A, Lipkowitz S, Yarden Y. Mol Cell. 1999; 4:1029–40. [PubMed: 10635327] 

Lin R, Martyn KD, Guyette CV, Lau AF, Warn-Cramer BJ. Cell Commun Adhes. 2006; 13:199–216. 
[PubMed: 16916748] 

Martinez-Moczygemba M, Huston DP, Lei JT. J Leukoc Biol. 2007; 81:1137–48. [PubMed: 
17227823] 

Meberg PJ. Mol Neurobiol. 2000; 21:97–107. [PubMed: 11327152] 

Mitra SK, Schlaepfer DD. Curr Opin Cell Biol. 2006; 18:516–23. [PubMed: 16919435] 

Yoo et al. Page 11

Oncogene. Author manuscript; available in PMC 2010 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Moriyama K, Iida K, Yahara I. Genes Cells. 1996; 1:73–86. [PubMed: 9078368] 

Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T. Cell. 2002; 108:233–46. [PubMed: 
11832213] 

Ono S. Biochemistry. 2003; 42:13363–70. [PubMed: 14621980] 

Parsons JT. J Cell Sci. 2003; 116:1409–16. [PubMed: 12640026] 

Pollard TD, Borisy GG. Cell. 2003; 112:453–65. [PubMed: 12600310] 

Reiske HR, Kao SC, Cary LA, Guan JL, Lai JF, Chen HC. J Biol Chem. 1999; 274:12361–6. 
[PubMed: 10212207] 

Rogers SL, Wiedemann U, Stuurman N, Vale RD. J Cell Biol. 2003; 162:1079–88. [PubMed: 
12975351] 

Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ. 
Nat Biotechnol. 2005; 23:94–101. [PubMed: 15592455] 

Sabourin LA, Tamai K, Seale P, Wagner J, Rudnicki MA. Mol Cell Biol. 2000; 20:684–96. [PubMed: 
10611247] 

Samstag Y, Dreizler EM, Ambach A, Sczakiel G, Meuer SC. J Immunol. 1996; 156:4167–73. 
[PubMed: 8666784] 

Scaglioni PP, Yung TM, Cai LF, Erdjument-Bromage H, Kaufman AJ, Singh B, Teruya-Feldstein J, 
Tempst P, Pandolfi PP. Cell. 2006; 126:269–83. [PubMed: 16873060] 

Shriver K, Rohrschneider L. J Cell Biol. 1981; 89:525–35. [PubMed: 6265469] 

Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, Shapiro SS. Nat Rev Mol 
Cell Biol. 2001; 2:138–45. [PubMed: 11252955] 

Thomas SM, Brugge JS. Annu Rev Cell Dev Biol. 1997; 13:513–609. [PubMed: 9442882] 

Tsumura Y, Toshima J, Leeksma OC, Ohashi K, Mizuno K. Biochem J. 2005; 387:627–37. [PubMed: 
15584898] 

Tu Y, Wu S, Shi X, Chen K, Wu C. Cell. 2003; 113:37–47. [PubMed: 12679033] 

Tursun B, Schluter A, Peters MA, Viehweger B, Ostendorff HP, Soosairajah J, Drung A, Bossenz M, 
Johnsen SA, Schweizer M, Bernard O, Bach I. Genes Dev. 2005; 19:2307–19. [PubMed: 
16204183] 

Wakatsuki T, Wysolmerski RB, Elson EL. J Cell Sci. 2003; 116:1617–25. [PubMed: 12640045] 

Wu H, Parsons JT. J Cell Biol. 1993; 120:1417–26. [PubMed: 7680654] 

Wu X, Suetsugu S, Cooper LA, Takenawa T, Guan JL. J Biol Chem. 2004; 279:9565–76. [PubMed: 
14676198] 

Yan D, Guo L, Wang Y. J Cell Biol. 2006; 174:415–24. [PubMed: 16864652] 

Yap CT, Simpson TI, Pratt T, Price DJ, Maciver SK. Cell Motil Cytoskeleton. 2005; 60:153–65. 
[PubMed: 15662725] 

Yeatman TJ. Nat Rev Cancer. 2004; 4:470–80. [PubMed: 15170449] 

Yoo Y, Wu X, Egile C, Li R, Guan JL. J Biol Chem. 2006; 281:15352–60. [PubMed: 16574661] 

Zigmond SH. Curr Opin Cell Biol. 2004; 16:99–105. [PubMed: 15037312] 

Yoo et al. Page 12

Oncogene. Author manuscript; available in PMC 2010 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. v-Src phosphorylation of cofilin at Y68
(A) 293T cells were co-transfected with His- and Myc-tagged cofilin or the mutants and 

HA-tagged v-Src or vector control, as indicated. Lysates were precipitated with Ni-beads, 

followed by western blotting with anti-phosphotyrosine, 4G10 (top) or anti-Myc (middle) 

antibody. Whole cell lysates (WCL) were also immunoblotted with anti-HA (bottom). (B) 
Recombinant GST-cofilin or GST-Y68F purified from bacteria were incubated in a kinase 

buffer (ATP is omitted in lane 2, as indicated by labels above the upper panel) with HA-v-

Src or HA-FAK immunoprecipitated from 293T cells transfected with corresponding 

expression vectors, as indicated. In vitro kinase assays were performed as described in the 

Experimental Procedures and the reaction mixtures were subjected to immunoblotting with 

4G10 antibody (upper) or anti-GST (lower). (C) 293T cells were co-transfected with Flag-

tagged v-Src and HA-tagged cofilin or Y68F mutant or vector control as indicated. Lysates 

were immunoprecipitated with anti-HA antibody, followed by western blotting with anti-

Flag antibody (upper). WCL were also immunoblotted with anti-Flag (lower). Molecular 

weight markers are indicated on the right.
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Figure 2. Degradation and ubiquitination of cofilin induced by v-Src phosphorylation at Y68 
residue
(A, B) 293T cells were co-transfected with Myc-tagged cofilin, Y68F, or S3A mutant, and 

HA-tagged v-Src or vector control as indicated. Lysates were then prepared and analyzed by 

western blotting with anti-Myc, anti-HA, or anti-vinculin, as indicated. In panel B, cells 

were treated with cycloheximide and MG132 or DMSO as control for 4 hrs before lysis as 
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described in Experimental Procedures. (C) NIH3T3 and v-Src-transformed-NIH3T3 (v-

Src-3T3) cells were treated with nothing (lanes 1 and 2), cycloheximide with DMSO (lanes 

3 and 4) or with MG132 (lanes 5 and 6) for 4 hrs. Lysates were then prepared and analyzed 

by western blotting with anti-cofilin (upper) and anti-vinculin (lower). Molecular weight 

markers are indicated on the right. (D) 293T cells were co-transfected with HA-tagged 

cofilin or Y68F mutant, and Myc-tagged ubiquitin and Flag-tagged v-Src or vector control 

as indicated. Cells were treated with MG132 for 4 hrs and then lysates were prepared and 

immunoprecipitated with anti-HA antibody, followed by western blotting with anti-Myc 

(top) or anti-HA (middle). The Ubiquitinated cofilin bands (marked on the right) were 

quantified by densitometer from 3 independent experiments and relative intensity was 

shown with the mean + S.E (bottom). (E) NIH3T3 and v-Src-3T3 cells were treated with 

MG132 for 4 hr and lysates were prepared and immunoprecipitated with anti-cofilin 

antibody, followed by western blotting with anti-ubiquitin (upper) or anti-cofilin (lower). 

The ubiquitinated cofilin bands are marked on the right. Molecular weight markers are 

indicated on the right.
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Figure 3. Phosphorylation of cofilin by v-Src reduces its activity in inducing stress fiber 
disassembly and actin depolymerization
(A-F) HeLa cells were co-transfected with HA-tagged v-Src and Myc-tagged cofilin or 

Y68F mutant or control protein (GST) as indicated. Cells were fixed and subjected to 

immunofluorescence staining with anti-Myc or phalloidin to view filamentous actin. The 

transfected cells are marked by arrows. The percentage of transfected cells with positive 

phalloidin staining are indicated in the parentheses. (G) 293T cells were co-transfected with 

Myc-tagged cofilin, Y68F mutant or vector control and HA-tagged v-Src or vector control, 
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as indicated. The cellular F- and G-actin contents were determined by western blotting after 

fractionation as described in the Experimental Procedures. Molecular weight markers are 

indicated on the right. (H) Relative ratio of F/G actin were obtained from three independent 

experiments and shown with the mean + S.E. after normalization to that of control cells (V

+V, lane 1). *P<0.05; **P>0.05 in comparison with values from control cells. ***P<0.05 in 

comparison with values from cells transfected with v-Src and cofilin (v-Src + cofilin).
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Figure 4. Reversion of v-Src inhibition of cell spreading by cofilin and Y68F mutant
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(A and B) CHO cells were transfected with Myc-tagged cofilin or Y68F mutant, and HA-

tagged v-Src or vector control along with a plasmid encoding GFP as a transfection marker, 

as indicated. Cell spreading assays were performed as described in the Experimental 

Procedures. Representative micrographs are shown in A. Panel B shows the mean + S.E. of 

percentage of spread cells (among transfected cells as identified by GFP expression) from 

three independent experiments are shown as relative spreading after normalization to that in 

mock transfected cells. *P<0.05 in comparison with value from mock cells. **P<0.05 in 

comparison with value from cells transfected with v-Src and vector (v-Src + V). ***P<0.05 

in comparison with value from cells transfected with v-Src and cofilin (v-Src + cofilin). (C) 
Aliquots of WCL were analyzed by western blotting with anti-Myc (upper) or anti-HA 

(lower). Molecular weight markers are indicated on the right.
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