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Parkinson’s disease (PD) is known as a mitochondrial disease. Some even regarded
it specifically as a disorder of the complex I of the electron transport chain (ETC).
The ETC is fundamental for mitochondrial energy production which is essential for
neuronal health. In the past two decades, more than 20 PD-associated genes have been
identified. Some are directly involved in mitochondrial functions, such as PRKN, PINK1,
and DJ-1. While other PD-associate genes, such as LRRK2, SNCA, and GBA1, regulate
lysosomal functions, lipid metabolism, or protein aggregation, some have been shown
to indirectly affect the electron transport chain. The recent identification of CHCHD2
and UQCRC1 that are critical for functions of complex IV and complex III, respectively,
provide direct evidence that PD is more than just a complex I disorder. Like UQCRC1
in preventing cytochrome c from release, functions of ETC proteins beyond oxidative
phosphorylation might also contribute to the pathogenesis of PD.

Keywords: Parkinson’s disease, electron transport chain, mitochondria quality control, mitophagy, apoptosis

INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disease worldwide with
6.1 million patients globally in 2016 (GBD 2016 Parkinson’s Disease Collaborators, 2018), and
up to 12.9 million people estimated to be affected by 2040 (Dorsey and Bloem, 2018). PD is
clinically characterized by slowly progressive, levodopa-responsive bradykinesia with either rigidity
or resting tremor (Postuma et al., 2015). Dopaminergic neuronal loss and Lewy body formation in
the substantia nigra pars compacta are the hallmarks of most PD pathology.

Etiologies of PD are complex. Most individuals with PD are idiopathic. Only 10% of them
showed a clear Mendelian inheritance (Hardy et al., 2009), and environmental factors such as
pesticides, heavy metals, illicit substances, and diets also contribute (Ball et al., 2019). In 1983 four
cases of levodopa-responsive parkinsonism were described after intravenous injection of synthetic
heroin containing 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (Langston et al., 1983).
The neurotoxicity of MPTP results from its oxidized metabolite, 1-methyl-4-phenylpyridine
(MPP+) (Levitt et al., 1982; Glover et al., 1986), which damages oxidative phosphorylation
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(OXPHOS) by inhibiting the electron transport chain (ETC)
of mitochondria (Nicklas et al., 1985). The keystone discovery
initiated an era of mitochondrial pathology in PD. Nowadays,
a plethora of evidence from electrophysiological and anatomical
perspectives has shown that mitochondrial health is essential in
the integrity of dopaminergic neurons, especially those in SNc
(Bolam and Pissadaki, 2012; Müller et al., 2018). Therefore, to
disentangle the complex pathophysiology of PD, mitochondria is
undoubtedly one of the key players that should not be missed.

In this review, we will briefly introduce current knowledge
about ETC and OXPHOS and their relationships with PD. We
will then summarize some of the well-known and newly identified
PD-associated genes and their direct or indirect influences on
ETC. Finally, we discuss the OXPHOS-independent functions of
ETC proteins and their possible implications in PD pathogenesis.

Electron Transport Chain and
Parkinson’s Disease
Mitochondria are the powerhouses of eukaryotic cells. This
double membrane-bound organelle generates most adenosine
triphosphate (ATP) through OXPHOS, processed by ETC
embedded in the inner mitochondrial membrane (IMM). ETC is
composed of transmembrane complexes I (cI) to V (cV) and two
electron carriers, the ubiquinone (i.e., CoQ) and the cytochrome
c (cyt c). For ATP production, electrons are transferred from
NADH and FADH2 to oxygen via the transport chain, coupled
with the generation of a proton gradient across IMM (Zhao et al.,
2019; Figure 1).

Complex I (cI) is an NADH-ubiquinone oxidoreductase that
pumps four protons into the intermembrane space (IMS) upon
each NADH oxidation. cI consists of three modules: the N, Q,
and P modules. NADH generated from the tricarboxylic acid
cycle delivers its electron to the N module. The electron was then
passed to the Q module where the CoQ is reduced to ubiquinol
(CoQH2) and induces conformational changes of the P module
to allow proton translocation (Giachin et al., 2016). Similarly, cII
also transfers electrons to CoQ, but by dehydrogenizing succinate
to fumarate, which is a part of the tricarboxylic acid cycle. cII is
composed of two subunits: the enzymatic subunit (SDHA-SDHB)
in the matrix and the anchoring subunit (SDHC-SDHD) across
the IMM. The enzymatic subunit exploits two electrons from
succinate and passes them through a series of FeS clusters to the
anchoring subunit where CoQ is reduced to CoQH2. Different
from cI, no proton is translocated for the reactions that occur
in cII (Rutter et al., 2010). Electrons from both cI and cII are
carried by CoQH2 to enter the Q cycle processed by cIII. The
catalytic activity of cIII depends on three redox-active subunits:
cytochrome b (MT-CYB), the Rieske iron-sulfur [Fe2-S2] protein
(UQCRFS1), and cytochrome c1 (CYC1) (Yang and Trumpower,
1986). Electrons donated by CoQH2 were transduced to cyt c
via these three subunits sequentially. Each Q cycle generates
two reduced cyt c and transports two protons (Crofts, 2004).
The reduced cyt c then shuttles electrons to cIV, namely the cyt
c oxidase (COX), whose catalytic core includes subunits 1, 2,
and 3. Electrons are exploited from reduced cyt c at subunit 2
and reduce molecular oxygen to water at subunit 1. One proton

is simultaneously translocated to IMS via subunit 3 upon each
cyt c oxidization (Wilson and Prochaska, 1990). The oxidized
cyt c then returns to its pool. In addition to working as an
electron carrier, the oxidized cyt c also serves as a scavenger of
reactive oxygen species (ROS) (Wang et al., 2003), a cardiolipin
peroxidase (Kagan et al., 2005), and an apoptosis activator once
released to the cytosol (Ow et al., 2008). The functions of cyt c
beyond OXPHOS are discussed in the latter part of this review.

As the final step of OXPHOS, the proton gradient established
by cI, cIII, and cIV drives cV to generate ATP. cV consists of two
functional domains: F1 and F0. Protons passing through the F0
domain across the IMM to the matrix release the energy provided
by the proton electrochemical gradient. The F1 domain at the
matrix then uses the energy to charge cells by phosphorylating
ADP to ATP (Jonckheere et al., 2012). Each ATP synthesis
requires the translocation of 3 or 4 protons (Van Walraven et al.,
1996; Guerra et al., 2002).

Dysfunction of ETC has been associated with various
neurological diseases from infantile-onset neurodevelopmental
regression (such as Leigh syndrome) to adult-onset optic
neuropathy or peripheral neuropathy (such as Leber hereditary
optic neuropathy (LHON) in cI deficiency, and neurogenic
muscle weakness, ataxia, and retinitis pigmentosa (NARP) in cV
deficiency) (Gorman et al., 2016). Neurodegeneration diseases,
especially PD, are also associated with ETC dysfunction. PD
has been branded as a “cI disease” because of the discovery
of MPP+ (the metabolites of MPTP) which is a cI inhibitor
(Nicklas et al., 1985; Ramsay et al., 1986). Rotenone, another
commonly reported PD risk factor, is also a cI inhibitor
(Betarbet et al., 2000). In post-mortem studies of PD patients,
cI functional deficiency is found in substantia nigra or frontal
cortex (Schapira et al., 1990; Parker et al., 2008). Similar cI
deficiency is also found in non-brain tissues including platelets,
skeletal muscles, or fibroblasts, indicating it is a systematic
phenomenon (Parker et al., 1989; Wiedemann et al., 1999). Also,
reports of cIII and cIV function in PD have been inconsistent
(Mizuno et al., 1990; Wiedemann et al., 1999). Impairment of
ETC causes excessive ROS, disruption of the electrochemical
potential of the proton gradient, insufficient ATP production,
and even cell death. Although it is widely observed that ETC
functions are compromised in PD, genetic mutations of ETC
proteins (either nuclear-encoded or mitochondrial-encoded) are
rarely linked to PD. The discrepancy might suggest that the
ETC dysfunction is secondary to other mechanisms that closely
regulate mitochondria. In other words, ETC represents a hub
where different PD-causing patho-mechanisms converge.

PD-Associated Genes and the ETC
To date, over 20 PD-related genes have been discovered.
Although these familial PD cases are not common, and some may
even have atypical features such as early onset (<50 years of age at
onset) or early cognitive or psychiatric involvement, they provide
great insights into the pathogenesis of PD. Many of the PD-
causing genes affecting quality control systems of mitochondria,
lysosomal regulation, or lipid/protein homeostasis, thus directly
or indirectly influence ETC functions. In the following section,
we will discuss the best-known genes and some newly identified
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FIGURE 1 | The electron transport chain (ETC) consists of complexes I (cI) to V (cV), as well as two free electron carriers, CoQ and cyt c. NADH and FADH2 donated
electrons to cI and cII, respectively, causing reduction of CoQ into CoQH2. The CoQH2 is in turn oxidized by cIII where the electrons are delivered to cyt c. The
reduced cyt c was then oxidized by cIV where the oxygen molecule was reduced as the terminal electron acceptor. Protons accumulated in the intermembrane
space during oxidative phosphorylation via cI, cIII, and cIV, and are essential for cV to drive ATP synthesis. Some neurological diseases associated with mutations of
cI-cV are listed.

ones with a focus on their influences on ETC (Figure 2 and
Tables 1, 2).

PINK1 and PRKN: Key Players of Mitochondria
Quality Control
Mutations in PRKN (previously known as PARK2, which encodes
parkin) and PINK1 are the most common causes of early onset
PD. PRKN mutants on 6q25.2-27 were found in 1998 (Kitada
et al., 1998), and PINK1 mutants on 1p35-1p36 were identified in
2001–2002 (Valente et al., 2001, 2002, 2004). Mutations in the two
genes have since been reported worldwide (Kilarski et al., 2012).
Early onset PD associated with either gene showed similar clinical
features, including slow disease progression, good levodopa
response, lower limb dystonia, early psychiatric symptoms, and
a higher likelihood of motor complications than idiopathic PD
(Koros et al., 2017). Pathologically, Lewy bodies can be absent
in patients with either PRKN or PINK1 mutations (Poulopoulos
et al., 2012; Takanashi et al., 2016). These similarities reflect their
common mechanism in PD pathogenesis.

It is now known that parkin, along with PINK1, is
critical for mitochondria quality control through various
pathways including mitophagy, formation of mitochondrial-
derived vesicles, mitochondrial fission, and facilitation of
mitochondrial biogenesis (Ge et al., 2020). When mitochondria
are jeopardized, PINK1 is recruited to and stabilized on
the OMM. The stabilized PINK1 then recruits and activates
parkin, an E3 ligase that assembles ubiquitin chains on

its substrates including OMM proteins which subsequently
recruits ubiquitin-binding autophagy receptors and ultimately
leads to autophagosome formation and lysosomal degradation.
Other substrates of parkin include Mitofusin-1 and -2, whose
proteolysis divert mitochondria from fusion into fission (Tanaka
et al., 2010; Ziviani et al., 2010); parkin interacting substrate
(PARIS, also known as ZNF746), whose degradation stimulates
mitochondrial biogenesis (Shin et al., 2011; Lee et al., 2017);
and also hnRNP F, a translation repressor that regulates the
localized synthesis of nuclear-encoded mitochondrial proteins
(including some ETC components) (Lee et al., 2017). In
addition to PINK1-dependent phosphorylation, other post-
translational modifications of parkin, such as S-nitrosylation,
are also critical for the E3 ligase activity and solubility of
parkin and have been comprehensively reviewed elsewhere
(Chakraborty et al., 2017).

The integrity of ETC is highly correlated with the PINK1-
Parkin-mediated quality control mechanisms. Fibroblasts or
leukocytes with parkin loss-of-function mutations showed
impaired cI activities (Müftüoglu et al., 2004; Mortiboys et al.,
2008), and human fibroblasts or mouse embryonic fibroblasts
of PINK1 mutants also showed cI dysfunction (Morais et al.,
2009; Amo et al., 2014). The turnover rates of mitochondrial
proteins could be an indicator of mitochondrial quality control.
A study using fly heads showed that ETC mitochondrial proteins
had a greater dependence on parkin or Pink1 than other non-
ETC mitochondrial proteins. Nineteen of the ETC proteins had
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FIGURE 2 | Different pathomechanisms converge on mitochondria in Parkinson’s disease. (A) PINK1 and parkin mediate mitochondrial quality control processes
such as mitophagy. PINK1 is also required for phosphorylation of Ndufa10 to facilitate the reduction of ubiquinone by complex I. (B) Mutations in LRRK2 block
mitophagy by preventing the degradation of Miro or by trapping Rab10 whose interaction with OPTN is pivotal for autophagy/mitophagy. (C) DJ-1 scavenges ROS
through sequential oxidation at Cys106. The oxidized DJ-1 acts as a chaperone to facilitate the assembly and activities of cI, cIV, and cV. (D) Accumulation of GlcCer
and other lipids in GCase mutants impairs lysosomal functions. Mutations in GCase reduces the expression of NMNAT2, resulting in a significant reduction of
NAD + /NADH. (E) α-Syn monomers or oligomers interrupt the activities of cI and cV. The fibrilized α-Syn triggers Lewy body formation which sequestrates abundant
mitochondria. (F) Deficits in iPLA2-β cause lipid imbalance that may interrupt ETC functions. (G) UQCRC1 is critical in cIII assembly and functions, and also prevents
cyt c release. (H) CHCHD2 is a chaperone of cIV, activates COX4I2 and its own expression, complexes with MICS to prevent cyt c release, and regulates the cristae
structure by stabilizing OPA1 and MICOS complex.

longer half-lives in parkin mutants than in autophagy-impaired
Atg7 mutants, suggesting the turnover of these proteins may be
achieved via an a selective manner. More than half belong to cI
(10/19), while proteins from the other complexes are also affected
(1 in cII, 2 in cIII, 3 in cIV, and 3 in cV) (Vincow et al., 2013). The
predominance of cI proteins likely explains why cI dysfunction is
invariably reported in PRKN or PINK1 mutants.

Activities of cI could also be regulated by PINK1 independent
of parkin. An accessory subunit of cI, Ndufa10, is pivotal for the
ubiquinone-reducing capacity of cI, and the phosphorylation of
Ndufa10 requires PINK1 (Morais et al., 2014). Overexpression
of Ndufa10 or expression of its phosphomimetics could reverse
the defects in pinkB9-null mutant Drosophila, but not parkin
mutants (Morais et al., 2014; Pogson et al., 2014). Ndufa10
phosphorylation also rescued the ROS-induced apoptosis in
PINK1 knockout mouse fibroblasts (Morais et al., 2014),
suggesting that PINK1 is anti-apoptotic. The anti-apoptotic
effects of PINK1 are also attributed to the phosphorylation of
the mitochondrial chaperone TRAP1 (also known as Hsp75)
which prevents cyt c release from mitochondria (Pridgeon et al.,
2007). In tumor cells, TRAP1, phosphorylated by ERK1/2 and
Src, prohibited the generation of ROS by inhibiting cII and cIV,
respectively (Masgras et al., 2017). Whether the phosphorylation

of TRAP1 by PINK1 has any influence on ETC functions awaits
further investigation.

DJ-1: A Prominent Chaperone in Mitochondria
DJ-1 (also known as PARK7) mutations cause autosomal
recessive, early onset PD. It was initially reported in 2003 from
two genetically isolated consanguineous families (Bonifati et al.,
2003), and has a frequency of about 0.4% in early onset PD, much
lower than that of PRKN and PINK1 (Kilarski et al., 2012).

DJ-1 is ubiquitously expressed (Mita et al., 2018) and serves a
dual role as an oxidative sensor and also an antioxidant protein.
Immunostaining of oxidized DJ-1 (oxDJ-1) revealed reactivity in
SNc, striatum, and inferior olivary nucleus in postmortem brain
of elders with Lewy body pathology. Co-localization of oxDJ-1
and α-synuclein (α-Syn) was also reported (Saito et al., 2014).
The cysteine residue (C106) in its active site could be sequentially
oxidized into the sulfenylated form (-SOH), sulfinated form (-
SO2H), and sulfonic form (-SO3H) (Kinumi et al., 2004). The
sulfinated form is the active form that not only prevents α-Syn
fibrillation (Zhou et al., 2006) but also plays protective roles in
promoting mitochondria fission and cell viability to rotenone
(Blackinton et al., 2009). These results suggested that DJ-1 is an
oxidative stress-dependent chaperone.
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TABLE 1 | PD-associated genes and their influences on each ETC complex.

Gene Mechanism Complex I Complex II Complex III Complex IV Complex V References

PRKN and
PINK1

Protein turnover + + + + + Vincow et al., 2013

Translation derepression + + + Gehrke et al., 2015

PINK1 Phosphorylation + Morais et al., 2014

PARK7 Chaperone + + + Hayashi et al., 2009; Heo
et al., 2012; Chen et al.,

2019

PLA2G6 Ceramide metabolism + + Kinghorn et al., 2015

GBA Unknown, probably regulating
mitophagy, GlcCer metabolism, and
NAD + production

+ + + Osellame et al., 2013;
Schöndorf et al., 2018

LRRK2 Unknown, probably regulating
mitophagy

+ + + Mortiboys et al., 2010

SNCA Mutant monomers or oligomers + + Chinta et al., 2010; Reeve
et al., 2015; Ludtmann

et al., 2018

Fibril-induced Lewy body formation + + + Mahul-Mellier et al., 2020

CHCHD2 Chaperone + Aras et al., 2015; Meng
et al., 2017

Transcription factor + Aras et al., 2015

UQCRC1 cIII core subunits + Unni et al., 2019; Lin et al.,
2020

“ + ” indicates evidence of direct or indirect interactions but the exact involved subunits are still unclear.

Since mitochondria are the major site of intracellular ROS
production, it is intuitive that DJ-1 plays an important role in
mitochondria physiology. The subcellular and submitochondrial
fractionation of mouse brains shows that abundant endogenous
DJ-1 is localized in mitochondria (Zhang et al., 2005). Depletion
of DJ-1 significantly reduced the oxygen consumption rate, ATP
production (Heo et al., 2012), and cI activity (Hayashi et al.,
2009). Proteomics assays revealed improper cI assembly in DJ-
1-deficient neuronal cells related to loss of CI-75kD (encoded
by Ndufs1) (Heo et al., 2012). Direct interactions of DJ-1 with
ND1 and with NDUFA4 were also reported (Hayashi et al., 2009).
Of note, NDUFA4 is a subunit of cIV, rather than within cI as
initially considered (Balsa et al., 2012). Whether cIV activities are
influenced by DJ-1 remains unknown.

Recently, Chen et al. (2019) showed DJ-1 binds to the
F1FO ATP synthase β subunit. ATPase β subunit is crucial
for maintaining the mitochondrial membrane potential through
inhibition of proton leakage from the pores formed by the
c-subunit of cV, thereby enhancing the ATP synthesis (Alavian
et al., 2014). The ATPase β subunit was decreased in DJ-
1 knockout mice, thus the ATP production, mitochondrial
membrane potential, and neurite outgrowth of dopaminergic
neurons were all compromised (Chen et al., 2019). The
interactions of DJ-1 and ATP synthase β subunit again
demonstrate its role as a mitochondrial chaperone.

PLA2G6: ETC Dysfunction and Lipid Imbalance
PLA2G6-associated neurodegeneration (PLAN) consists of a
series of rare diseases: infantile neuroaxonal dystrophy (INAD),
atypical neuroaxonal dystrophy (ANAD), dystonia-parkinsonism
(DP), and autosomal recessive early onset parkinsonism (AREP).

Among them, DP and AREP are both characterized by adult-
onset as well as levodopa-responsiveness, and are not reported
until 2009 and 2011, respectively (Paisan-Ruiz et al., 2009; Shi
et al., 2011). Though previously under-reported, recent studies
showed that PLA2G6 might contribute to early onset PD as
frequently as 0.54–1.3%, more common than DJ-1 (Kumar et al.,
2020; Zhao et al., 2020).

PLA2G6 encodes a group VIA calcium-independent
phospholipase A2β enzyme (iPLA2β), which is responsible for
the selective hydrolysis of glycerophospholipids to generate fatty
acids and lysophospholipids (Jenkins et al., 2006). In PLA2G6-
knockout mice, granules containing collapsed mitochondria
were observed in axons (Beck et al., 2011). In iPLA2-VIA (the
homolog of PLA2G6) null Drosophila, aberrant mitochondria
with reduced respiratory chain activities of cI and cII or ATP
production were demonstrated (Kinghorn et al., 2015; Lin et al.,
2018). These changes, however, are unlikely associated with
changes in cardiolipin composition (Kinghorn et al., 2015),
which is the main component of mitochondria inner membrane.
Lin et al. showed that none of the glycerophospholipids
significantly changed in iPLA2-VIA null Drosophila. Rather, they
showed a decrease in ceramide phosphoethanolamines, and an
increase in ceramides, dihydroceramides, and other sphingolipid
intermediates (Lin et al., 2018). Some ceramides are associated
with compromised respiratory chain activities, increased ROS
production, impaired mitochondria membrane potential,
mitophagy, and apoptosis (Kogot-Levin and Saada, 2014).
By using liquid chromatography-tandem mass spectrometry
(LC-MS/MS), it was revealed that subunit 2 of cIV might have
allosteric interactions with C6-ceramide (Kota et al., 2012).
Reduced cIV activities were found in the liver of ceramide
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TABLE 2 | Canonical OXPHOS functions of the mitochondrial complex subunits
affected by PD-associated genes in Table 1.

Complex Subunits* Functions Associated
PD genes

Complex I NDUFB8 An accessory subunit of the P
module

PRKN, PINK1

NDUFS2 A core subunit of the Q module PRKN, PINK1

NDUFB11 An accessory subunit of the P
module

PRKN, PINK1

NDUFA7 An assembly subunit PRKN, PINK1

NDUFV2 A core subunit of N module PRKN, PINK1

NDUFA5 An accessory subunit of Q module PRKN, PINK1

NDUFA9 An accessory subunit of Q module PRKN, PINK1

NDUFA13 An accessory subunit of P module PRKN, PINK1

NDUFA8 An accessory subunit of P module PRKN, PINK1

NDUFB10 An accessory subunit of P module PRKN, PINK1

NDUFS3 A core subunit of the Q module PRKN, PINK1

NDUFS1 A core subunit of the N module PRKN, PINK1,
PARK7

NDUFA10 An accessory subunit of P module PINK1

ND1 An core subunit of P module PARK7

Complex II SDHB An enzymatic subunit PRKN, PINK1

Complex III UQCRB Maintaining Cytochrome b stability
with UQCRQ

PRKN, PINK1

UQCRC2 A core subunit of cIII; in situ
processing of UQCRFS1
(probable)

PRKN, PINK1

UQCRC1 A core subunit of cIII; in situ
processing of UQCRFS1
(probable)

-

UQCRFS1 A core subunit of cIII, responsible
for transducing electrons from
Cytochrome b to Cytochrome c-1

UQCRC1

CYC1 To reduce cytochrome c UQCRC1

UQCRQ Maintaining Cytochrome b stability
with UQCRB

UQCRC1

UQCR10 Unclear UQCRC1

UQCR11 Unclear UQCRC1

Complex IV COX5A Response to hypoxia and regulate
NO production

PRKN, PINK1

COX4I1
and-2

Modulation of oxygen affinity PRKN, PINK1,
CHCHD2

COX2 To oxidize cytochrome c PRKN, PINK1

NDUFA4 CIV maintenance PARK7

Complex V ATP5L, 5L2 A subunit of the F0 domain PRKN, PINK1

ATP5H,
ATP5HL1

A subunit of the F0 domain PRKN, PINK1

ATP5F1 A subunit of the F0 domain PRKN, PINK1

ATP5PO A subunit of the F0 domain PRKN, PINK1

ATP5F1B A subunit of the F1 domain PARK7, SNCA

*All designated by human gene names.

synthase 2 deficient mice where very long acyl chain (C22-C24)
ceramides were barely detectable while C16-ceramide was
accumulated (Zigdon et al., 2013). In cells that have excessive
levels of dihydroceramide and dihydrosphingolipids due to the
lack of dihydroceramide desaturase 1, the activities of cI and
cIV (especially the latter) were inhibited (Gudz et al., 1997). In

these animal models, it is still not clear whether cIV activity is
affected by PLA2G6/iPLA2-VIA and how the imbalance of lipids
influences cI and cII.

GBA1: Lysosomal Dysfunction Linking to ETC
Impairment
GBA1 is not a traditional PARK-designated gene. Its biallelic
mutations cause Gaucher’s disease, which is a lysosomal storage
disease. However, increasing reports have identified GBA1
variants as common risk factors of PD (Lwin et al., 2004; Iwaki
et al., 2019). The combined odds ratio of any GBA1 mutant in
PD patients versus controls was as high as 5.43 (95% CI, 3.89 to
7.57) according to an international multi-center study, with the
most common variants being N370S and L444P (Sidransky et al.,
2009). PD patients with GBA1 variants have a more aggressive
motor deterioration and accelerated course of dementia than
other PD patients (Stoker et al., 2020).

GBA1 encodes β-glucocerebrosidase (GCase), a lysosomal
enzyme hydrolyzing glucosylceramide (GlcCer) into glucose
and ceramide. The enzyme activity of GCase decreases in
mutation carriers and elder individuals (Rocha et al., 2015;
Hallett et al., 2018). In contrast to the PLA2G6 mutants
that cause accumulation of ceramide, GCase deficiency results
in the accumulation of GlcCer, as well as alterations of
glucosylsphingosine (GlcSph), sphingosine (Sph), sphingosine-1-
phosphate (S1P) in different brain regions (Muñoz et al., 2021).
GCase deficiency impaired lysosomal recycling (Magalhaes et al.,
2016) and lysosomes enriched with GlcCer accelerates and
stabilizes soluble α-Syn oligomers, which eventually become
amyloid fibrils (Mazzulli et al., 2011). GCase deficiency
also causes significant mitochondrial morphological changes,
decreased oxygen consumption rate, and reduced respiratory
chain complex activities (Osellame et al., 2013; Schöndorf et al.,
2018).

The mechanism of how a lysosomal enzyme such as GCase
influences ETC is elusive. In gba knockout mice inhibited
activities of cI and cII-III, but not cIV, were observed. Reduced
co-localization of mitochondrial marker with LC3 and parkin
recruitment suggested impaired mitophagy which might explain
the compromised ETC activities (Osellame et al., 2013). However,
the mitophagy theory unlikely explains the discrepancy between
cIV and other complexes (Gegg and Schapira, 2016). CoQ, which
transfers electrons from cI and cII to cIII, has been shown
beneficial for mitochondrial function in fibroblasts from patients
of Gaucher disease (de la Mata et al., 2015), but definite evidence
showing deficits of CoQ in GCase depleted cells is lacking.

The ETC dysfunction can also result from alterations
of mitochondrial metabolism. In iPSC neurons derived
from PD patients carrying GBA1 variants, cI perishment
with decreased expression of nicotinamide mononucleotide
adenylyltransferases2 (NMNAT2) was found. Supplementation
of NAD+ precursor nicotinamide riboside rescued mitochondrial
defects and autophagy. The lipidomic analysis of mitochondria
showed no accumulation of GlcCer in mitochondria except for
C16-GlcCer (Schöndorf et al., 2018). Where do the C16-GlcCer
exactly locate and whether it regulates ETC functions are
still unanswered.
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LRRK2: A Master Kinase Regulating the
Mitochondrial Quality Control System
Mutations in LRRK2, which encodes the leucine-rich repeat
kinase 2 (LRRK2), are the most prevalent causes of autosomal
dominant PD worldwide. LRRK2-associated PD (LRRK2-PD) are
characterized by late-onset (>60 years), with clinical features
and treatment response resembling idiopathic PD (Tan et al.,
2019; Lesage et al., 2020; Zhao et al., 2020). G2019S is the
most common variant in Europe and North America, accounting
for 4% of familial PD and 1% of sporadic PD (Healy et al.,
2008), while in Asia this variant is rare but prominent allelic
heterogeneity was observed (Foo et al., 2017, 2020). One of
the main features of LRRK2-PD is its incomplete penetrance
which varies among each variant and even different ethnicities
(Trinh et al., 2014). A polygenic risk score has been developed
to predict the vulnerability of G2019S carriers, and genes
involving the vacuolar functions, lysosomal functions, and
endocytic pathways were included (Nalls et al., 2019). Recent
studies suggested that mitochondrial DNA damage is also a
potential biomarker in LRRK2-PD (Gonzalez-Hunt et al., 2020).
Reduced cI activities and increased mitochondria DNA copy
number were observed in fibroblasts derived from G2019S PD
patients than from carriers (Delcambre et al., 2020), implying
mitochondria in association with the incomplete penetrance of
the G2019S variant.

LRRK2 is an enzyme with both kinase and GTPase activities
(Berwick et al., 2019). The kinase activity of LRRK2 is responsible
for phosphorylation of a subset of Rab small GTPase (Steger
et al., 2016), which are important for exocytosis of synaptic
vesicles, and endolysosomal and Golgi apparatus protein sorting
(Bae and Lee, 2020). Most PD-associated LRRK2 mutations
represent gain-of-function alleles: the G2019S and I2020T in the
kinase domain cause hyper-phosphorylation of Rabs (West et al.,
2005; Gloeckner et al., 2006), and R1441C/G/H in the Roc-COR
domain increase kinase activities through disruption of the GTP
hydrolysis activity (Weiss, 2008). Hyperphosphorylation of the
Rabs disrupts their interaction with GTP/GDP exchange factors
(GEFs), and Rab GDP dissociation inhibitors (GDIs), resulting
in their inactivation and membrane-cytosol redistribution
(Steger et al., 2016).

Accumulating evidence has shown the impairment of
mitochondria in LRRK2 mutants. Fibroblasts from LRRK2-
PD patients exhibited defects including reduced mitochondria
membrane potential, decreased ATP production, and decreased
activities of complexes I, II, and IV than healthy controls.
Elongation of mitochondria and increased interconnectivity
of mitochondria were also observed in LRRK2-PD fibroblasts
(Mortiboys et al., 2010). LRRK2 is recruited to the mitochondrial
outer membrane by mitochondria-anchored Rab29 (also called
Rab7L1) (Gomez et al., 2019). RAB29 is also a risk gene of
PD identified in PARK16 loci from several GWASs (Satake
et al., 2009), and in addition to mitochondria Rab29 is also
distributed at trans-Golgi network, lysosomes, and autophagic
vesicles to regulate membrane trafficking, lysosome homeostasis,
and axonal transport of autophagosomes with LRRK2 (Eguchi
et al., 2018; Liu et al., 2018; Boecker et al., 2021). When gain-
of-function LRRK2 mutants are anchored to mitochondria, it

phosphorylates and traps Rab10 nearby (Gomez et al., 2019),
causing decreased interaction of Rab10 with OPTN (optineurin),
which is an autophagy receptor, therefore impairing mitophagy
(Wauters et al., 2020). LRRK2 also regulates mitophagy
through interaction with Miro, which anchors mitochondria to
microtubules in mitochondria axonal transport (Hsieh et al.,
2016). In mitophagy, PINK1/parkin-dependent phosphorylated
Miro is targeted to proteasome degradation, thus “quarantining”
damaged mitochondria from further transport (Wang et al.,
2011). Upon CCCP treatment, Miro interacting with wild-type
LRRK2 was degraded with time, while in the LRRK2 G2019S
mutant, Miro showed decreased interaction with the mutant as
well as resistance to degradation, delaying mitochondrial arrest
and clearance in iPSC-derived neurons (Hsieh et al., 2016).
In addition to mitophagy, LRRK2 is also involved in other
mitochondrial quality control pathways like fusion and fission
and its cytoskeleton dynamics and trafficking (Singh et al., 2019).
Although evidence showing direct regulation of ETC by LRRK2
is limited, these quality control systems mentioned earlier do
have profound impacts on ETCs. A recent in vitro study showed
that PINK1-dependent phosphorylation of Ser111 of Rab8A
antagonistically regulates the phosphorylation of Thr72 of Rab8A
by LRRK2 (Vieweg et al., 2020), suggesting that there might be
even closer crosstalk between the two master kinase.

SNCA: A Vicious Cycle of Proteinopathy and
Mitochondriopathy
SNCA is the first identified gene associated with PD in 1997
(Polymeropoulos et al., 1997). While α-synuclein (α-Syn), which
is encoded by SNCA, is one of the fundamental components
in the Lewy body, patients with SNCA mutants (A30P, E46K,
H50Q, G51D, A53E, and A53T) or multiplications are really
rare, characterized by autosomal dominant inheritance, widely
distributed age of onset (from 19 to 81 years), and more rapid
cognitive impairment (Rosborough et al., 2017). Physiologically
α-Syn is soluble in the cytosol, mainly located at presynaptic
terminals to regulate the genesis, maintenance, and release of
presynaptic vesicles (Kahle et al., 2000; Cabin et al., 2002;
Burré et al., 2010). The α-synucleinopathy results from the
imbalance among synthesis, aggregation, and clearance of α-Syn.
As a result, aggregation of α-Syn takes place in the cytosol
or around membranes. The conformations of the aggregates
include oligomers, protofibrils, and fibrils (Lashuel et al., 2013).
Accelerated oligomerization is the common trait among different
disease mutants (Conway et al., 2000), and a higher propensity of
fibrilization might correlate to the earlier onset age in A53T than
A30P or E46K (Conway et al., 1998; de Oliveira and Silva, 2019).
Post-translational modifications like phosphorylation at Ser129
and truncation at the carboxyl terminal are also pathogenic
(Sato et al., 2011; Sorrentino and Giasson, 2020), while Ser87 is
protective (Oueslati et al., 2012).

Both oligomers and fibrils (especially the amyloid fibrils) are
toxic to mitochondria (Lashuel et al., 2013). Overexpression
of α-Syn, cytosolic acidification, and Ser129 phosphorylated
pathogenic α-Syn could all induce translocation of α-Syn
to mitochondria (Cole et al., 2008; Shavali et al., 2008;
Wang et al., 2019). By using a split-GFP tool, the translocated
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α-Syn was found distributed at the OMM and IMS but not in the
matrix. Mutants (A30P and A53T) were more likely translocated
to the IMS than the wild-type, and more α-Syn would be
translocated to IMS upon oxidative stress or cI inhibition (Vicario
et al., 2019). In turn, α-Syn inhibits cI activities in either
monomer or oligomerized form (Chinta et al., 2010; Reeve et al.,
2015; Ludtmann et al., 2018). Oligomeric α-Syn also selectively
oxidized the ATP synthase β subunit and caused mitochondrial
lipid peroxidation and increased mitochondrial permeability
transition pore opening (Ludtmann et al., 2018). These suggest
a vicious feed-forward loop between α-Syn aggregation and
mitochondrial dysfunction.

Synergistic with oligomers, α-Syn fibrils impairs mitochondria
by sequestering mitochondria and other organelles into Lewy
bodies. Mahul-Mellier et al. (2020) added preformed fibrils (PFF)
of α-Syn exogenously to the cultured neurons and found that at
day 14 inclusions composed of loose fibrils start to interact with
organelles, and at day 21 high enrichment of proteins from the
mitochondria (including complexes I, II, and V), the endoplasmic
reticulum, and the Golgi were detected in the Lewy body-like
inclusions, corresponding to the reduction of the maximum
OXPHOS capacity and maximum electron transport capacity at
day 21. The important discovery links the two competitive but
not conflicting theories of proteinopathy and mitochondriopathy
in PD pathogenesis.

UQCRC1 and CHCHD2: Two Recently Found
PD-Causing Genes Implicating Apoptotic Neuronal
Death
The association between CHCHD2 and autosomal dominant
late-onset PD was discovered in four independent families
through genome-wide linkage analysis (Funayama et al., 2015).
CHCHD2 is a member of the coiled-coil-helix-coiled-coil-helix
(CHCH) domain-containing protein family known to participate
in mitochondrial respiration, redox regulation, membrane
ultrastructure, and dynamics in the IMS (Modjtahedi et al.,
2016). CHCHD2 binds with cIV and regulates its activity.
Under hypoxia, CHCHD2 activates the transcription of itself
and COX4I2, which encodes cIV subunit-4 isoform 2 (COX
IV-2) (Aras et al., 2015). The findings are compatible with the
clinical data showing that fibroblasts derived from a patient
with homozygous A71P mutant in CHCHD2 show reduced
cIV activity in addition to cI deficiency (Lee et al., 2018).
CHCHD2 is also important in maintaining the cristae structure
and preventing apoptosis. Cristae are the home of ETC complexes
and changes in the structure would alter the distribution of
mitochondrial complexes, thus influencing the efficiency of
OXPHOS (Gilkerson et al., 2003; Wilkens et al., 2013). In the
flight muscles of CHCHD2 null Drosophila, the mitochondrial
cristae structure was disorganized (Meng et al., 2017). Cristae
integrity is regulated by OPA1 and the MICOS complex (Baker
et al., 2019). In cells carrying PD-linked CHCHD2 mutations,
the expression level of MICOS components, such as Mitofilin,
MINOS1, CHCHD3, CHCHD6, were all reduced (Zhou et al.,
2019). In Drosophila, Chchd2 knockout increases the degradation
of OPA1 by peptidase YME1L (Liu W. et al., 2020). Similarly,
OPA1 degradation is also observed in CHCHD2 and CHCHD10

double-knockout mice (Liu Y. T. et al., 2020). Mass spectrometry
analysis reveals that CHCHD2 interacts with MICS1 (Meng
et al., 2017), which is involved in cristae organization and
cyt c stabilization, thereby prohibiting cells from apoptosis
(Oka et al., 2008).

UQCRC1 is a newly identified PD-causing gene that
is clinically characterized by autosomal dominant late-onset
parkinsonism with polyneuropathy (Lin et al., 2019, 2020).
UQCRC1 encodes the mitochondrial ubiquinol-cyt c reductase
core protein 1 (UQCRC1), which is a core subunit of
cIII. UQCRC1 complexes with UQCRC2 and interacts with
UQCRFS1, CYC1, and other cIII subunits to regulate cIII
activity (Sunitha et al., 2016; Unni et al., 2019). UQCRC1
and UQCRC2 are homologs to the mitochondrial-processing
peptidase subunits and are predicted to process UQCRFS1 in situ
during cIII assembly (Fernandez-Vizarra and Zeviani, 2018).
However, in vivo experimental validation is required.

To date, only three UQCRC1 human mutations have
been identified and functionally validated: Y314S, I311L, and
p.Ala25Glyfs∗27. All three mutants show reduced maximal
oxygen consumption rate, decreased ATP production, and
increased ROS in SH-SY5Y cell lines. Drosophila and mice with
the Y314S variant both showed degeneration of dopaminergic
neurons and locomotor defects (Lin et al., 2020), providing direct
evidence for the involvement of cIII in PD pathogenesis.

In addition to regulating cIII activities, UQCRC1 is
also anti-apoptotic. In cardiac cells, UQCRC1 prevents
ischemia/reperfusion injury by activating the PI3K/Akt/GSK-3β

pathway, upregulating the anti-apoptotic protein Bcl-2, and
downregulating the pro-apoptotic protein Bax (Yi et al., 2020).
In Drosophila, our recent data reveal that uqcr-c1 associates
with cyt c in mitochondria to gate its release (Hung et al., 2021).
Previous reports have shown that complex I and II mediate
signals for apoptosis (Lemarie and Grimm, 2011). Together,
these findings suggest that the respiratory chain complexes are
important regulators of apoptosis.

THE MANY FACES OF ETC PROTEINS:
FUNCTIONS BEYOND BIOENERGETICS
AND POSSIBLE IMPLICATIONS IN
NEURODEGENERATION

Abundant studies have focused on mitochondrial quality control,
lysosomal functions, apoptosis, and α-Syn aggregation in
PD pathogenesis and their influences on ETC functions. In
contrast, whether ETC proteins have any direct involvement
in these pathways other than bioenergetics remains unclear in
neurodegenerative diseases.

The roles of ETC proteins in apoptosis have been extensively
studied in cancer cell biology. Both cI and cII are implicated
as apoptotic sensors via different mechanisms. In cI, cleavage
of NDUFS1 by caspase-3 inhibits cI activities, causing ROS
production and collapse of mitochondria membrane potential.
The cleavage-resistant mutant NDUFS1 D255A decreases ROS
formation and delays the loss of plasma membrane integrity
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(Ricci et al., 2004), suggesting cI inhibition as an accelerator
of apoptosis. A similar mechanism is found in granzyme
A-induced apoptosis, in which NDUFS3 was cleaved (Martinvalet
et al., 2005). For cII, the acidification of matrix in response
to mitochondrial stress causes the disintegration of cII by
dissociating the anchoring subunit SDHC-SDHD from the
enzyme subunit SDHA-SDHB. As the SDHA-SDHB subunit
is still enzymatically active, it produces excessive ROS and
causes apoptosis. cII, therefore, is a pH sensor of the matrix in
programmed cell death.

The roles of complexes III and IV in apoptosis are less
clear, but the electron carrier between the two complexes, cyt
c, has been known as a key player by activating apoptosis
protease activating factor-1 (Apaf-1) when released to the cytosol.
Post-translational modifications, especially phosphorylation, of
cyt c have regulatory roles in both electron transport and
apoptosis (Kalpage et al., 2019a). Tissue-specific phosphorylation
of cyt c at Ser47 and Tyr97 that are enriched in porcine
brain tissues and insulin-treated porcine tissues, respectively
(Sanderson et al., 2013; Kalpage et al., 2019b), are both anti-
apoptotic not only by inhibiting caspase-3 activities (Kalpage
et al., 2019b) but also by reducing the cyt c-COX interactions
to lower the COX reaction rate and ROS generation (Lee et al.,
2006; Guerra-Castellano et al., 2018; Kalpage et al., 2019b). It is
not known whether the post-translational modifications of cyt c
alter any interactions with cIII. From the lessons of UQCRC1,
we now know that cIII can keep cyt c from being released
from mitochondria.

Emerging evidence disclosed that there are other moonlight
functions of cyt c. Abundant cyt c was shown to translocate
to the nucleus prior to caspase activation in the cytosol
during the early phase of apoptosis (Nolin et al., 2016).
The translocated cyt c hijacks histone chaperones such as
suppressor of variegation, enhancer of zeste and trithorax
(SET)/template-activating factor (TAF)-Iβ, inhibiting the
nucleosome assembly/disassembly activity and DNA repairing
(González-Arzola et al., 2015; Díaz-Moreno et al., 2018). DNA
damage is common in many neurodegenerative disorders,
including PD (Ainslie et al., 2021). Cyt c has also been
identified as one of the components of brainstem Lewy bodies
(Wakabayashi et al., 2007) and might play as a trigger in
α-Syn aggregation (Hashimoto et al., 1999). α-Syn fibrils rather
than mutant oligomers or monomers specifically interact
with cyt c according to an in vitro study (Leitão et al., 2021).
Whether similar aggregations could be replicated in vivo and
whether post-translational modifications of cyt c as mentioned
earlier have any effects on these moonlight functions are
still unknown.

Some evidence showed that ETC proteins are also involved
in mitophagy or autophagy. For example, autophagy is inhibited
by the cIII inhibitors Antimycin A or myxothiazol (Ma et al.,
2011). Another example is ECSIT (evolutionarily conserved
signaling intermediate in Toll pathways), which is essential in cI
formation (Vogel et al., 2007), found as a parkin substrate and
co-localized with LC3B in CCCP-treated macrophages (Carneiro
et al., 2018). Upon loss of ECSIT, parkin still accumulates on the
mitochondria, but the recruitment of LC3BII to mitochondria

is compromised. This suggested that parkin-induced ECSIT
ubiquitination is upstream of LC3BII recruitment for the
initiation of mitophagy (Carneiro et al., 2018), It is not clear
whether ECSIT participates in receptor-mediated mitophagy like
other mitochondrial outer membrane proteins such as FUNDC1,
NIX, and BNIP3. Further investigation is needed to elucidate
whether ECSIT mediates mitochondria clearance via a similar
mechanism in the nervous system.

DISCUSSION

In this review, we focus on the central role of ETC in
PD pathogenesis. We have discussed that ATP production
by mitochondria is directly or indirectly affected by reduced
turnover and altered post-translational modifications of ETC
proteins, impaired assembly or instability of mitochondrial
complexes, abnormal protein aggregation, and dysregulated lipid
metabolism. While mutations of ETC proteins are rarely linked
as a direct cause of PD (except for UQCRC1), impaired ETC
proteins may not only lead to excessive ROS production, but also
cause impeded mitophagy, α-Syn aggregation, and apoptosis in
PD pathogenesis.

It might be argued that for the long time scale of PD
progression, apoptosis is an acute cellular event that on the
surface does not perfectly explain the development of PD, but
when patients start to have detectable parkinsonism symptoms,
there is usually at least 40–60% dopaminergic neuronal loss
in the substantia nigra (Giguère et al., 2018), suggesting
progressive accumulation of neuronal loss. At the organismal
level, apoptosis of dopaminergic neurons occurs over time,
responding to stress such as aggregated proteins or ETC
dysfunction. At the cellular level, it takes time for a cell to reach
the threshold that breaks the balance between pro-apoptotic
and anti-apoptotic pathways. For example, ROS accumulation,
alterations of mitochondrial outer membrane permeability, and
the attenuation of antiapoptotic signals may fluctuate, and
mutant cells with the propensity of releasing cyt c do not
mean that it releases cyt c and activate caspases immediately.
This concept of ‘apoptotic threshold’ has been well illustrated
by a beautiful mathematical model (Rehm et al., 2006). In
fact, apoptosis has been implicated in many neurodegenerative
diseases, including PD (Moujalled et al., 2021). Although
it remains unclear whether loss of ETC function leads to
protein aggregation in vivo, apoptosis represents an important
pathogenic mechanism that warrants our attention.

In terms of mitochondrial dysfunction, the examples of
UQCRC1 and CHCHD2 have suggested that PD is not just a cI
disorder. Various genetic models of PD have now shown deficits
in cII to cV. The conventional belief of PD as a cI disorder might
be the result of publication bias or study limitations in earlier
studies. It has been shown that even in cI, the significance of the
deficiency could be influenced by the purity of the samples and
the assays we use (Parker et al., 2008). By using high-resolution
quantitative fluorescence immunohistochemistry, Reeve et al.
found that both cI and cIV were deficient in the remaining
dopaminergic synapses of idiopathic PD (Reeve et al., 2018). By
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using imaging mass cytometry, a recent study revealed that there
is even more widespread deficiency from complexes I to V in the
postmortem human midbrain (Chen et al., 2021), contrary to the
findings of earlier studies that were based on the measurements
of biochemical activities only.

Mitochondrial therapies have been proposed as a potential
treatment of PD (Thomas and Beal, 2010); however, many
attempts have failed. The anti-diabetic drugs glitazones which
improves mitochondrial functions (such as activities of cI
and cIV) and biogenesis (Bogacka et al., 2005; Ghosh et al.,
2007) did lower the incidence of PD in retrospective cohort
studies (Brauer et al., 2015; Brakedal et al., 2017), but failed
to show benefits in modifying disease progression of early
PD (NINDS Exploratory Trials in Parkinson Disease (NET-
PD) FS-ZONE Investigators, 2015). The randomized clinical
trial of high dose CoQ did not slow disease progression
(Beal et al., 2014). The limited bioavailability of CoQ has
been considered as one of the main reasons for its failure
(Bhagavan and Chopra, 2007). Longer follow-up or earlier
administration of the drugs at prodromal stages may be
necessary to reveal the potential benefits. Idebenone, a synthetic
short-chain analog of CoQ with improved lipophilicity and
bioavailability (Becker et al., 2010), having been approved as
an orphan drug in treating LHON by European Medicines
Agency (EMA) (European Medicines Agency [EMA], 2021) and
Duchenne muscular dystrophy by the United States Food and
Drug Administration (FDA) (Pharmaceuticals, 2015), is tested
in two PD clinical trials: (1) Idebenone Treatment of Early
Parkinson’s Disease symptoms (ITEP) (NCT03727295), and (2)
A Study of Efficacy and Safety of Idebenone vs. Placebo in
Prodromal Parkinson Disease (SEASEiPPD) (NCT04152655).
The recruitment status of the former is due to end in May 2021,

while the latter is still recruiting and is scheduled to complete
by January 2023.

In conclusion, ETC dysfunction is a common feature in
PD, secondary to various pathomechanisms. Increasing evidence
has shown that cI is not the only affected ETC complex.
Other complexes, such as cIII and cIV, are also involved. ETC
dysfunction not only reduces ATP production but also induces
apoptosis or impaired mitophagy that undermines neuronal
viability in PD. So far there is still no silver bullet to prevent or
to ameliorate PD progression. Non-etheless, new compounds or
existing drugs await testing as potential therapeutic strategies for
PD via improving ETC functions (Singh et al., 2021).
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