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Sentinel lymph node procedures for gastric cancer resections using indocyanine

green (ICG) linked to Nanocoll outperformed normal ICG but did not provide

information on possible lymph node metastasis. Carcinoembryonic antigen targeted

fluorescent imaging using SGM‐101 was successful in both pancreatic and colorectal

cancer. A large phase III multicentre trial will soon be initiated in colorectal cancer

patients.
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1 | FLUORESCENT‐GUIDED SURGERY

Intraoperative discrimination between benign and malignant tissue is

primarily based on tactile and visual examination by surgeons. Both

of these subjective methods have limitations in assessing tumor

margins. As a result, positive resection margins still regularly occur

with local recurrence and metastases as likely consequences.

Near‐infrared (NIR) photons can penetrate deeply into tissue (up

to 5 to 10mm). This is utilized by NIR fluorescence (NIRF) to provide

fast and quantitative contrast images.1,2 Fluorophores can either

accumulate in tumor tissue due to either the enhanced permeability

and retention (EPR) effect or by targeting a specific tumor marker.

Once activated by laser, NIRF light reflected by the fluorophore can

be visualized using a dedicated imaging system. NIRF‐guided surgery

can help distinguish benign from malignant tumor tissue and also aid

in identifying lesions or metastasis outside the standard field of

resection3 and therefore might influence clinical decision making.

Recently, research has shifted from nonspecific imaging (depending

on the EPR effect) toward tumor‐marker specific imaging (eg, tumor

receptor targeting). NIRF imaging is currently being investigated for

multiple purposes in clinical trials. This review discusses two applications

of targeted and nontargeted NIRF. First, the clinical and preclinical data

on NIRF‐guided sentinel lymph node (SLN) identification in gastric cancer

using indocyanine green (ICG) is discussed. Subsequently, the available

data on carcinoembryonic antigen (CEA) targeted NIRF imaging in rectal

and pancreatic cancer is reviewed.

2 | SLN IDENTIFICATION IN GASTRIC
CANCER

Tumor resection is imperative when treating gastric cancer with curative

intent. In addition to total or partial gastric resection, a standardized

lymph node dissection is performed. Lymph node metastasis in gastric

cancer patients is an established prognostic factor for survival. Lymph

node involvement is found in 2% to 50% of patients, increasing with

tumor stage.4 Currently, a fixed number of lymph nodes is resected,

regardless of the presence of lymph node metastases. However, since

extensive (D2) lymph node dissection is associated with higher morbidity

(eg, anastomotic leakage) and mortality compared to D1 lymph node

dissection, futile D2 lymphadenectomy in patients without metastatic

lymph nodes is unfavorable.5,6 Possibly, a SLN procedure could avoid
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unnecessary lymph node dissection. During a SLN procedure only the

primary draining lymph nodes (which are at the highest risk of containing

tumor metastases) are identified and dissected. Whereas histological

assessment on hematoxylin and eosin (H&E) stained slides can accurately

identify metastases for most cancer types, it has been shown that

absence of visible tumor cells on H&E slides of gastric cancer lymph

nodes does not guarantee absence of micrometastases.7-11 To overcome

this diagnostic challenge, additional examination (eg, immunohistochem-

istry) is used to detect micrometastases.12 Although several techniques

are available, they are expensive and time‐consuming.13

Multiple trials have been performed to investigate methods of

SLN detection and showed accuracy rates up to 99% when detecting

lymph nodes with a dual tracer consisting of radiolabeled tin colloid

and blue dye.14 This dual tracer provides the surgeon with visible

blue dye and audible guidance based on radioactivity measured by a

handheld probe. However, the disadvantage of this technique is

irreversible hampering of the operating field by the blue dye.

Intraoperative NIRF can also be used to identify draining lymph

nodes in real time. In contrast to the blue dye, NIRF does not alter

the operating field by dark staining and allows detection of deeper

situated nodes.

The concept of using NIRF for the identification of draining lymph

nodes in gastric cancer was first described by Soltesz et al

(preclinical) and Kusano et al (clinical).15,16 In the first study,

fluorescent quantum dots were used in animal experiments and

showed successful lymph node detection. The second study

described the first inhuman trial using ICG (a cyanine dye which

passively accumulates in tumor areas due the EPR effect, with its

emission peak at 800 nm) and showed safe and accurate identifica-

tion of gastric sentinel lymph nodes. Since the success of these

studies, numerous other trials have proven the feasibility and safety

of this method. However, more false‐positive lymph nodes were

found than anticipated due to spread of the contrast agent through

lymphatic vessels to second‐tier lymph nodes.17-21 Hence, no

additional value of the NIRF was observed, since still too many

lymph nodes were unnecessarily resected.22

To overcome this problem of migration to second‐tier lymph

nodes, Tummers et al suggested using ICG adsorbed to nanocolloid.23

This principle was first described in breast cancer and skin melanoma

studies.24,25 The adsorption of nanocolloid to ICG increases its

hydrodynamic diameter from <1 nm to 20 to 80 nm. Only molecules

with a hydrodynamic diameter of <10 nm can migrate to second‐tier
lymph nodes.26 In this way, spreading of ICG to second‐tier lymph

nodes can be retained.23

The study by Tummers et al assessed the feasibility of ICG:Nanocoll

for the identification of sentinel lymph nodes in gastric cancer and also

investigated the prognostic utility of the detected sentinel lymph

nodes.23 ICG:Nanocoll was injected intraoperatively into four quadrants

of the tumor after which fluorescent imaging was performed.

In this study included 22 gastric cancer patients, with varying

tumor stages, undergoing partial or total gastrectomy were assessed.

In 21 out of 22 patients, at least one fluorescent lymph node was

visualized and a mean number of 3.1 (range 1 to 6) lymph nodes were

detected. This is significantly lower compared to earlier reported

means of 7.2 and 9.3 when using ICG alone.17,20 The mean tumor‐to‐
background ratio (TBR, strength of fluorescent signal in tumor

divided by signal strength of background) was 4.4. Histological

examination showed lymph node metastases in 8 out of 21 patients.

In six out of these eight patients, metastatic lymph nodes could be

detected with the fluorescent signal. Nonfluorescent metastatic

lymph nodes (n = 7) were found in the other two patients. All

7 nonfluorescent metastatic lymph nodes, however, were completely

obliterated by tumor tissue. This suggests that lymphatic functions

such as lymph flow or drainage were hampered, and the fluorescent

agent was not able to reach the lymph nodes. In eight patients, the

initial treatment plan was altered based on fluorescent lymph nodes

found outside of the standard resection plane. In two out of these

eight patients, the additional lymph nodes were tumor positive.

Tummers et al conclude that NIRF can aid in identifying

additional draining lymph nodes outside of the standard plane of

resection (eg, skip metastasis in extraperigastric lymph nodes, which

are found in up to 11% of patients) similarly to previous studies

performed in breast cancer patients.24,27,28

Recent studies have indicated that sentinel node biopsy is most

relevant in early gastric cancer cases since this subset of patients have

low chances of lymph node metastasis.29-31 A recent study by Kinami

et al has demonstrated the feasibility of this technique in q72 early

gastric cancer cases specifically, using ICG.32 Only one false‐negative
case was observed, which was due to failure of frozen section diagnosis.

It still remains unclear if the use of ICG in SLN procedures has

additional value, since it does not give any information on the

presence of micrometastases in identified draining lymph nodes.

Possibly, tumor‐marker targeted NIRF could assist in this matter. An

overview of the mentioned clinical studies is depicted in Table 1.

3 | TARGETED FLUORESCENT ‐GUIDED
SURGERY AND RATIONALE FOR CEA
IMAGING

Since nontargeted fluorophores such as ICG, have limited applic-

ability in specifically delineating tumor tissue, the era of receptor‐
targeted fluorescent‐guided surgery has commenced.34 For this

purpose, highly overexpressed tumor markers are required, that

are not (or minimally) expressed on normal tissue. CEA is such a

molecular marker. CEA is present on embryonic cells and highly

expressed by many cancer types including pancreatic ductal

adenocarcinoma (PDAC), colorectal cancer (CRC), and gastric cancer.

CEA is also expressed under inflammatory conditions. Overexpres-

sion of CEA on tumor tissue is seen in over 90% of all CRC and PDAC

patients.35-37 After production and attachment to the cell membrane,

CEA is shed into the bloodstream and is therefore a measurable

protein in serum. Serum CEA is the only tumor marker that has

shown to efficiently monitor therapy response in CRC patients.

Consequently, monitoring of serum CEA during follow up has become

standard of care.38
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Since CEA is highly expressed by many tumor types and absent

on healthy tissue, it could serve as a target for tumor‐specific imaging

and therapy. Previous research has already investigated CEA as a

target for therapy of solid tumors including T cell‐specific antibodies

and radioimmunotherapy.39-41

An imaging modality in which CEA could be used as a target is

fluorescence‐guided surgery. Recently, SGM‐101, a CEA‐targeted
fluorescent probe (emission peak at 700 nm) was developed

(SurgiMab, Montpellier, France) and is currently being tested in

clinical trials.42 The BM104 dye (a fluorescent carbocyanine dye)

was conjugated to an anti‐CEA chimerized monoclonal antibody

and extensive preclinical research has been performed.42 Other

CEA‐targeted fluorescent probes have been developed and tested

preclinically although they have not been used in‐human clinical

trials yet.43-46 Boonstra et al46 have successfully developed a

CEA‐targeting fluorescent probe using single‐chain antibody

fragments (ssSM3E/800CW), but have not translated this into

clinical trials. DeLong et al45 have developed anti–CEA‐IR-
Dye800CW. However, this was also only tested in mouse models

so far. SGM‐101 was first evaluated in mouse models with

peritoneal carcinomatosis. This study showed that SGM‐101
allowed identification and resection of very small tumors that

would otherwise not have been detected.42 Next, experiments

using SGM‐101 in orthotopic colon cancer grafts, liver metas-

tases, and pancreatic tumor cell xenografts were performed.42 All

three experiments showed great promise in detecting and

demarcating tumor nodules that were previously not visible.

Histological assessment of tumor tissue showed colocalization of

tumor cells and fluorescent signal.

Currently, there are two ongoing clinical trials using SGM‐101.
The first is performed by our group (Clinicaltrials.gov:

NCT02973672). SGM‐101 is administered 2 to 6 days before surgery

with a dose escalation of 5 to 15mg in patients with pancreatic

cancer, primary CRC, recurrent rectal cancer or colorectal peritoneal

metastases. The second trial includes patients with peritoneal

carcinomatosis from digestive cancers (FLUOCAR‐1 trial) and is

performed by the group of Dr Francois Quenet in Montpellier, France

(Clinicaltrials.gov: NCT02784028). In this trial, SGM‐101 is adminis-

tered 1 to 2 days before surgery with a dose escalation of 5 to 15mg.

The main goal of this study is to determine the optimal dose for

phase II studies.

4 | CEA AND CRC

The cornerstone of CRC treatment is resection of the tumor with

clear margins (R0 resection). Despite neoadjuvant treatment proto-

cols for rectal cancer, up to 17.2% of rectal cancer patients and 5.3%

of colon cancer patients still have positive resection margins

(R+).47,48 In rectal cancer patients with threatened or involved

circumferential resection margins, R1 resections are seen in up to

25% of the patients.49,50 Positive resection margins are correlated

with higher rates of local recurrence (up to 40%) and worse disease‐
free and overall survival.51-53

CEA serum measurements are currently used during follow‐up
and can indicate local recurrence or metastatic disease when values

are rising.38 Interestingly, a recent histopathological study by

Boogerd et al54 showed lack of correlation between serum CEA
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TABLE 1 Overview of clinical trials and their main outcomes

Author Patients Main outcomes

Sentinel lymph node navigation using ICG in gastric cancer

Kusano et al16 22 The detection rate, accuracy, and false‐negativity rates were 90.9%, 88.9%, and 33.3% in T1 stage

patients, but lower in higher tumor stages. A mean of 3.6 nodes per patients was detected.

Lee et al87 22 The sensitivity, specificity, and false‐negativity were respectively 100%, 94.4%, and 0.0%.

Tajima et al20 56 A mean of 7.2 sentinel nodes was found. A higher accuracy rate was established in T1 stage cancers

compared to higher tumor stages.

Yano et al88 130 All (100%) lymph nodes were identified and 100% sensitivity was established using ICG. All

metastatic lymph nodes were fluorescent.

Kinami et al32 72 The sensitivity, specificity, and accuracy of ICG sentinel node mapping were, respectively, 90.1%,

100%, and 98.6%. A median of six fluorescent nodes was found.

Tummers et al23 22 Sentinel nodes outside the standard plane of resection were identified using ICG:Nanocoll. In 8 of

22 patients, the initial treatment plan was altered based on the fluorescent imaging.

CEA‐targeted fluorescent‐guided surgery in colorectal and pancreatic cancer

Boogerd et al33 26 Optimal dosing was set at 10mg of SGM‐101, best imaged 96 hours postinjection. Primary cohort:

seven of nine colorectal tumors visualized using fluorescence (two nonfluorescent lesions were

pathological complete responders).

Expansion cohort: in 6 of 17 patients the treatment strategy was altered based on fluorescence.

Sensitivity 98%, specificity 62%, and accuracy 84%.

Hoogstins

(unpublished data)

12 Optimal dosing was set at 10mg of SGM‐101, best imaged 96 hours postinjection. All pancreatic

tumors were visible using NIR fluorescence, with a mean TBR of 1.6. Also all four metastatic lesions

were visible using NIR fluorescence.
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and tumor CEA expression in rectal cancer. Most important for

fluorescent‐guided surgery, a great difference is seen in expression

levels of CEA between CRC tissue and healthy tissue (60‐fold).55 The
antigenic density of CEA on CRC cells is 105 to 106 antigens per cell.

Synchronous peritoneal metastases are seen in 4.3% of primary

CRC patients, and in 20% to 50% of patients with recurrent

CRC.56-61 With the introduction of cytoreductive surgery (CRS)

in combination with hyperthermic intraperitoneal chemotherapy,

overall median survival has risen from 12 to 32 months.62 Since the

peritoneal cancer index and the extent of resection in CRC are

associated with survival, maximal resection of all peritoneal cancer

tissue is crucial.63 As fluorescent‐guided surgery can detect (often

small) metastatic nodules, it could help detect and resect metastatic

disease, thereby increasing local control and survival.

The combination of a good level of contrast between healthy and

cancer tissue and high antigenic density makes CEA an excellent

candidate for fluorescent‐guided surgery in CRC. Furthermore, CEA

expression does not seem to alter after neoadjuvant therapy.64

Several CEA‐targeting fluorescent probes have been tested

preclinically in colon cancer models. Anti–CEA‐IRDye800CW has

been tested by DeLong et al45 in orthotopic mouse models injected

with HT‐29 colon cancer cells. This study demonstrated effective

labeling of CEA‐expressing human colon cancer in mouse models

during laparotomy at both 24 and 48 hours after injection. Boonstra

et al46 developed a single‐chain antibody fragment (ssSM3E/800CW)

to visualize CRC lesions. Animal experiments showed a mean TBR of

2.37 at 24 hours postinjection, which is sufficient for clear identifica-

tion of tumor tissue. At histological assessment, CEA expression

clearly correlated with the NIRF signal using light and fluorescence

microscope.

SGM‐101 is a clinically translated fluorescent agent targeting

CEA. Recently, Boogerd et al33 have published the first in‐human

clinical trial with CEA‐targeted fluorescent‐guided surgery in CRC

patients. This study assessed the tolerability and pharmacokinetics of

ascending doses of SGM‐101 and determined the optimal dose and

timing for fluorescent‐guided surgery (10mg, 96 hours postinjection).

In the primary cohort seven of nine tumors showed in vivo or ex vivo

fluorescent signal (mean TBR 1.8). The two nonfluorescent rectal

tumors were confirmed as pathological complete responders, thus no

tumor tissue was present. An expansion cohort of 17 patients with

recurrent rectal cancer or peritoneal metastasis of CRC was set up.

In 6 of 17 patients, the original treatment strategy was altered based

on fluorescent imaging findings. It was concluded that SGM‐101
showed a sensitivity of 98%, specificity of 62% and an accuracy of

84% in detecting rectal cancer. Figure 1 shows the ex vivo

fluorescence imaging of a recurrent rectal tumor using SGG‐101.
CEA‐targeted fluorescent‐guided surgery could aid in better

resection of primary colorectal tumors, colorectal recurrence, and

metastases (eg, liver, lung, peritoneal). Particularly in local recurrent

rectal cancer, fluorescent‐guided surgery could be useful since

distinguishing fibrosis from tumor tissue can be challenging. Also,

during the follow up period after CRC surgery, tumor‐targeted
fluorescent imaging could be of additional value. Currently, conven-

tional endoscopy is used to assess the anastomosis and possible other

newly developed or missed tumors. Fluorescent‐guided endoscopy

could possibly better indicate tumor remnants or local regrowth.

Fluorescent‐guided endoscopy targeting VEGF (bevacizumab) and

c‐Met is currently being investigated in clinical trials at the University

Medical Centre Groningen in The Netherlands (Clinicaltrials.gov:

NCT03205501).65,66 CEA also shows great promise to be a successful

imaging target for endoscopy. For example, in patients with a clinical

complete response (cCR) after neoadjuvant chemoradiotherapy in

whom surgery is omitted and are followed in a Watch‐and‐Wait

protocol. In the same way, CEA‐targeted positron emission tomo-

graphy (PET) imaging could aid in detecting tumors. By targeting

tumor cells, the radioactive signal could indicate remaining or

recurrent tumors. This concept is already routinely performed in

prostate cancer with a prostate‐specific membrane antigen PET tracer

but could also be useful in CRC cancer staging and follow up using a

CEA‐targeted tracer.

5 | CEA AND PANCREATIC CANCER

Compared to the relative good overall survival of CRC cancer

patients, pancreatic cancer still has a dismal prognosis. Pancreatic

cancer accounts for 7% of all cancer related deaths in the United

States, with the vast majority of neoplasms being PDACs.67 The

overall 5‐year survival rate is 8%, whereas patients diagnosed with

metastatic disease only have a 3% five‐year survival rate.67,68 The

ESPAC‐4 trial underlines the importance of radical resection of

pancreatic cancer considering the median overall survival time of

| VUIJK ET AL.

F IGURE 1 Ex vivo fluorescence imaging of a recurrent rectal tumor using SGM‐101 (injected 4 days before surgery, 10mg). The remaining
fluorescence (arrow) was confirmed tumor‐positive. Color (left column), fluorescence (middle column), and merged (right column) images [Color

figure can be viewed at wileyonlinelibrary.com]
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39.5 months after R0 resection versus 23.7 months after R1

resection (both observed in patients treated with adjuvant gemcita-

bine plus capecitabine).69 For the eligible patients, pancreatic

resection is associated with serious morbidity (eg, pancreatic fistula

and hemorrhage; 19.9%), perioperative mortality (2%) and up to 30%

disease‐related mortality in the first year after resection.70-73 CT is

the preferred modality and has shown to be able to predict

resectability in >75% of patients.74 Intraoperative distinction

between normal (often inflamed) tissue and tumor tissue is

challenging, resulting in up to 70% irradical resections.75 CT is

insufficient in detecting tumor downstaging after neoadjuvant

therapy and is also inadequate in distinguishing viable tumor cells

from scar tissue. Thus, neoadjuvant treatment can complicate the

assessment of resectability on CT even more.76,77

Amongst others, fluorescent‐guided surgery could potentially aid

in distinguishing noncancerous pancreatic tissue from tumor tissue

and thus might lead to a higher rate of radical resections, resulting in

increased overall survival. Additionally, this method could help

identify (occult) metastases during staging laparoscopy.78 The role

of staging laparoscopy is currently under debate, since only 15% to

51% of occult metastasis cases can be identified using this

modality.79 A study investigating staging laparoscopy using con-

trast‐enhanced ultrasound and fluorescence (ICG) has been per-

formed by our group.80 Twenty‐five patients were included in this

study. Patients received 10mg of ICG 1 day prior to surgery to

detect possible liver metastases. Intraoperative fluorescence imaging

and laparoscopic ultrasound of the liver were performed. Of every

lesion suspect for metastasis a biopsy or resection was performed.

This study concluded that intraoperative use of ultrasound has

limited value. However, laparoscopic fluorescence imaging using ICG

showed the highest accuracy in detecting liver metastases compared

to inspection and laparoscopic ultrasound.

The concept of fluorescent‐guided surgery in pancreatic cancer

has already been tested with ICG. Unfortunately, insufficient

contrast between benign and malignant tissue was achieved and no

additional value of optical fluorescent‐guided surgery was found.81

In search of other tumor‐specific imaging targets, de Geus et al

found that CEA, integrin αvβ6, epithelial growth factor receptor and

urokinase plasminogen activator receptor seem suitable targets for

pancreatic imaging.82 In this study, 158 of 165 (96%) of pancreatic

and periampullary adenocarcinomas could be identified using CEA

immunohistochemistry.

Tummers et al83 observed membrane‐bound, heterogeneous

expression of CEA in PDAC and a significantly lower expression on

chronic pancreatitis compared to PDAC. CEA is present in PDAC, but

not in normal acini and healthy pancreatic tissue. Unfortunately, loss

of expression after neoadjuvant treatment was seen and is

disadvantageous since no distinction between vital and necrotic

tumor tissue can thus be made after neoadjuvant treatment based on

CEA expression.83

As mentioned before, SGM‐101 is also being investigated for

intraoperative imaging in pancreatic cancer patients. Gutowski et al42

showed that in orthotopic mouse models injected with BxPC3 cells

(pancreatic cancer), SGM‐101 showed clear tumor delineation with a

TBR of 3.5. Experiments using other CEA‐targeted fluorescent agents

(anti–CEA‐Alexa Fluor 488) on BxPC3 cells in mouse models were

performed by Metildi et al84 and Cao et al.85 In these studies,

fluorescent‐guided surgery resulted in less tumor recurrence

(P = 0.01), higher cure rates (45% vs 40%, P = 0.01) and higher

1‐year survival rates (0% vs 28%, P = 0.01) when compared to

conventional bright light surgery.

Following the successful preclinical experiments, our group included

12 PDAC patients in a clinical trial (Clinicaltrials.gov: NCT02973672,

Hoogstins, unpublished data). No clear difference was observed in TBR

between the three dosing groups and 96hours postinjection was

established as the preferred time of imaging. The study demonstrated

that the use of SGM‐101 in pancreatic cancer patients is safe. All tumors

were visible with intraoperative fluorescent imaging, with a mean TBR of

1.6 in primary tumors and 1.7 in metastatic lesions. All metastatic lesions

(three liver and one peritoneal metastasis) were visible using fluores-

cence. Additionally, eight nonfluorescent but clinically suspect lesions

(not primary tumors) were resected, of which two contained tumor cells.

Of the initial 12 patients, in five patients the resection was

abandoned due to irresectability or metastases. These five patients

also had higher serum CEA levels preoperatively. This possibly

indicates a predictive role for CEA in resectability of pancreatic

tumors.

The TBR as seen in intraoperative setting was significantly lower

than expected from the mouse models (TBR 3.5). A possible

explanation for this can be the poor vascularization of pancreatic

tumors and presence of desmoplastic stroma in pancreatic tumors,

resulting in poor delivery of SGM‐101.86 However, the fact that

fluorescent signal was observed in most patients demonstrates that

the contrast agent was undoubtedly able to reach the tumor cells.

The limitations of this “far red” part of the NIR spectrum are more

autofluorescence and lower depth penetration compared to the

higher NIR wavelengths.89

Currently, fluorescent agents targeting the endothelial growth

factor receptor and the vascular endothelial growth factor (VEGF;

PENGUIN trial) are also being clinically tested for pancreatic cancer

imaging (Clinicaltrials.gov: NCT03384238, NCT02743975).

6 | DISCUSSION

This review outlines the available literature on SLN procedures in

gastric cancer using ICG and provides an overview of CEA‐targeted
NIRF imaging. An SLN procedure using ICG:Nanocoll has shown to be

feasible and safe; however, the clinical applicability is still unclear.

Only one CEA‐targeted NIRF agent, SGM‐101, has yet been tested in

clinical trials. Successful studies using SGM‐101 have been described

in pancreatic cancer, CRC, and peritoneal metastasis of digestive

cancers.

The use of fluorescence imaging with ICG during SLN procedures

in gastric cancer remains controversial. Since no specific receptor

target is used, the fluorescent signal is not specific for lymph node
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metastases. As shown by Tummers et al23 distinguishing tumor‐
positive lymph nodes from tumor negative lymph nodes is impossible

using ICG:Nanocoll. Also, as discussed above, completely obliterated

lymph nodes cannot be reached with ICG and are thus not visible

with fluorescence, underlining the need for tumor‐specific fluores-

cent tracers.

During CRC surgery intraoperative fluorescence imaging was

successful. Definitely, in the expansion cohort with recurrent rectal

cancer and peritoneal metastasis of rectal cancer, an additional value of

SGM‐101 has been observed. Following the recent successful trial with

SGM‐101 in CRC, a multicentre, phase III clinical trial will soon be

initiated. A large cohort of CRC patients will be included in up to

10 centers in Europe and the United States. The rationale for this study is

that SGM‐101 fluorescence imaging can offer clear delineation of tumor

masses, identify subclinical carcinomatosis or aid in the assessment of

residual disease and thus lead to more radical resections with hopefully

less local recurrence or metastatic disease.

Furthermore, CEA‐targeted imaging could be helpful during the

follow up of rectal cancer patients with a cCR after neoadjuvant

chemoradiotherapy. Patients with a cCR might enter a follow‐up
period of watchful waiting (in clinical studies) and surgery will be

omitted. Considering that only vital tumor cells express CEA, CEA‐
targeted fluorescent signals in routine follow up endoscopy could

show remaining tumor cells after therapy or local regrowth during

follow up.

In spite of the poor vascularization and presence of stroma in

PDAC, molecular imaging of PDAC targeting CEA was feasible. The

fluorescent signal was observed in all pancreatic tumors. This study

demonstrates the feasibility of antibody‐targeted fluorescent ima-

ging using SGM‐101 in pancreatic cancer. Considering the much

higher TBR’s measured ex vivo versus in vivo, there might be a need

for more sensitive intraoperative imaging systems. In addition to

CEA, integrin αvβ6 also shows great promise for targeted imaging

and will be investigated for both optical fluorescence and PET tracer

purposes by our group. Possible applications for tumor‐targeted
pancreatic imaging could be in detecting primary and metastatic

disease, but also in assessing vascular involvement. Particularly after

neoadjuvant chemotherapy, NIRF could aid in distinguishing che-

motherapy induces fibrosis from viable tumor tissue.

Because CEA expression on the cell surface of tumors is variable,

patient selection before surgery would be beneficial. However, since

Boogerd et al54 described a lack of correlation between tumor CEA

expression and serum CEA levels in rectal cancer, serum CEA levels

seem inadequate for patient selection. In contrast to rectal cancer,

the study did find a significant correlation between serum CEA and

the percentage of CEA‐expressing tumor cells in PDAC patients.

A possible explanation for this could be the different vascularization

of both tumor types (rectal tumors are usually well vascularized

whereas pancreatic tumors show poor vascularization and drug

delivery). In PDAC however, predicting CEA tumor expression using

serum CEA levels seems to be more accurate.

In addition to the described CEA‐targeted antibody, various other

methods of tumor targeting are available. Specific targeting using smaller

tumor‐targeting particles (eg, nanobodies, antibody fragments, peptides)

can increase tumor specificity and enable injection at the day of surgery.

When combining this with a fluorophore emitting light at higher

wavelengths, lower background signal could be achieved.

In conclusion, this review shows that SLN procedures for gastric

cancer resections using ICG:Nanocoll outperformed procedures

using normal ICG. However, the clinical relevance can be argued

since the fluorescent signal only indicates lymph node presence, but

gives no information as for the presence of lymph node metastasis.

Tumor‐specific targeting by CEA‐targeted fluorescent imaging using

SGM‐101 was successful in both pancreatic and CRC patients.

A large phase III trial will soon be initiated in CRC patients.
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SYNOPSIS

SLN procedures for gastric cancer resections using ICG:Nanocoll outperformed normal ICG but did not provide information on possible lymph

node metastasis. CEA‐targeted fluorescent imaging using SGM‐101 was successful in both pancreatic and CRC.
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