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Abstract
Choosing and optimizing treatment strategies for cancer requires capturing its complex dynamics sufficiently well for
understanding but without being overwhelmed. Mathematical models are essential to achieve this understanding, and we discuss
the challenge of choosing the right level of complexity to address the full range of tumor complexity from growth, the generation
of tumor heterogeneity, and interactions within tumors and with treatments and the tumor microenvironment. We discuss the
differences between conceptual and descriptive models, and compare the use of predator-prey models, evolutionary game
theory, and dynamic precision medicine approaches in the face of uncertainty about mechanisms and parameter values. Although
there is of course no one-size-fits-all approach, we conclude that broad and flexible thinking about cancer, based on combined
modeling approaches, will play a key role in finding creative and improved treatments.
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Introduction

Cancer is complex. The high-dimensional nonlinear dynamical

system within each cell interacts through multiple chemical

and physical pathways with hundreds of other cells both nearby

and throughout the body. Especially in advanced adult-onset

cancers, no two cancer cells are genetically identical, which

shapes and further complicates their diverse interactions with

each other and with host cells of many types. This presents

great challenges both for cancer research and for clinical inter-

ventions. Treatment approaches seek to optimize patient sur-

vival by eliminating this entire complex system when possible

and controlling it indefinitely otherwise. Any precision

approach must address the high degree of heterogeneity of this

disease both within and between patients.

This complexity makes traditional exploratory experimental

approaches unfeasible with regard to both time and resources.

We must turn to mathematical and computational methods to

define and prioritize key hypotheses for experimental and clin-

ical testing. Because cells and molecules can interact in coun-

terintuitive ways, mathematics provides a rigorous tool to

organize thinking about this unexpected complexity, and may

suggest hypotheses or make predictions that are not obvious

from intuition alone. As Einstein said: “Only theory can tell us

what to measure and how to interpret it.” Thus, we try to

control cancer through quantitative understanding of individual

patients, using models that capture the key components of can-

cer complexity while balancing useful accuracy with sufficient

simplicity. But how can that balance be found?

We first point out that all mathematical models are based on

a set of underlying assumptions. Often, biologists and mathe-

maticians make assumptions without even realizing it, because

they seem intuitive, obvious or conventional. The power of

mathematical modeling lies in the ability to make those

assumptions explicit, and to challenge them through
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comparison with experiments and predictions. It is important

therefore to recognize as many of the assumptions in a model,

biological or mathematical, as possible, and to explicitly state

them so that they may be evaluated and challenged (see Box 1

for an overview of modeling).

There are two main approaches to mathematical modeling

of biological processes: descriptive and conceptual. Conceptual

models, which we discuss in detail next, are crucial for basic

research and focus on relatively few biological mechanisms. In

contrast, descriptive models, which are also very important for

basic research, strive to take into account every available detail

of the underlying biology, ideally providing a virtual replica of

the biological system of interest. Descriptive models are

appealing because one is less likely to miss an important

player, and the hope is that simulations replicate the true biol-

ogy closely. Such models have been used with some success to

evaluate drug-drug interactions in preclinical drug analysis,

with tools such as SimCyp,1,2 or to predict drug metabolism

during the drug development process (i.e., Gastroplus3,4).

However, descriptive models are quite cumbersome, track hun-

dreds or thousands of state variables with an equal number of

equations, and impossible to analyze mathematically (Box 2

presents a glossary of key terms). Furthermore, descriptive

models require even more parameters that can be unmeasur-

able or even unidentifiable, and these parameters potentially

can be adjusted to fit almost any data. In this case, in contrast to

the popular impression, fitting a model to experimental data

does not confirm that the model correctly represents the under-

lying biology. For most descriptive models of cancer, the large

number of parameters makes it computationally difficult to

explore even a small fraction of possible parameter values.

Due to their size and complexity, these models may fail to

pinpoint the key mechanisms to be targeted by therapy. For

incompletely characterized systems, descriptive models require

numerous assumptions that often lack experimental support,

including the nearly invisible omission of unknown mechan-

isms or neglect of spatial interactions. Even in cases where

there is experimental support, the results may be equally sup-

portive of alternative models. Moreover, caution must be

applied when extrapolating from laboratory or animal models

to humans or between different tumor types. Even with human

data, the accuracy of the experimental methods may affect the

validity of the results. For example, a more accurate DNA

sequencing method uncovered new findings concerning rare

subclones.5,6 Extrapolating parameters from laboratory or ani-

mal data is often necessary, but modelers must be aware of the

risks. This applies to both conceptual and descriptive models,

but is greater for descriptive models due to the number of

details that the modeler must incorporate. In the many cases

where new information is coming in every day, such as

cancer-immune interactions, models must also change con-

stantly, creating the potential for inconsistent results and chal-

lenges with version control. Finally, it is usually not possible, at

least today, to collect the extensive data needed for descriptive

models from patients, especially to support real time decision

making.

Box 1: Introduction to Modeling

Mathematical models translate a set of biological assump-
tions into a quantitative form, generally in the form of
equations or a computer simulation, that can then be ana-
lyzed and compared against biological data. If model pre-
dictions correspond to observations, then one can try to
make additional predictions to guide further experiments;
if predictions do not correspond to observations, then a
gap in knowledge has been identified, and assumptions
need to be revised. The assumptions encapsulate two key
aspects: the choice of variables to include (state vari-
ables) and the rules by which those variables change and
interact with each other. This paper contrasts descriptive
models, which attempt to make the list of variables com-
prehensive, and conceptual models, which select key vari-
ables in advance.

For example, PKPD (pharmacokinetic/pharmacody-
namic) models track the dynamics of a drug concentration
through different compartments of the body (the PK part)
and the effects of the drug on cells (the PD part). The PK
component requires a choice of compartments, such as
particular organ systems, along with rules for drug move-
ment, degradation and excretion. The PD component
tracks changes in cells or tissues, such as the altered pro-
tein levels or drug-dependent change in tumor growth,
death, mutation, and metastasis, depending on dynamical
rules of binding and reaction.

We focus on models based on explicit equations,
although agent-based models or ABMs also span the
range from conceptual to descriptive. A conceptual ABM
includes only a small number of cell types and cell inter-
actions in order to predict longer term dynamics with or
without treatment.40,41,91 A descriptive ABM seeks to
include the full range of known cell types and their inter-
actions.92,93 A qualitative difference between equation and
agent-based models lies in the fact that in equation-based
models, we provide an explicit mathematical description
of how variables interact with each other, and from that
we calculate numerical solutions to these equations that
describe the phenomena of interest. In ABMs, we define
rules by which agents such as cells interact, and run com-
puter simulations that keep track of each individual cell.
ABMs allow incorporating spatial components into simula-
tions, as well as a large degree of chance variation around
average behavior. Output are analyzed as experimental
data, and thus need to be replicated to obtain sufficient
statistical power. As such, ABMs serve as an intermediate
step between equation-based models and wet lab
experiments.

Models can be deterministic, meaning that simula-
tions or solutions provide the same output each time,
describing the average behavior of the system, or
stochastic, describing chance variations around average

(Continued)
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Despite these challenges, descriptive models can provide

information that allows more accurate parameter estimation

in related conceptual models. For example, we might want to

know all the ways a cell can become resistant to a drug to more

accurately predict a single simple parameter of resistance

kinetics. Descriptive models can be used to check the

robustness of a conceptual model to changes in assumptions

that address situations too complex to be represented in the

more high-level conceptual model.

An alternative approach encodes the assumptions and para-

meters into a simulation, sometimes called an Agent-Based

Model or ABM. These models can easily incorporate factors

like space, intrinsic differences among individuals (agents),

spatial interactions with the tumor microenvironment, as well

as mutations of particular traits, such as the rate of resource

consumption or likelihood of migration. However, the chal-

lenges of complexity, parameter estimation, and testing are

similar to those of equation-based descriptive models. In the

case of cancer, an ABM could consist of multiple cells, where

each cell is an “agent.” These cells would proliferate, mutate,

and interact with each other according to pre-specified rules,

with varying degrees of experimental support. ABMs are com-

putationally expensive, and this problem rapidly worsens as the

number of “agents” increases. However, sometimes relevant

biology emerges only at very large numbers of agents, and

these may be approximated more efficiently with other tech-

niques that describe their average behavior as a group rather

than tracking them individually. For instance, a recent ultra-

deep sequencing study and accompanying theoretical analysis

using a conceptual equation-based model revealed new phe-

nomena concerning mutational burden and drug resistance

occurring between 1 million and 1 billion or more cells, a

finding that may have been very computationally expensive

to find using ABMs.5,6 As ABMs can serve as an “intermediate

approach” between wet lab and mathematical models, it is

important to remember that these computational experiments

also have hidden assumptions that must be carefully

considered.

In contrast to descriptive models, conceptual models

attempt to capture simple mechanistic explanations for patterns

in the data by incorporating basic biological knowledge.7

Building these models relies on modelers to understand the

system well enough to distill key mechanisms that may be

driving its dynamics. These models help to infer basic biolo-

gical mechanisms and ideally generate testable critical predic-

tions.7 Other conceptual models lend themselves to application

of advanced methods, such as optimal control or branch and

bound, that compute schedules and drug dosing subject to con-

straints such as toxicities to both normal and immune cells.8-10

In our view, one main strength of conceptual models lies in

forcing modelers to question every aspect of their understand-

ing of the biology, crystallizing what we think we know, and

testing this understanding against experimental observations to

identify gaps in knowledge.

Although not strictly dynamical models in the sense we use

here, machine learning (ML) algorithms can be used to under-

stand the complexities of cancer, and can be applied to drug

discovery and development.11 Machine learning approaches do

not aim to uncover mechanisms but allow for empirical sorting

of data into categories that can then be analyzed more scrupu-

lously, enabling one to generate additional hypotheses about

Box 1. (Continued)

behavior, including some random number generation lead-
ing to different outputs in replicate runs. As with all mod-
eling choices, there is a tradeoff between the simplicity and
mathematical feasibility of deterministic models and the
greater complexity and potential for realism of stochastic
models. For small systems containing small numbers of
agents (i.e. small groups of cells early in carcinogenesis),
chance variations play a larger role than for larger systems.

Machine learning (ML) provides a fundamentally differ-
ent quantitative approach to understanding data. Rather
than describing specific mechanisms, ML algorithms use
the data to find relationships between variables and iden-
tify correlations. There exist two key approaches within
ML: supervised and unsupervised. Supervised learning
involves using pre-defined categories into which data is
sorted; the algorithm is trained on data for which an
“answer key” is available, with the goal of then automati-
cally sorting the data that do not have such an answer key
into appropriate categories. An example of supervised ML
in drug discovery would be assessment of drug properties
of compounds that became successful drugs to predict
which new compounds at pre-clinical stage may become
successful drugs (i.e., sort data into “successful” and
“unsuccessful” drug categories). Unsupervised ML in con-
trast involves finding such categories, into which data can
be sorted. An example would be to find common proper-
ties of successful drugs within the “successful drug” cate-
gory. Machine learning algorithms can be quite successful
in, for instance, identifying patients who will respond best
to particular treatment but as of now can do so only within
the range of existing patients.

Mechanistic models have two important virtues. First,
deviations from predictions can be linked to specific
assumptions which can be corrected leading both to better
prediction and greater understanding. Second, models that
have been validated can be extrapolated beyond the range
of existing data and make further testable predictions.

Given the tradeoffs between simplicity and complexity,
the challenges of linking with data, and the difficulty of mak-
ing and testing predictions, there is no single best choice for
modeling. We argue that comparing a suite of models is the
best strategy for making the choice of the most parsimo-
nious model to capture data, coupled with critical tests that
evaluate models using simulated data generated by other
models. The ideal process works through constant inter-
action among modelers and empiricists.
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mechanisms that can then be tested experimentally and with

mathematical or computational models.

To illustrate how to choose a modeling strategy, we lay out a

series of approaches of increasing complexity, linked with data

of increasing resolution, and with different strengths for

developing mechanistic understanding or for guiding therapy.

Our goal is not to provide detailed recommendations on spe-

cific choices, but a more high-level “conceptual” guide to think

about the goals and complexity of models. We also do not

attempt to comprehensively review the many different

approaches to modeling. Such comprehensive reviews are

available.12-15 We critically evaluate several specific

approaches as examples and propose new directions for inte-

grating models with research data and treatment.

Examples of What Models Can Address

Tumor Growth Models

Historically, the first observable quantity was of course the

tumor itself, and the simplest models focus on describing tumor

growth dynamics. The general shape of tumor growth curves is

obtained both from in vitro and in vivo studies, showing initial

exponential growth that, after a time, either slows or saturates

as the population reaches some limits; the dynamics are cap-

tured well by logistic or Gompertz models, although discus-

sion continues as to which provides a better mechanistic

explanation for the dynamics.16,17 In pharmaceutical modeling,

the Simeoni model appears to describe tumor growth in xeno-

graft models well. This model predicts exponential growth in

initial stages, followed by linear growth18,19; the saturation

stage is often not reached in vivo and thus need not be included.

While mouse models involve a single lesion that is permitted to

grow until the animal must be euthanized for humane reasons

(thus artificially tying survival with the growth of a single large

lesion), in humans large lesions are often surgically removed or

irradiated if present in isolation, and death in the metastatic

phase is generally associated with a large number of

(micro)metastases infiltrating vital organs. These micrometas-

tases are likely still growing according to an exponential

growth curve given their small size. Radiologic data from clin-

ical trials also follows large lesions visible on CT, and these,

like the large lesions in mouse models, may have different

growth properties than the more numerous small lesions that

likely have a larger influence on survival. They are also less

likely to exhibit competitive dynamics between tumor cells

because oxygen and nutrients can readily diffuse in.6

In formulating models of tumor growth, one must give

careful thought to eventual clinical application. It may be

that our most commonly available data sources, i.e. mouse

models and radiology, point us in the wrong direction,20

because, as outlined above, mouse models artificially tie sur-

vival to the size of single large lesion, and radiology can only

quantify lesions above a certain size. Historically, failure of

treatments in mouse models has portended failure in the

clinic, but success in mouse models has often not translated

to clinical success. Similarly, taking tumor shrinkage and

growth of large lesions as endpoints has enabled some life

extension; however, in many cases long term results remain

elusive.

Box 2: Glossary

Agent-Based Model (ABM): Model that tracks the
movement, state changes and interactions of individual
agents (such as cells) according to a set of rules described
in a computer program and studied through simulation.
Sometimes called an individual-based model (IBM).

Conceptual Model: Relatively simple set of mathe-
matical equations or computer models that seek to
capture key behaviors of a system.

Degrees of Freedom: Number of values in a model
that are free to vary.

Descriptive Model: Set of mathematical equations
that seek to capture the full behavior of a system.

Deterministic Model: Mathematical model without
chance elements, meaning that the solutions provide iden-
tical outputs for identical inputs, representing the average
behavior of a system for a given set of initial conditions.

Exponential Growth: Model for growth of a tumor
(or other entity) that is proportional to current size, and
thus continues to accelerate and grow without bound.

Gompertz model: The Gompertz model describes
growth of a tumor (or other entity) that approaches a
limiting size called the carrying capacity, assuming that the
growth rate slows exponentially with time.

Logistic model: Model for growth of a tumor
(or other entity) that approaches a limiting size or carrying
capacity, assuming that the growth rate slows linearly with
time. Also called the Verhulst model.

Nash equilibrium: In game theory, a set of strategies
where no single player can benefit by unilaterally changing
its strategy, resulting in a stable unchanging state. In evolu-
tionary game theory of cancer, the cancer burden and
relative abundance of subclones would remain stable at
such an equilibrium.

Parameter: A quantity describing a rate or other bio-
logical value that does not change during the course of an
experiment, but might differ in different circumstances or
patients.

State variable: A quantity that changes during the
course of an experiment (in contrast with a parameter).
The choice of state variables defines the scope of a model,
with conceptual models using few state variables and
descriptive models many.

Stochastic model: A model, in contrast to a deter-
ministic model, where outputs differ in different runs due
to the inclusion of some randomness, and can be described
with a distribution rather than a single number i.e. both
average behavior and variation around the average.
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Drug Dynamics and PKPD Models Including
Intratumoral Biodistribution

To include therapeutic interventions, growth models are often

coupled with well-developed pharmacokinetic (PK) models

that describe drug absorption, distribution, metabolism and

elimination to establish a relationship between drug dose and

tumor regression. Such PK models can be descriptive, taking

into account various compartments in the body, such as phy-

siologically based pharmacokinetic (PBPK) models,21-23 or

more conceptual, focusing primarily on the change in drug

concentrations over time and its impact on tumor volume.24

The relationship between drug concentration and its effects

(pharmacodynamics, or PD) is established through coupling

tumor cell growth and death rate with drug concentra-

tion,18,19,25 and can contribute to the analysis used to choose

human doses to be taken forward in clinical trials. In larger

lesions, we may need to consider non-uniform drug distribution

within the tumor mass, especially for large molecule therapeu-

tics such as monoclonal antibodies. Cells within the diffusion

range of nutrients in relation to capillaries but beyond the dif-

fusion range of large molecule therapeutics may escape ther-

apy. Equation-based models of such diffusion phenomena may

improve optimal antibody dosing.8,26-28

Modeling Tumor Heterogeneity

In ecology, genetic differences among individuals are the raw

material for evolution, and many other forms of heterogeneity

affect population dynamics and individuals’ interactions with

other species and the environment. Such heterogeneity includes

differences among individuals based on size, sex, age, mode of

metabolism, spatial distribution or other important aspects of

phenotype. Heterogeneity in cancer parallels its role and types

in ecology. The first level of heterogeneity is generated both by

genetic and long-term epigenetic changes that are largely irrever-

sible and by reversible phenotypic plasticity. This cell heteroge-

neity is in turn shaped by ecological heterogeneity because

selection operates differently in different environments.29 For

example, phenotypic plasticity allows melanoma cells with the

bRAF V600E mutation to be highly sensitive to bRAF inhibition

while colorectal cells with the same mutation are not.30,31

To study mutation, Beckman7 described an approach to con-

ceptual modeling of carcinogenesis and tumor growth termed

focused quantitative modeling (FQM).7 In FQM, conceptual

modeling is focused on answering a single key question, and

only details deemed relevant to that question are supplied; this

approach has also been referred to as “fit for purpose” model-

ing. Generally, in complex biological systems, even these

details may not be available, requiring reformulation of

research questions and assessment of answers in terms of quan-

tities that can be estimated, such as ratios relative to a reference

value rather than absolute quantities. In some cases, this may be

sufficient, i.e. when some quantities cancel out, revealing key

parameters of the model. An example is a relatively simple

model,32 where the authors not only answered the key question

about the mutator hypothesis (showing that carcinogenesis is

indeed accelerated by genetic instability at the level of muta-

tions or DNA rearrangements) but also predicted a number of

phenomena, such as high mutational burden in cancers and

intra-tumoral diversity over and above the mosaicism in normal

tissues,5 high prevalence of mutations that affect genome integ-

rity,33,34 lower mutational burden of tumors like retinoblas-

toma,35 and convergent evolution of tumors.7,36

Bayesian modeling approaches have been used to support

conceptual models based on complex experimental datasets.

They compute the probability or likelihood that the observed

data would have been obtained with a particular set of assump-

tions and parameter values for the model. The higher the like-

lihood, the more experimental support for the model. This can

be used to compare the likelihood of different models. For

example, Beckman and Loeb32 postulated a mechanism of car-

cinogenesis in which normal cells successively acquired posi-

tively selected driver mutations that progressively increased

cellular fitness, and subsequent growth and random mutation

was “neutral,” i.e. having little effect on fitness, analyzing a

conceptual model using FQM. Sottoriva et al.37 utilized an

extensive multiparameter multi-lesion experimental dataset

from colorectal cancer and a Bayesian approach to validate a

similar conceptual model, which they termed the Big Bang

model of tumor growth.

The concept of neutral evolution of cancer after initial driver

selection was further validated using a combination of concep-

tual and Bayesian modeling applied to a public database of

human tumors by Williams et al.,38 and again by Loeb et al.5

using an exceptionally accurate DNA sequencing technique

and a related conceptual model. Notably, this new conceptual

model recognized that a key assumption of prior models, the

popular “infinite sites assumption,”39 i.e. that a new mutation at

a particular DNA base arises in one cell only at any given

instant, would no longer hold when the total cancer contained

over a million cells. This conceptual insight and the new

experimental data in turn suggested a much greater level of

mutational diversity in clinically diagnosable cancers of at least

a billion cells than previously suspected, a phenomenon which

would only increase with tumor burden during a patient’s clin-

ical course.6 These phenomena were not anticipated by ABMs

used to validate earlier Bayesian and conceptual models, as

these ABMs had only 1 million cells.38

Many other forms of tumor heterogeneity can alter tumor

evolution: metabolic heterogeneity,40 where differences in glu-

cose metabolism can contribute to immune evasion; heteroge-

neity with respect to resource supply,41 where chronically

elevated energy supply can lead to evolution of cell character-

istics such as hyperproliferation and tissue invasion; phenoty-

pic switching between proliferative and migratory states42; and

heterogeneity with respect to fitness strategy.43-46

Tumor Microenvironment and Immune Interactions

The above models are predicated on the notion that cancer cells

are the key determinants of tumor growth, which can arguably

Beckman et al 5



be a reasonable assumption in immune deficient mice.

However, it is increasingly recognized that cancer cells are not

the only key players in tumor growth, and that tumor-stromal

interactions may not be by-products of tumor growth and adap-

tation but sometimes its drivers. These drivers include cancer

associated fibroblasts,47 physical cues, such as pore size of the

extracellular matrix,48 or activated stroma in pancreatic can-

cer.49 Moreover, stromal elements can alter the sensitivity of

malignant cells to therapy. As shown in microfluidic

co-culture, the presence of osteoblasts greatly reduces the sen-

sitivity of myeloma cells to the proteasome inhibitor

bortezomib.50

Evolution of immune evasion has been considered in several

models, such as Bayer et al.46 which looks at a public goods

game between selfish and immunosuppressive cooperative can-

cer cells, predicting the impact of transient dynamics of therapy

outcome. Wilkie and Hahnfeldt51,52 model immune-induced

dormancy, where cancer cells that have been suppressed by the

immune system for longer may evolve greater resistance to

immune-mediated T cell killing; model analysis reveals that a

decline in immune cell recruitment is a stronger predictor of

tumor escape from the immune system than decrease in cell kill

rate, a hypothesis that can be evaluated experimentally and

harnessed for therapeutic purposes. Both examples focus on

how tumor-immune interactions evolve, which can give

insights into when immune-based therapy could fail and when

it may be more likely to succeed.

Furthermore, as the success of immunotherapy in many

cancer types has revealed over the last decade, there is great

benefit to targeting not only cancer cells themselves but also

their natural “predators,” cytotoxic immune cells.53 Large

descriptive models are being developed to capture the increas-

ing knowledge about specifics of cancer-immune interac-

tions,54 but there arguably also exists a need for smaller

conceptual models that may lend themselves to analysis and

hypothesis testing. Such models may help answer questions

that pertain to timing and scheduling of immunotherapy55,56

as well as try to generate testable hypotheses underlying dif-

ference in response subject to changing order of therapy admin-

istration.57-59 A descriptive multi-scale model may provide too

many degrees of freedom to generate testable hypotheses,

which may be less of an issue with a smaller conceptual model

that can act as an experimental system that requires many fewer

resources and less time to investigate compared to an experi-

mental setup.

Examples of Specific Modeling Strategies

Predator-Prey Models

One possible starting point for studying tumor-immune inter-

actions comes directly from ecology: predator-prey models that

capture interactions between predator (immune cells) and prey

(cancer cells). The analogy is not perfect, and not all assump-

tions that are characteristic of this class of models may be

directly applicable to cancer-immune interactions. For

instance, there is no direct conversion of prey biomass (cancer)

into predator biomass (immune cells), and the prediction of

oscillatory behavior is typically not observed in mature tumors.

The presence of a larger population of prey does not make it

easier for the predator in these systems. Nevertheless, modifi-

cations of this class of models serve as a starting point for

developing minimal conceptual models for capturing various

types of interactions that occur in larger ecological systems and

evaluating their applicability to cancer, expanding our list of

useful hypotheses and mechanisms that may then become tar-

gets for treatment. Examples include immune evasion through

competition for shared nutrients between predator and prey,60

study of tumor-promoting inflammation,51 and immune (pre-

dator) suppression through downregulation of recognition

mechanisms, such as antigen-presenting cells.61 Theoretical

studies of predator-prey systems in ecology through conceptual

models can generate insights of where to look for targetable

mechanisms in cancer-immune interactions.

Evolutionary Game Theory

Predator-prey models provide one example of an ecological

interaction that proves a useful simplification of cancer. Evolu-

tionary Game Theory examines this interaction along with

competition and cooperation in an explicitly fitness maximiz-

ing framework. For instance, Gatenby and colleagues have

developed an approach to managing emergence of therapeutic

resistance called adaptive therapy that personalizes care based

on an individual’s response to therapy.62 This model relies on a

key assumption that the population of cancer cells consists of

therapy-resistant cancer cells that compete with more sensitive

cells that have higher fitness in the absence of treatment.63

However, this assumption may not always hold, as cases of

greater fitness of therapy-resistant cells, even in the absence

of therapy, have been documented,64,65 and thus generalizing

the notion of fitness cost of resistance may be a risky default

assumption. Costs of resistance are highly sensitive to environ-

mental conditions like nutrient availability, and thus interact

with other aspects of the ecology of the tumor. For example, as

stated above, competitive interactions and reduced fitness for

resistant cells, the fundamental assumptions behind adaptive

therapy, are far less likely to apply to diffuse micrometastases

that tend to be central to morbidity and mortality in patients,

because nutrients diffuse readily into these micrometastases.

Nonetheless, if these two key assumptions are granted, it can

imply, in analogy with pest control,66 that drug-sensitive cells

can serve as competitors and thus control the emergence of

resistant cells. Consequently, drug holidays may be recom-

mended, because drug-sensitive cells are thought in this model

to hold drug-resistant cells in check in a competitive

equilibrium.

However, there are cases where the key role of competition

may not hold. For instance, cooperative interactions have been

shown in breast cancer67 and quite extensively in pancreatic

cancer, where a variety of different cell lines support both each

other’s growth and resistance to chemotherapy in a complex
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web of cooperative interactions.68 Models are essential to

unravel the structure of the web of interactions. The treatment

strategy for cooperative webs might favor reducing tumor

heterogeneity to undermine positive feedback loops, in stark

contrast to the maintenance of diversity that should inhibit

tumors structured by competition. Questioning the underlying

assumptions, which is necessitated by the modeling process, is

thus critical for selection of a therapeutic approach. The same

evolutionary principles apply in both cases, but play out qua-

litatively differently, and models need to be ecumenical and

flexible to evaluate and respond to ever-changing realities.

While applying evolutionary principles to managing popula-

tion heterogeneity is undeniably critical in devising therapeutic

regimens, it is important to evaluate the assumptions and

corresponding predictions against experimental data.

Dynamic Precision Medicine (DPM)

Another applied approach to dealing with extreme genetic

diversity and non-equilibrium dynamics of cancer during treat-

ment is called dynamic precision medicine (DPM).9 DPM

introduced an evolutionary dynamic approach to multi-drug

therapy, and, like adaptive therapy, is adaptable in a persona-

lized fashion. It does not a priori assume a single model of

competition or cooperation between cancer cells, although the

underlying mathematics is flexible enough to allow for either

of these phenomena to be introduced when justified by experi-

mental or clinical data. Instead, the DPM approach focuses on

estimated prevalence of various subclones and their respective

drug sensitivity properties, net growth rates, and mutation rates,

which determine the probability of emergence of variant cells

that can be acted on by selection. That is, the dynamics are

accepted “as is” without assumptions from other disciplines

such as ecology, but with a simple default if no measurement

can be made. Variation in mutation rates plays a key role in this

approach. While cancer cells on average may have an increased

mutation rate according to the mutator hypothesis,32,69 the

mutation rate may further vary between cancer cells within a

single patient as they may have different random mutations in

the many proteins necessary for genome maintenance, as

shown in yeast70-72 and in human cancers.34 Beckman and

Loeb (2017) term the cells and subclones that have these addi-

tional “mutator mutations” above and beyond those present in

the bulk tumor as hypermutators,73 and simulations show that

they can influence predictions of what can constitute an

“optimal therapy” even when they are present as rare cells.9

Hypermutator cells can rapidly acquire simultaneous resistance

to multiple elements of a combination therapy.

Rather than optimizing short term tumor size reduction,

something that computer scientists would term a “greedy

algorithm,” the algorithm focuses on long term survival opti-

mization by preventing future relapse (to quote hockey great

Wayne Gretzsky: “Skate to where the puck is going, not where

it has been.”) Hypermutator cells are frequently a therapeutic

priority: dynamics do not necessarily impose a constant rate of

change for all the cells as with some other evolutionary

models.62,74,75 Simulations of DPM with over 3 million virtual

patients suggest that application of DPM could double median

survival and dramatically increase long term disease control

rates.9 Long-range planning of up to 5 years at a time further

improves results, provided the plan is continuously adapted

based on new data.10 Such long-range planning with up to

three drugs is computationally feasible in part because the

model does not include all the known complexities of cancer

but is instead a conceptual model. These ideas are not easily

tested using conventional experimental approaches, and new

techniques intended to facilitate experimental refinement and

validation are under development.

DPM, like adaptive therapy, remains difficult to prove or

refute for several reasons.20 First, mouse models may not

reflect the human on a variety of levels, especially tumor

growth dynamics (exponential or Gompertzian) and the pres-

ence or absence of competitive dynamics between subclones.

Mouse models have historically overpredicted efficacy in

humans even for individual therapies. Second, it is very chal-

lenging and expensive to measure subclones directly in

patients. Cell free DNA techniques lack the sensitivity required

for DPM, where as few as one resistant hypermutator cell in

100,000 may ultimately change the optimal therapy signifi-

cantly.9 Cell-free DNA measurements do not allow one to

determine which cells if any harbor resistance mutations to

two elements of a therapeutic cocktail simultaneously, a key

parameter for DPM. Circulating tumor cells can give this infor-

mation, but the sensitivity of these measurements is even

lower. Moreover, the resistance mutations are not identified for

many important therapies, meaning actionable DNA changes

are not presently known. We have not seen a validation of

competitive dynamics in adaptive therapy based on direct serial

measurements of subclones for example. Radiologic evidence

for “competitive release” of resistant subclones is flawed in

that it measures bulk tumor size and growth of minor subclones

cannot be seen until they constitute a sufficient percentage of

the bulk tumor. Thus, while increasing tumor size due to

growth of a resistant subclone can be seen after many of the

sensitive cells have been eradicated and the tumor size reaches

a nadir, those cells may have been growing all along at the

same rate as a minority in the bulk tumor without only a minor

impact on the bulk measurements. The “competitive release,”

implying increased growth rate of resistant cells due to removal

of sensitive cells (i.e. competitive dynamics) may simply be an

unmasking of a steady growth rate of resistant cells that was

occurring all along. Despite these difficulties, bioinformatic

information about resistance mutations and the cost and sensi-

tivity of cell free and single cell DNA sequencing technologies

continue to improve.

Coping With Uncertainty

Models, both conceptual and descriptive, must cope with the

challenge of uncertain, unmeasured, and even unmeasurable

parameters. A focus on measuring or estimating kinetic para-

meters and rate constants can preclude using the model to
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describe complex interactions, such as with the immune

system. These challenges are addressed in part by explicitly

including stochasticity in the model, which makes comparisons

with data more direct because these models generate their own

error distributions, but at the cost of making models more

complex, slower to simulate and more difficult to analyze.

Pharmacokinetic modeling relies heavily on estimating and

predicting parameters that govern dynamics of drug in the

body, because these values can dramatically affect dose and

scheduling predictions. Thus, in order for a coupled

PK-tumor-immune model to be practically useful, parameters,

as well as variability in parameters associated with immune

dynamics, typically need to be measured or estimated accu-

rately, with appropriate translation between such parameters

and processes from animal models to humans.

This requirement can occasionally be partially circum-

vented by a well-constructed empirical model, such as the one

developed by Tran et al.,56 where the authors develop a PKPD

model aimed at finding the optimal dose-schedule relationship

to maximize cancer cell kill while preserving anti-cancer

immunity. In this model, only 2 of 5 variables can be measured

experimentally; the relationship between other variables is

essentially an educated guess. Nevertheless, this empirical

model reproduced the available mouse experimental data with

a single set of parameters, and even rediscovered data not used

in fitting, suggesting that it is possible for a conceptual model

to capture complex dynamics even when not all pieces can be

measured experimentally.

Given the difficulty of translating parameters even between

different patients, the challenge of generalizing across species

or from lab to patient is fundamental. This gap needs to be

filled to truly enable the use of conceptual modeling in precli-

nical development of immuno-oncology drugs and other com-

plex questions such as evolutionary guidance of therapy. Some

of the efforts from descriptive modeling of laboratory systems

may provide estimates for conceptual models, that is, concep-

tual models may be linked to a variety of information sources in

a modular fashion.9,76,77

More importantly, even fundamental assumptions about cell

phenotype and other fundamental model assumptions often

cannot be measured directly in vivo. What are the prevalences

of sensitive and resistant subclones, as well as their relative

fitness levels in the absence of treatment? How many changes

are epigenetic and potentially reversible? High depth sequen-

cing may answer these questions if the phenotype can be sim-

ply linked to a genotype but can be challenging when faced by

copy number variants and extrachromosomal DNA, as well as

epigenetic changes and other forms of rapid cellular plasticity.

Is competition among cancer cells crucial? How much and for

how long can cells alter behavior to adapt to a niche based on

reversible phenotypic plasticity? Furthermore, as outlined

above, while large lesions may dominate mouse and radiologic

data, they are not necessarily the most pertinent when consid-

ering cancer as a systemic disease in human patients. Systemic

markers such as prostate-specific antigens are useful,78 but

when the marker is a secreted protein regulated by a signaling

pathway inhibited by one of the drugs, the likelihood that total

marker secretion is proportional to cell number is suspect. The

apparent sudden growth of resistant clones upon treatment of

sensitive clones, termed “competitive release” is often cited as

evidence for competitive dynamics.78 However, this may be

explained equally well by sensitivity limits for detecting low

prevalence subclones, both by radiologic and sequencing meth-

ods, which upon treatment of the predominant clone, may sud-

denly increase in relative prevalence without change in

absolute cell number, as outlined above for the radiologic case.

Careful experiments need to be set up to discriminate between

the two possible mechanisms, as they may have different impli-

cations for how a more optimal treatment would be designed.

Positive clinical results for evolutionary-guided therapies

remain confounded by other potential mechanisms driving

them, including the effect of intermittent scheduling on the

intratumoral vasculature,79,80 reversible gene expression pro-

files affecting drug resistance of a single subclone,81 or the

immune system.82-85 The uncertainty about correct model

assumptions is termed uncertainty about “model topology.”

FQM attempts to do a sensitivity analysis across multiple

model topologies. However, due to the large number of possi-

ble assumptions and topologies, such a survey cannot be

comprehensive.

Despite these seeming shortcomings, modeling to estimate

kinetic parameters and rate constants can be a powerful and

perhaps indispensable tool in making predictions about therapy

optimization. When considering targeted therapy in the clinical

setting, the current precision medicine model, while simple,

recognizes that optimal therapy will vary between individuals.

We argue that models are necessary to include two fundamen-

tal and tightly linked aspects of cancer: 1) heterogeneity within

patients both within and between tumors, and 2) evolutionary

dynamics.

Currently, precision medicine assigns drugs to patients

based on the tumor’s predominant or consensus molecular

properties, despite the fact no two tumor cells are genetically

identical, frequently leading to emergence of therapeutic resis-

tance. Indeed, deep sequencing of colorectal cancer provides

clear evidence that in any tumor large enough to be clinically

visible, at least one cell will be present that is resistant to any

single agent, with simultaneous resistance to more than one

non-cross resistant therapy being acquired as the total cancer

burden increases in the patient.5 Current precision medicine is

thus essentially a static “lock and key model,” where the patient

is treated with the best “key” for the predominant cell “lock”

until the tumor progresses, at which point the process is

repeated. This approach results in eventual emergence of ther-

apeutic resistance due to intrinsic tumor heterogeneity.

More broadly, while many insights can be obtained from

ecology, it is important to be aware of differences between

species ecology and cancer ecology as it presents in human

patients, and specifically, the differences between species evo-

lution and cancer evolution. First, we must take into account

not only the role of selection but also of mutation, including the

likelihood that the optimal mutation rate for tumor evolution
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exceeds that of species evolution. A very high mutation rate in

tumors was predicted86 and subsequently confirmed using

highly accurate high depth DNA sequencing.5 It was shown

to be 2-4 orders of magnitude greater than the apparent muta-

tion rate of germ cells based on a variety of methods, including

epidemiologic analysis of human cohorts.87 Moreover, because

any cell that contributes to cancer progression can invade nor-

mal tissues, a more realistic competition model would consider

that the resources available to cancer cells are not fixed but are

in fact continually increasing as the cancer spreads and exploits

more of the host without necessarily having to compete with

itself. Therefore, some of the key assumptions of evolutionary

game theory that have been finding application in cancer biol-

ogy,88-90 such as establishment of a Nash equilibrium, may

not be applicable for an invading cancer that through the meta-

static process is effectively increasing the size of the metapho-

rical resource pie, or mathematically, is increasing its carrying

capacity or limiting population size. Such a process is

non-equilibrium in nature, putting into question the applicabil-

ity of the notion of a Nash equilibrium in this context, which

may be applicable to dynamics of large lesions at their carrying

capacity but not to metastatic cancers driven by diffuse infil-

tration responsible for clinical morbidity and mortality.

In summary, conceptual models of cancer are important in

both basic cancer research and in applied models of therapy.

They can help formalize understanding of key mechanisms and

assumptions of underlying biology, which in itself is a critical

step prior to running scenario analysis in an attempt to find

optimal therapeutic approaches that could increase the likeli-

hood of long-term patient survival. Descriptive models of can-

cer can then provide information to, and therefore refine,

conceptual models of therapy in a modular fashion. Most

importantly, model complexity depends on the underlying

question and the intended application. Conceptual models will

often include additional detail in areas deemed central to the

questions under investigation, while utilizing simpler assump-

tions in other areas. Parsimonious models that have the flexi-

bility to adjust to emerging data in both populations and the

individual under treatment may be preferred. There is no one

“correct” way to construct mathematical models of cancer, but

flexible conceptual models, when used appropriately, can be

indispensable in driving both basic and applied research

forward.
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