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Abstract: The skin is the largest organ in the human body, comprising the main barrier against
the environment. When the skin loses its integrity, it is critical to replace it to prevent water loss
and the proliferation of opportunistic infections. For more than 40 years, tissue-engineered skin
grafts have been based on the in vitro culture of keratinocytes over different scaffolds, requiring
between 3 to 4 weeks of tissue culture before being used clinically. In this study, we describe the
development of a polymerizable skin hydrogel consisting of keratinocytes and fibroblast entrapped
within a fibrin scaffold. We histologically characterized the construct and evaluated its use on an
in vivo wound healing model of skin damage. Our results indicate that the proposed methodology
can be used to effectively regenerate skin wounds, avoiding the secondary in vitro culture steps and
thus, shortening the time needed until transplantation in comparison with other bilayer skin models.
This is achievable due to the instant polymerization of the keratinocytes and fibroblast combination
that allows a direct application on the wound. We suggest that the polymerizable skin hydrogel is
an inexpensive, easy and rapid treatment that could be transferred into clinical practice in order to
improve the treatment of skin wounds.

Keywords: skin regeneration; tissue engineering; cellular therapy; hydrogel

1. Introduction

The skin is the largest organ of the body accounting for about 15% of the total body
weight in adults [1]. Skin performs many vital functions including protection (UV light
absorption, pathogens, mechanical), perception (touch, temperature, pain) and regulation
(thermal, hydration, excretion) [2]. Skin injuries caused by burns, chronic ulcers and genetic
or somatic diseases cause loss of skin integrity that compromises the skin barrier and
impairs its physiological functions; requiring effective treatment to prevent morbidity and
mortality [3]. In cases where a significant amount of skin tissue is lost due to injury, it
is essential to replace it to prevent water loss and to mitigate the risk of opportunistic
pathogens that could lead to infections. The World Health Organization (Geneva, Switzer-
land) estimates that nearly 11 million burn injuries per year worldwide require medical
attention, with approximately 180,000 leading to death [4,5].

To restore damaged skin, different skin models developed by tissue engineering are
used [6]. Since keratinocytes were successfully cultured in the laboratory 40 years ago [7],
the transplant of autologous keratinocyte sheets became a relatively common clinical
practice, however it still presents many limitations that prevent its worldwide adoption:
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fragility, difficult handling, unpredictable take rate, high cost and sensitivity to mechanical
forces due to the lack of a dermal component [8,9]. In the following years, the development
of bilayer skin substitutes was attempted in order to mitigate these limitations. Each
bilayer skin substitute model has its own characteristics but all of them have in common a
first epithelial layer and a second dermal layer below it. The dermal component of these
substitutes can be composed of synthetic substrates [6], acellular protein matrix [10,11],
decellularized dermis [12] or fibroblasts dispersed within protein scaffold [13]. In the
last case, fibrin, a component derived from blood plasma, has been widely used as a
scaffold to develop human dermis equivalents, having the advantages of low price, high
availability and good tolerance to keratinocytes and fibroblasts [14,15]. Additionally, fibrin
can be produced as an autologous scaffold [16]. However, these bilayer approaches require
incubation periods ranging from 3 to 4 weeks to form a fully differentiated epithelium prior
to transplant.

Guided by our experience producing skin equivalents based on plasma for human
transplantation [17–21], we attempt to produce a completely autologous polymerizable
skin that can be fabricated directly onto the wound bed. Moreover, the thickness of this
hydrogel does not limit its nutrition from the vascular network present in the wound bed.

Polymerizable hydrogels are gaining much recent attention due to their soft properties
similar to extracellular matrix, adjustable physical and chemical properties, and their
ability to fill any irregular shape wound [22]. They can keep wounds moist, absorb excess
tissue exudate, allow gas permeation, rehydrate eschar, aid in autolytic debridement,
protect wounds against infection, scavenge free radicals [23] and can act as a reservoir for
therapeutic agents or other chemical substances [24,25].

In this study, we have developed a two-component hydrogel, consisting of thrombin
concentrate (polymerization-inducing agent) and fibrinogen (clotting component). This
system allows the hydrogel to be stably deposited on the wound bed and to instantaneously
polymerize. Here, we describe our proof-of-concept study to engineer human skin in a
layer-by-layer assembly process using fibroblasts and keratinocytes as representative cell
types. We proved that this polymerizable skin hydrogel can be applied directly onto the
wound, avoiding the previous culturing and differentiation processes of conventional
skin equivalents, and decreasing the cost-effectiveness ratio by reducing the time of skin
production. We present a novel fully autologous approach in which all its components
could be easily obtained from the patient itself. We show the outcome of the in vitro results
of this new model of polymerizable human skin hydrogel, as well as a histological study of
the wound healing animal model treated with this hydrogel.

2. Results
2.1. Analysis of Thrombin Concentrate and Fibrinogen Samples

Thrombin activity and fibrinogen concentration were quantified. The stability of these
two parameters after freezing and thawing at different times was also studied.

The average concentration of fibrinogen in the FFPs was 1.92 ± 0.51 g/L. The average
enzymatic activity in the thrombin concentrate was 2225.02 ± 952.00 UI/mL, and the pH
was kept close to 7.0 in all cases. Thrombin concentrate activity and fibrinogen concentration
did not show any significantly statistical difference after freeze storage at −80 ◦C up to
30 days (Figure 1).
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Figure 1. Analysis of thrombin concentrate and fibrinogen samples. (A) Fibrinogen concentra-
tion (g/L) in each FFP used. (B) Enzymatic activity (UI/mL) in each thrombin concentrate pro-
duced. (C) Standard curve used to calculate the enzymatic activity of each thrombin concentrate
[y (UI/mL) = −3.4503 × x(s) + 161.09]. (D) Fibrinogen concentration (g/L) variation after storage at
−80 ◦C and thawing at different times up to 30 days. Samples did not show a significative depletion
(p > 0.05). (E) Enzymatic activity (UI/mL) variation after storage at −80 ◦C and thawing at different
times up to 30 days. Samples did not show a significative depletion (p > 0.05). Data expressed as
mean ± SD.

2.2. Viability Assay

Thrombin concentrate and fibrinogen toxicities were studied in fibroblasts.
Neither thrombin concentrate nor fibrinogen significantly reduced cell viability in fi-

broblasts after 24 h exposure (Control: 98.16± 2.03%; Thrombin concentrate: 83.93 ± 21.43%;
Fibrinogen: 98.64 ± 1.36%). Moreover, there was no statistical difference between cell den-
sities after the exposure period between any group (Control: 271 ± 27 cells/cm2; Thrombin
concentrate: 242 ± 29 cells/cm2; Fibrinogen: 232 ± 20 cells/cm2) (Table 1).
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Table 1. Viability assay. Fibroblasts viability and cell density after being cultured in the presence
of thrombin concentrate and fibrinogen. Samples prepared from FFPs did not show toxicity in
fibroblasts since the number of cells per cm2 and the cell viability did not decrease significatively.

Group Cell Viability (%) Cell Density (Cells/cm2)

Control 98.16 ± 2.03

p > 0.05

271 ± 27

p > 0.05Thrombin
Concentrate 83.92 ± 21.43 242 ± 29

Fibrinogen 98.64 ± 1.36 232 ± 20

2.3. Polymerizable Hydrogel Formation

The fibrinogen could not form fibrin hydrogels in the absence of thrombin. The time of
polymerization was less than the sensitivity of the fibrin timer (≤5 s) after mixing fibrinogen
with the thrombin concentrate.

2.4. In Vitro Fabrication of Polymerizable Skin Hydrogel

Both skin hydrogel polymerization and cell growth were analyzed in vitro.
Polymerizable skin hydrogels fabricated with thrombin concentrate were not homo-

geneous. The rapid speed of polymerization caused bulges on the surface of the gels. So
thrombin concentrate diluted 1:10 in calcium buffer, was used for the following experi-
ments. Polymerizable skin hydrogels fabricated with diluted thrombin concentrate, were
homogeneous, attached to the transwell membrane and did not retract during the culture
period or during the air-liquid interface phase.

The immunofluorescence studies showed that the keratinocyte hydrogel layer ap-
peared firmly attached to the fibroblast-containing fibrin hydrogel. Both keratinocytes and
fibroblasts were viable and grew in their respective layers occupying the entire surface
homogeneously (Figure 2).

Figure 2. Immunofluorescence study of skin hydrogels fabricated in vitro after 7 days of air-liquid
culture. Continuous keratinocyte layer (in red, excitation/emission: 480/527, labelled with anti-
human high molecular weight cytokeratin antibody) firmly attached to the underlying fibroblasts-
containing hydrogel. Fibroblasts (in green, excitation/emission: 360/470, labelled with anti-vimentin
antibody) grew homogeneously across the dermal layer. Scale bar: 50 µm.
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2.5. In Vivo Fabrication of Polymerizable Skin Hydrogel

Both skin hydrogel polymerization and wound healing were analyzed in vivo.
Polymerizable skin hydrogels fabricated with diluted thrombin concentrate were not

able to attach to the wound bed. The polymerization time was very slow and no adhesion
to the surrounding tissue was observed. The hydrogel was spilled on the back of the mice,
not being able to remain in the wound until coagulation was completed.

In contrast polymerizable skin hydrogel fabricated with thrombin concentrate adhered
to the wound bed and its edges, and did not show any detachment before being covered
with the devitalized skin in any case. The devitalized skin shrank and spontaneously
detached from back of the mouse 14–21 days after transplant. After detachment of the
devitalized skin, the regenerated human skin appeared darker and thinner than the sur-
rounding tissue. The skin was completely regenerated, and the wounds were healed and
closed in all cases (Figure 3). The control group (hydrogel without human cells) showed no
difference with respect to the group treated with the polymerizable skin in terms of wound
healing time.

Figure 3. In vivo fabrication of polymerizable skin hydrogel. (A) In vivo extrusion of the polymeriz-
able skin hydrogel. (B) Extruded hydrogel on the wound bed at room temperature remained stable
without leaking. (C) Devitalized murine skin sutured to the dorsum of the mouse after surgery.
(D–F) Wound healing follow-up. Devitalized skin shrank and detached gradually from the back
of the mouse. (G) Regenerated human skin in the back of the athymic mouse. Wound completely
healed after 21 days.

The immunohistochemical study of the group treated with the polymerizable skin
showed the formation of a keratinized epithelium over a dermal layer, which were recog-
nized by human specific anti-involucrin, anti-cytokeratin 10 and anti-vimentin antibodies.
Cytokeratin 10 and involucrin were expressed in the spinous, granulous and corneal layers
and vimentin was expressed in the human fibroblasts located in the dermis. Immunohisto-
chemical studies of control group (treated with hydrogel without human cells) revealed, as
expected, absence of labelling for the aforementioned antibodies (Figure 4).
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Figure 4. Immunohistochemistry study of the regenerated skin in athymic mouse. 21 days after
treatment with the polymerizable skin hydrogel, the human regenerated skin showed positive
labelling for involucrin and cytokeratin 10 in the suprabasal layers. Vimentin labelled full thickness of
human dermis and some cells located into the dermis of the grafted area. Scale bars: 50 µm. Vimentin
scale bar: 200 µm. In the control group (hydrogel without human cells) wound closure is achieved
by murine cells from the wound edges. Biopsies from the treated area showed no labelling for the
antibodies used.

3. Discussion

This study shows the development of a new polymerizable skin hydrogel based on
FFP and containing both dermal and epidermal cells. This hydrogel can be applied directly
over a wound bed thanks to the rapid polymerization and allows skin regeneration in
a full thickness wound model. The polymerizable skin hydrogel described here opens
the possibility of a complete autologous system in which all the components (fibroblasts,
keratinocytes, fibrinogen and thrombin concentrate) come from the patient themselves.

Clotted plasma is the naturally occurring temporary wound cover involved in efficient
re-epithelization and connective-tissue reorganization [17]. Plasma factor I (fibrinogen)
is a polymerizable protein, and it represents the clotting faction, while plasma factor
IIa (thrombin) is a serine protease that converts soluble fibrinogen into insoluble fibrin
strands. Both fibrinogen and thrombin are medical products commonly used in clinical
practice. The use of FFP to obtain both components of the hydrogel has the advantage
of being cheap, readily available and could prevent the transmission of communicable
diseases and immunological reactions if it is obtained from an autologous origin [14–16].
Additionally, fibrinogen and thrombin concentrate can be stored with high stability for
future use if the patient requires several procedures. These results are consistent with
previous studies [26–28], where it was proven that coagulation factors are stable when
stored at temperatures lower than−20 ◦C for 24 months without significant changes in most
coagulation factors including the fibrinogen and the thrombin, allowing the preservation
of this biomaterials for long periods of time.
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Neither viability nor cell density was impaired in the presence of fibrinogen or throm-
bin concentrate. We must recognize that these studies were performed only with dermal
fibroblasts because keratinocytes cannot be cultured in the absence of feeder cells, and
the latter could invalidate the results by not being able to be distinguished from the ker-
atinocytes. Nevertheless, the fact that the keratinocytes remained in the wound and were
able to regenerate human skin in the murine wound healing model suggests that the
viability of these cells has not been affected.

In previous models of bioengineered skin based on clotted plasma, coagulation is ob-
tained by recalcification which usually takes between 15–30 min, is temperature dependent
(it does not occur at temperatures <37 ◦C) [13,17,29,30] and constitutes solely the dermal
layer. In a secondary step, keratinocytes need to be cultured over the fibroblasts-containing
fibrin dermal equivalent, covered with culture medium and cultured for several days prior
to its use [13,17]. The polymerizable skin hydrogels described here consist of entrapped
fibroblasts and keratinocytes on a fibrin substrate that are clotted using active thrombin
concentrate, purified from FFP, in a process that last less than 5 s at room temperature. The
fast polymerization of the skin hydrogel allowed it to fix itself to the edges of the wounds
without any detachment, which would be impossible using calcium chloride.

The polymerizable skin model was able to support the proliferation of both cell types
(fibroblasts and keratinocytes), both in vitro and in vivo. Cells grew and presented their
characteristic morphology until the end of the culture as shown by immunohistochemical
studies. Dispersedly distributed keratinocytes entrapped within the hydrogel were able to
form a continuous cell layer over the dermal component as seen after 11 days of in vitro
culture. Even though the level of differentiation was not the same as that observed in the
in vivo model, this does not exclude this approach from being capable of providing viable
cells to the wound bed, which can promote the correct formation of an epidermis in vivo,
as showed after 21 days of maturation in vivo. These findings are consistent with those
described by Mazlyzam [31] who demonstrated the formation of a living bilayer human
skin equivalent fabricated with entrapped keratinocytes and fibroblasts on independent
layers of human fibrin coagulated with calcium chloride.

As well as in previous bioengineered skin models, primary cultures of fibroblasts and
keratinocytes must be performed in order to obtain a sufficient number of cells to generate
the bioengineered skin or the polymerizable hydrogel. One of the advantages of this new
polymerizable skin model is that it is rapidly used since it can be applied without the need
for a secondary culture of keratinocytes over the fibroblast containing dermal matrix. In
contrast with previous models in which, this secondary cultivation would take at least
10 additional days.

The concentrated thrombin showed such a fast polymerization rate that it was difficult
to deposit the polymerizable skin hydrogel homogeneously on the flat, dry transwell sur-
face. By diluting the thrombin concentrate we were able to slow down the polymerization
rate to suit our needs. In the in vivo fabrication model, it was decided to use the thrombin
concentrate directly to be able to apply the polymerizable skin hydrogel to an irregular,
convex and wet wound surface without spilling it. In this case, the polymerizable skin
hydrogels were produced by a similar method to the ones that are used to generate fibrin
glues, which are characterized by their high adhesion forces [32] and already showed to be
of good use in oral and maxillofacial surgeries [33,34], ophthalmological surgeries [35,36]
and to prevent bleeding after gastric endoscopic dissection [37].

The regenerated tissue obtained after implantation of the polymerizable skin hydrogel
in a full-thickness wound model showed complete maturation and integration in the host
tissue despite not being cultured prior to transplantation as evidenced by the immunohisto-
chemistry results. Human fibroblasts are disseminated in the murine dermis, contributing
together with recipient’s cells, to dermal regeneration. Epithelial cells were surrounded
by the host tissue, and the regenerated epithelium presented the four strata of a normal
skin (basal, spinous, granular and corneum strata) as evidenced by the suprabasal layers
labelled with cytokeratin 10 and involucrin.
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We found no difference in wound healing time between the control group and the
polymerizable skin group. This could be attributed to a non-critical wound size, resulting
in wound closure due to natural contraction during the healing process. In addition, the
plasma hydrogel provides a whole-blood set of cytokines, attachment factors and platelet-
derived growth factors that make these plasma-based scaffolds offer a highly proliferative
environment for epithelial cells [17] present in the wound edges. Animal models of wound
healing do not represent a real clinical situation, since wounds are created de novo and the
wound bed is in an optimal situation. Animal models of chronic wounds are very complex
to simulate and even more so with athymic animals.

However, in a real clinical situation, a complete healing of the wound would not be
achieved with the plasma hydrogel alone. Epithelial stem cells are needed not only to
promote wound closure, but also to remain on-site and renew the epithelium throughout
the life of the individual. Fibroblasts also play an important role since they collaborate on
extracellular matrix and connective tissue formation. Fibroblasts are capable of producing
and secreting metalloproteinases, collagen, fibronectin, proteoglycans and several growth
factors (VEGF, FGF, PDGF) which are potent angiogenic factors [38].

At the clinical level one of the limitations of our method is that it requires as many
cells as the methods previously described [13,17]. This is a major setback in the case of
severe burn patients in which a great area of polymerizable skin hydrogel would have to be
prepared. However, this will not be as limiting in the case of patients or lesions requiring
small areas of polymerizable skin such as: wounds in patients suffering from epidermolysis
bullosa, giant congenital nevus resections, chronic ulcers, lesions of the oral cavity, vaginal
reconstruction, etc.

One of the advantages of this model is that it does not require adhesion to a solid
support for its handling, like our previous model [17–21,39]. This makes it a much simpler
model to handle as it can be applied with a conventional syringe.

An additional advantage of this polymerizable skin model for use in a clinical situation
is its rapid polymerization. This characteristic can facilitate its application in humid regions
with difficult topography such as the oral cavity and the vaginal area. In addition, it may
avoid the use of splints and/or prostheses to keep the gel adhered to the wound bed during
the wound healing period.

The polymerizable skin hydrogel model here described is based on a cell culture
system that has been employed to treat burns for more than 40 years. In addition, FFP
derived products used for this work have been shown to be safe for use in humans. For
all these reasons, this product is closer to complying with all regulatory requirements in a
shorter time frame and thus closer to being transferred to the patient’s bedside.

Having a product, such as the one described in this study, which is easily applied
directly into wounds, would result in an improvement in the current treatments for skin
defects, not only because it would represent a faster and cheaper alternative to skin equiv-
alents but also because it would ease the overall application of cell products on patients,
finally resulting in the improvement of their quality of life.

4. Materials and Methods
4.1. Thrombin and Fibrinogen Preparation

Blood bags of 220–300 mL fresh frozen plasma (FFP) were obtained from 24 altruistic
donors (between 25–65 years of age) from the regional blood and tissue bank (Centro
Comunitario de Sangre y Tejidos, CCST, Asturias, Spain) according to the standards of the
American Association of Blood Banks and European and Spanish laws and regulations.

FFP was thawed at 37 ◦C for 20–30 min and 20 mL was retained to use as the clotting
component of the hydrogel (hereafter fibrinogen). The rest of the FPP was used to extract
the thrombin concentrate by acid precipitation and defibrination with calcium according to
the method described by Quarmby J et al. [40] with some modifications. Briefly, 200 mL of
FFP was precipitated in 800 mL of 0.04% acetic acid, and the solution was centrifuged at
1500× g for 20 min at 21–23 ◦C. The pellet was resuspended in 20 mL calcium buffer that
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contained 0.9% sodium chloride, 0.03% sodium bicarbonate and 25 mM calcium chloride,
and then the mixture was vortex-mixed for 2 min and incubated at room temperature for
15 min. After incubation, the solution was filtered through a 40 µm nylon cell strainer
(Thermo Fisher Scientific, Waltham, MA, USA). The precipitated fibrin retained in the filter
was removed, and the thrombin concentrate was collected. The pH of thrombin concentrate
in calcium buffer was measured with Fisherbrand™ pH Indicator Paper Sticks (Thermo
Fisher Scientific).

Finally, both samples (fibrinogen and thrombin concentrate) were aliquoted and stored
at −80 ◦C until further use.

4.2. Fibrinogen Quantification

Fibrinogen concentration was measured using the Clauss method [41], where 100 µL
of fibrinogen samples were clotted in the presence of an excess of thrombin (200 µL of
Multifibren U® 50 UI/mL, Siemens AG, Munich, Germany) in a Behring Fibrintimer II
(Dade Behring, Deerfield, IL, USA) at 37 ◦C. The clotting times were recorded in duplicate,
and the fibrinogen concentration was calculated from a standard curve calculated using
the date tables provided by the kit’s manufacturer (Siemens AG).

4.3. Thrombin Activity Quantification

The thrombin activity was determined as follows: 100 µL of 2.11 g/L fibrinogen was
clotted by adding 200 µL of thrombin concentrate samples diluted with calcium buffer
(1:5 to 1:40) in a Behring Fibrintimer II at 37 ◦C. The clotting times between 18–35 s were
recorded in duplicate, and the thrombin activity was calculated from a standard curve set
up by clotting 100 µL of 2.11 g/L fibrinogen with different thrombin activities (from 50 to
100 UI/mL).

4.4. Stability Study

Effects of freezing and frozen storage of thrombin concentrates and fibrinogen were
analyzed by storing them at −80 ◦C. For this purpose, fibrinogen concentrations (n = 6)
and thrombin activities (n = 6) were measured after 15 and 30 days of frozen storage as
previously described.

4.5. Primary Cultures of Keratinocytes and Fibroblasts

The present research was conducted according to the guidelines of the Declaration of
Helsinki and approved by the Ethics Committee of Principado de Asturias (Protocol Code:
2020.50; 23 March 2020). For this study, three skin biopsies of 2–3 cm2 were obtained from
deceased organ donors after informed written consent following Spanish laws in organ
and tissue donation.

Keratinocytes and fibroblasts were cultured following previously described meth-
ods [7] with slight modifications by our laboratory [13,17]. Keratinocytes were cultured
in presence of lethally irradiated 3T3 feeder cells. The keratinocyte culture medium was a
mixture of Dulbecco’s modified Eagle’s medium (DMEM, Thermo Fisher Scientific) and
Ham’s F12 (F12, Thermo Fisher Scientific) (2:1) supplemented with 10% fetal bovine serum
(FBS), 100 U/mL penicillin, 0.10 g/L streptomycin, 5.0 µg/mL insulin, 8.33 ng/mL cholera
toxin, 0.40 µg/mL hydrocortisone, 1.30 ng/mL triiodothyronine, and 24 µg/mL adenine
(Sigma-Aldrich, San Luis, MO, USA). The keratinocyte medium was replaced every three
days, and 10 ng/mL epidermal growth factor (EGF) (Sigma-Aldrich) was added since
the first replacement. The fibroblast culture medium was a mixture of DMEM and F12
(2:1) supplemented with 10% FBS, 100 U/mL penicillin and 0.10 g/L streptomycin and
was replaced every three days. Both cultures were incubated in a humidified 5% CO2
atmosphere at 37 ◦C until confluence (7–12 days). Cultures were amplified to obtain a
sufficient number of cells to carry out the experiments (7–12 days).
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4.6. Viability Assay

Thrombin concentrate and fibrinogen toxicities were studied in fibroblasts by a fluo-
rescence viability test with propidium iodide (red fluorochrome) and Hoechst dye (blue
fluorochrome). Dermal fibroblasts were seeded in a 6-well plate (Thermo Fisher Scientific)
and cultured until 70–80% confluent. Next, thrombin concentrate and fibrinogen were
thawed at 37 ◦C, and separately diluted in culture medium at 1:1. Then, fibroblasts were
incubated with 100 µL/cm2 of culture medium (n = 4, control group), thrombin concentrate
(n = 4, thrombin concentrate group) or fibrinogen (n = 4, fibrinogen group) for 24 h.

After incubation, cells were washed in PBS and stained with 10 µg/mL propidium
iodide (Thermo Fisher Scientific) and 2 µg/mL Hoechst staining (Thermo Fisher Scientific)
in DMEM:F12 (2:1) for 30 min at 37 ◦C. Finally, cells were examined under a DM6000B
fluorescence microscope (Leica, Wetzlar, Germany) and photos were taken in triplicate
using a DFC310 FX camera (Leica) at ×400 magnification. Next, red and blue nuclei were
counted by a single blinded researcher using ImageJ software (National Institutes of Health,
Bethesda, MD, USA). To assess toxicity, cell density and cell viability were calculated
according to the following formulas.

Cell density
(

cells/cm2
)
=

blue nucleus
Image area (cm2)

Cell viability (%) =
(blue nucleus − red nucleus)

blue nucleus
× 100

4.7. Preparation of Polymerizable Hydrogel

The polymerization time of the hydrogel was measured as follows: 150 µL of fibrino-
gen and 150 µL of thrombin concentrate were mixed in a Behring Fibrintimer II, the clotting
times were recorded in duplicate.

Keratinocyte and fibroblast cell cultures were treated with trypsin-EDTA, centrifuged
(400× g, 10 min) and counted. Keratinocytes were resuspended in 2 mL of fibrinogen at
3 × 106 cells/mL, and then, the fibroblasts were resuspended in 2 mL of fibrinogen at
3.7 × 105 cells/mL. The cell suspensions were drawn into 2 mL syringes (BD Biosciences,
CA, USA).

Thrombin concentrate was used at normal concentration and also diluted (1:10) in
calcium buffer. To prepare the polymerizable hydrogel, one syringe containing thrombin
and one containing fibrinogen/cells (either fibroblasts or keratinocytes) were connected to
a single 25 G needle (BD Biosciences), and syringes were simultaneously extruded.

4.8. In Vitro Fabrication of Polymerizable Skin Hydrogel

To fabricate the in vitro skin hydrogel, 0.15 mL/cm2 of thrombin concentrate, or
0.15 mL/cm2 of diluted 1:10 thrombin concentrate, and fibroblast-containing fibrinogen
(hereafter dermal layer) were extruded on a 24 mm Corning® Transwell® permeable sup-
port (Sigma-Aldrich). The plate was transferred to the incubator to coagulate (5–10 min at
37 ◦C). Then, 0.05 mL/cm2 of thrombin concentrate, or 0.05 mL/cm2 of diluted 1:10 throm-
bin concentrate and keratinocyte-containing fibrinogen (hereafter epidermal layer) was
extruded over the dermal layer. The plate was transferred again to the incubator to coagu-
late (5–10 min at 37 ◦C). Hydrogels were then covered with keratinocyte culture medium
supplemented with 1.5 mg/mL tranexamic acid (B. Braun Medical S.A., Rubí, Spain), and
incubated in a humidified 5% CO2 atmosphere at 37 ◦C for 3–4 days. Next, polymerizable
skin hydrogels were maintained at the air–liquid interface for 7 days in the keratinocyte cul-
ture medium supplemented with 1.5 mg/mL tranexamic acid and 10 ng/mL EGF (Sigma
Aldrich, St. Louis, MO, USA), to enhance stratification of the epithelium. Samples were
finally fixed in 4% paraformaldehyde for subsequent immunofluorescence analysis.
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4.9. In Vivo Fabrication and Transplant of Polymerizable Skin Hydrogel

Immunodeficient athymic nude mice (N = 6, male, 6–7 weeks, 25–30 g) were purchased
from Charles River Laboratories (Ecully, France) and kept and used at the Animal Experi-
mental Centre of the University of Oviedo (Asturias, Spain) in pathogen-free conditions.
All animal experiments were approved by the competent regional authorities (Spanish
registration code PROAE 21/2019) and were conducted according to European and Spanish
laws and regulations.

Polymerizable skin hydrogel was extruded on the back of each mouse, previously
anaesthetized with 2% isoflurane, by the methodology described in the previous section.
Briefly, a 4.5 cm2 full thickness circular wound was performed on the back of each mouse
and the skin was removed and devitalized by three cycles of freezing and thawing (grafting
protocol commonly used by our group) [42]. Next, dermal layer and epidermal layer were
extruded on the wound bed (polymerizable skin group, n = 3), and the polymerizable skin
hydrogel was protected from traumas by covering it with the devitalized mouse skin as
biological bandage and sutured with a 4-0 nylon suture. A control group (n = 3) underwent
the same procedure but used only the polymerizable hydrogel, without human skin cells.

Examinations were performed on each mouse on a weekly basis and pictures of the
grafted site were taken during the follow-up period. Finally, mice were euthanized by
CO2 inhalation and tissue samples were harvested and fixed in 4% paraformaldehyde for
subsequent immunohistochemical analysis.

4.10. Immunofluorescence

In vitro polymerizable skin hydrogels were embedded in paraffin, sectioned and
stained with anti-human high molecular weight keratin antibody (1:40, clone 34E12, Dako,
CA, USA) and anti-human vimentin (1:100, clone SP20, Abcam, Cambridge, UK). De-
paraffinized tissue sections (5 µm) were rinsed with PBS solution twice for 10 min, and
permeabilized in a PBS solution containing 0.3% Triton X-100 (Sigma Aldrich) for another
5 min. Following this, the samples were incubated at 4 ◦C overnight with primary anti-
bodies (1:100) containing 10% normal goat serum (Fischer Scientific, Hampton, NH, USA)
as a blocking agent. After several washes, samples were incubated with corresponding
secondary antibodies (1:500) (Life Technologies, Carlsbad, CA, USA) for 2 h at room tem-
perature, and were finally stained with 4’,6-diamidino-2-phenylindole (DAPI) to allow
nuclei visualization. Photos were captured using the DM6000B fluorescence microscope
(Leica) fitted with a DFC310FX camera (Leica).

4.11. Immunohistochemistry

The samples from athymic mice’s grafted area (control and polymerizable skin groups)
were fixed in 4% paraformaldehyde and embedded in paraffin. Deparaffinized tissue
sections (5 µm) were rinsed with PBS solution twice for 10 min, incubated 5 min in 3%
hydrogen peroxide (Sigma Aldrich) in absolute methanol (Sigma Aldrich) to inactive
endogenous peroxidases, and permeabilized in a PBS solution containing 0.3% Triton X-100
for another 5 min. Following this, the samples were incubated for 48 h at 4 ◦C with primary
antibodies anti-human involucrin (1:100, clone SY5, Sigma Aldrich), anti-human keratin 10
(1:100, clone LH2, Abcam) or anti-human vimentin (1:100, clone SP20, Abcam), containing
10% normal goat serum as a nonspecific reaction blocking agent. Next, samples were
incubated with the peroxidase-conjugated secondary antibody (1:200) (Vector Laboratories,
Burlingame, CA, USA) for 2 h. Subsequently, the samples were incubated with 0.03% H2O2
(Vector Laboratories), 0.1% 3,3′-diaminobenzidine (Vector Laboratories) in 0.1 M PBS pH
7.4 for 10–20 s or until a brown precipitate appeared. Finally, nuclei were counterstained
with haematoxylin and tissue slides were dehydrated, cleared, and mounted. Photos
were captured using the DM6000B bright-field microscope (Leica) fitted with a DFC310FX
camera (Leica).
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4.12. Data Analysis

Graphic representations and linear regression were performed using Excel version
2016 (Microsoft®, Redmond, WA, USA), and statistical evaluation was performed using IBM
SPSS Statistics version 22 (IBM Corp, Armonk, NY, USA). The normal distribution of tested
values was assessed by the Shapiro–Wilk method. Significant differences among defined
groups were tested using parametric tests, one-way ANOVA followed by a Student’s t-test
(for stability study and the cell density in the viability assay) and using the non-parametric
test Mann–Whitney U (for the cell viability in the viability assay). A difference at a level of
p < 0.05 was considered to be statistically significant. The quantitative data is expressed as
mean ± SD.

5. Conclusions

In conclusion, the polymerizable skin hydrogel described in this work is a novel
system based on techniques and products commonly used in tissue engineering. It is a
simple, portable and affordable hydrogel that has a demonstrated ability to regenerate
skin in a full thickness wound model. Moreover, the methodology and results of this work
create the possibility of a completely autologous system in which all the components come
from the patient themselves. For all the above-mentioned reasons, we suggest that this
hydrogel could be used as an Advance Therapy Medical Product, fulfilling all the pertinent
regulations, in a short period of time.

Author Contributions: Conceptualization, S.L., L.M.M.-L., J.M.-L. and Á.M.; Methodology and
Investigation, M.P.-M., M.P. and I.A.; Formal Analysis, M.C., N.V., I.A. and S.A.-A.; Writing—Original
Draft Preparation, M.P.-M.; Writing—Review and Editing, S.L., M.C., N.V. and Á.M.; Supervision,
J.M.-L. and Á.M.; Funding Adquisition, J.M.-L. and Á.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Programa Jovellanos, Gobierno del Principado de Asturias,
Fondo Europeo de desarrollo regional, Unión Europea (IDI/2017/000223). Instituto de Desar-
rollo económico del Principado de Asturias, Gobierno del Principado de Asturias, Fondo Europeo
de Desarrollo regional, Unión Europea (IDE/2016/000189). Instituto de Salud Carlos III (ISCIII),
RD21/0017/0033, Red Española de Terapias Avanzadas (TERAV ISCIII), “NextGenerationEU. Plan
de Recuperación Transformación y Resiliencia”.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Ethics Committee of Principado de Asturias (Protocol Code: 2020.50.
23 March 2020). The animal study protocol was approved by the Comité de Ética en Investigación de
la Universidad de Oviedo (PROAE 21/2019. 16 May 2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All the obtained data used to support the findings of this study are
available from the corresponding author upon reasonable request.

Acknowledgments: Authors wish to thank Teresa Sánchez, Agustín Brea and the staff of the Oviedo
University animal center for their assistance during the experiments; Authors would also like to
thank the technical staff of the Centro Comunitario de Sangre y Tejidos de Asturias for their help in
obtaining the plasma and skin biopsies necessary for this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kanitakis, J. Anatomy, histology and immunohistochemistry of normal human skin. Eur. J. Dermatol. 2002, 12, 390–391. [PubMed]
2. Lopez-Ojeda, W.; Pandey, A.; Alhajj, M.; Oakley, A.M. Anatomy, Skin (Integument); Abai, B., Abu-Ghosh, A., Acharya, A.B.,

Acharya, U., Adhia, S.G., Aeby, T.C., Aeddula, N.R., Agarwal, A., Agarwal, M., Aggarwal, S., Eds.; StatPearls Publishing: Treasure
Island, FL, USA, 2020; ISBN NBK430685.

3. Boyce, S.T.; Lalley, A.L. Tissue engineering of skin and regenerative medicine for wound care. Burn. Trauma 2018, 6, 4. [CrossRef]
[PubMed]

4. Burns. Available online: https://www.who.int/news-room/fact-sheets/detail/burns (accessed on 1 April 2022).

http://www.ncbi.nlm.nih.gov/pubmed/12095893
http://doi.org/10.1186/s41038-017-0103-y
http://www.ncbi.nlm.nih.gov/pubmed/30009192
https://www.who.int/news-room/fact-sheets/detail/burns


Int. J. Mol. Sci. 2022, 23, 4837 13 of 14

5. Peck, M.D. Epidemiology of burns throughout the world. Part I: Distribution and risk factors. Burns 2011, 37, 1087–1100.
[CrossRef] [PubMed]

6. Vig, K.; Chaudhari, A.; Tripathi, S.; Dixit, S.; Sahu, R.; Pillai, S.; Dennis, V.A.; Singh, S.R. Advances in Skin Regeneration Using
Tissue Engineering. Int. J. Mol. Sci. 2017, 18, 789. [CrossRef]

7. Rheinwatd, J.G.; Green, H. Seria cultivation of strains of human epidemal keratinocytes: The formation keratinizin colonies from
single cell is. Cell 1975, 6, 331–343. [CrossRef]

8. Wood, F.M.; Kolybaba, M.L.; Allen, P. The use of cultured epithelial autograft in the treatment of major burn injuries: A critical
review of the literature. Burns 2006, 32, 395–401. [CrossRef]

9. Atiyeh, B.S.; Costagliola, M. Cultured epithelial autograft (CEA) in burn treatment: Three decades later. Burns 2007, 33, 405–413.
[CrossRef] [PubMed]

10. Ma, L.; Gao, C.; Mao, Z.; Zhou, J.; Shen, J.; Hu, X.; Han, C. Collagen/chitosan porous scaffolds with improved biostability for skin
tissue engineering. Biomaterials 2003, 24, 4833–4841. [CrossRef]

11. Wang, Y.; Kim, H.-J.; Vunjak-Novakovic, G.; Kaplan, D.L. Stem cell-based tissue engineering with silk biomaterials. Biomaterials
2006, 27, 6064–6082. [CrossRef] [PubMed]

12. Badylak, S.F. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl. Immunol. 2004, 12, 367–377. [CrossRef]
13. Meana, A.; Iglesias, J.; Del Rio, M.; Larcher, F.; Madrigal, B.; Fresno, M.F.; Martin, C.; San Roman, F.; Tevar, F. Large surface of

cultured human epithelium obtained on a dermal matrix based on live fibroblast-containing fibrin gels. Burns 1998, 24, 621–630.
[CrossRef]

14. Ronfard, V.; Rives, J.M.; Neveux, Y.; Carsin, H.; Barrandon, Y. Long-term regeneration of human epidermis on third degree burns
transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation 2000, 70, 1588–1598. [CrossRef]
[PubMed]

15. Ahmed, T.A.E.; Dare, E.V.; Hincke, M. Fibrin: A versatile scaffold for tissue engineering applications. Tissue Eng. Part B Rev. 2008,
14, 199–215. [CrossRef] [PubMed]

16. Ruszymah, B.H.I. Autologous human fibrin as the biomaterial for tissue engineering. Med. J. Malays. 2004, 59 (Suppl. B), 30–31.
17. Llames, S.G.; Del Rio, M.; Larcher, F.; García, E.; Escamez, M.J.; Jorcano, J.L.; Holguín, P.; Meana, A. Human plasma as a dermal

scaffold for the generation of a completely autologous bioengineered skin. Transplantation 2004, 77, 350–355. [CrossRef]
18. Llames, S.; García, E.; García, V.; del Río, M.; Larcher, F.; Jorcano, J.L.; López, E.; Holguín, P.; Miralles, F.; Otero, J.; et al. Clinical

results of an autologous engineered skin. Cell Tissue Bank. 2006, 7, 47–53. [CrossRef]
19. Gómez, C.; Galán, J.M.; Torrero, V.; Ferreiro, I.; Pérez, D.; Palao, R.; Martínez, E.; Llames, S.; Meana, A.; Holguín, P. Use of an

autologous bioengineered composite skin in extensive burns: Clinical and functional outcomes. A multicentric study. Burns 2011,
37, 580–589. [CrossRef]

20. Llames, S.; Recuero, I.; Romance, A.; García, E.; Peña, I.; Del Valle, A.F.; Meana, A.; Larcher, F.; Del Río, M. Tissue-engineered oral
mucosa for mucosal reconstruction in a pediatric patient with hemifacial microsomia and ankyloglossia. Cleft Palate Craniofac. J.
2014, 51, 246–251. [CrossRef]

21. Sieira Gil, R.; Pagés, C.M.; Díez, E.G.; Llames, S.; Fuertes, A.F.; Vilagran, J.L. Tissue-engineered oral mucosa grafts for intraoral
lining reconstruction of the maxilla and mandible with a fibula flap. J. Oral Maxillofac. Surg. 2015, 73, 195.e1–195.e16. [CrossRef]

22. Liang, Y.; Zhao, X.; Hu, T.; Chen, B.; Yin, Z.; Ma, P.X.; Guo, B. Adhesive Hemostatic Conducting Injectable Composite Hydrogels
with Sustained Drug Release and Photothermal Antibacterial Activity to Promote Full-Thickness Skin Regeneration During
Wound Healing. Small 2019, 15, e1900046. [CrossRef]

23. Yang, B.; Song, J.; Jiang, Y.; Li, M.; Wei, J.; Qin, J.; Peng, W.; Lasaosa, F.L.; He, Y.; Mao, H.; et al. Injectable Adhesive Self-Healing
Multicross-Linked Double-Network Hydrogel Facilitates Full-Thickness Skin Wound Healing. ACS Appl. Mater. Interfaces 2020,
12, 57782–57797. [CrossRef] [PubMed]

24. Ganguly, S.; Das, P.; Itzhaki, E.; Hadad, E.; Gedanken, A.; Margel, S. Microwave-Synthesized Polysaccharide-Derived Carbon
Dots as Therapeutic Cargoes and Toughening Agents for Elastomeric Gels. ACS Appl. Mater. Interfaces 2020, 12, 51940–51951.
[CrossRef] [PubMed]

25. Ganguly, S.; Das, P.; Das, T.K.; Ghosh, S.; Das, S.; Bose, M.; Mondal, M.; Das, A.K.; Das, N.C. Acoustic cavitation assisted
destratified clay tactoid reinforced in situ elastomer-mimetic semi-IPN hydrogel for catalytic and bactericidal application.
Ultrason. Sonochem. 2020, 60, 104797. [CrossRef] [PubMed]

26. Koerner, K.; Stampe, D. Stability of blood coagulation factors in deep frozen fresh plasma by storage at −20 degrees C and −40
degrees C. Infusionsther. Klin. Ernahr. 1984, 11, 46–50.

27. Illert, W.; Butsch, H.; Nuber, D.; Howe, J.; Sanger, W.; Weidinger, S. Long-term storage multicenter study of fresh frozen plasma at
−40 degrees C. A multicenter study on the stability of labile coagulation factors over a period of 3 years. Infus. Ther. Transfus.
Med. 2001, 28, 189–194.

28. Ettinger, A.; Miklauz, M.M.; Hendrix, B.K.; Bihm, D.J.; Maldonado-Codina, G.; Goodrich, R.P. Protein stability of previously
frozen plasma, riboflavin and UV light-treated, refrozen and stored for up to 2 years at −30 ◦C. Transfus. Apher. Sci. 2011, 44,
25–31. [CrossRef]

29. Quílez, C.; de Aranda Izuzquiza, G.; García, M.; López, V.; Montero, A.; Valencia, L.; Velasco, D. Bioprinting for Skin. Methods
Mol. Biol. 2020, 2140, 217–228. [CrossRef]

http://doi.org/10.1016/j.burns.2011.06.005
http://www.ncbi.nlm.nih.gov/pubmed/21802856
http://doi.org/10.3390/ijms18040789
http://doi.org/10.1016/S0092-8674(75)80001-8
http://doi.org/10.1016/j.burns.2006.01.008
http://doi.org/10.1016/j.burns.2006.11.002
http://www.ncbi.nlm.nih.gov/pubmed/17400392
http://doi.org/10.1016/S0142-9612(03)00374-0
http://doi.org/10.1016/j.biomaterials.2006.07.008
http://www.ncbi.nlm.nih.gov/pubmed/16890988
http://doi.org/10.1016/j.trim.2003.12.016
http://doi.org/10.1016/S0305-4179(98)00107-7
http://doi.org/10.1097/00007890-200012150-00009
http://www.ncbi.nlm.nih.gov/pubmed/11152220
http://doi.org/10.1089/ten.teb.2007.0435
http://www.ncbi.nlm.nih.gov/pubmed/18544016
http://doi.org/10.1097/01.TP.0000112381.80964.85
http://doi.org/10.1007/s10561-004-7253-4
http://doi.org/10.1016/j.burns.2010.10.005
http://doi.org/10.1597/12-245
http://doi.org/10.1016/j.joms.2014.09.001
http://doi.org/10.1002/smll.201900046
http://doi.org/10.1021/acsami.0c18948
http://www.ncbi.nlm.nih.gov/pubmed/33336572
http://doi.org/10.1021/acsami.0c14527
http://www.ncbi.nlm.nih.gov/pubmed/33156599
http://doi.org/10.1016/j.ultsonch.2019.104797
http://www.ncbi.nlm.nih.gov/pubmed/31546086
http://doi.org/10.1016/j.transci.2010.12.005
http://doi.org/10.1007/978-1-0716-0520-2_14


Int. J. Mol. Sci. 2022, 23, 4837 14 of 14

30. Carriel, V.; Garzón, I.; Jiménez, J.-M.; Oliveira, A.-C.-X.; Arias-Santiago, S.; Campos, A.; Sánchez-Quevedo, M.-C.; Alaminos, M.
Epithelial and stromal developmental patterns in a novel substitute of the human skin generated with fibrin-agarose biomaterials.
Cells Tissues Organs 2012, 196, 1–12. [CrossRef]

31. Mazlyzam, A.L.; Aminuddin, B.S.; Fuzina, N.H.; Norhayati, M.M.; Fauziah, O.; Isa, M.R.; Saim, L.; Ruszymah, B.H.I. Reconstruc-
tion of living bilayer human skin equivalent utilizing human fibrin as a scaffold. Burns 2007, 33, 355–363. [CrossRef]

32. Sierra, D.H. Fibrin Sealant Adhesive Systems: A Review of Their Chemistry, Material Properties and Clinical Applications.
J. Biomater. Appl. 1993, 7, 309–352. [CrossRef]

33. Whitman, D.H.; Berry, R.L.; Green, D.M. Platelet gel: An autologous alternative to fibrin glue with applications in oral and
maxillofacial surgery. J. Oral Maxillofac. Surg. 1997, 55, 1294–1299. [CrossRef]

34. Matras, H. The use of fibrin sealant in oral and maxillofacial surgery. J. Oral Maxillofac. Surg. 1982, 40, 617–622. [CrossRef]
35. Agarwal, A.; Kumar, D.A.; Jacob, S.; Baid, C.; Agarwal, A.; Srinivasan, S. Fibrin glue-assisted sutureless posterior chamber

intraocular lens implantation in eyes with deficient posterior capsules. J. Cataract Refract. Surg. 2008, 34, 1433–1438. [CrossRef]
[PubMed]

36. Romano, V.; Cruciani, M.; Conti, L.; Fontana, L. Fibrin glue versus sutures for conjunctival autografting in primary pterygium
surgery. Cochrane Database Syst. Rev. 2016, 12, CD011308. [CrossRef]

37. Tan, E.S.; Wang, H.; Lua, G.W.; Liu, F.; Shi, X.G.; Li, Z.S. Fibrin Glue Spray as a Simple and Promising Method to Prevent Bleeding
after Gastric Endoscopic Submucosal Dissection. Dig. Surg. 2016, 33, 455–461. [CrossRef]

38. Perez-Basterrechea, M.; Esteban, M.M.; Alvarez-Viejo, M.; Fontanil, T.; Cal, S.; Pitiot, M.S.; Otero, J.; Obaya, A.J. Fibroblasts
accelerate islet revascularization and improve long-term graft survival in a mouse model of subcutaneous islet transplantation.
PLoS ONE 2017, 12, e0180695. [CrossRef] [PubMed]

39. Meana, A.; Iglesias, J.; Madrigal, B.; Sanchez, J. Use of cyanoacrylate glue to prepare cultured keratinocyte sheets for grafting.
Burns 1997, 23, 645–646. [CrossRef]

40. Quarmby, J.W.; Engelke, C.; Chitolie, A.; Morgan, R.A.; Belli, A.M. Autologous thrombin for treatment of pseudoaneurysms.
Lancet 2002, 359, 946–947. [CrossRef]

41. Clauss, A. Gerinnungsphzysiologische schnellmethode zur bestimmung des fibrinogens [Rapid physiological coagulation method
in determination of fibrinogen]. Acta Haematol. 1957, 17, 237–246. [CrossRef]

42. Del Rio, M.; Jorcano, J.L.; Larcher, F.; Serrano, F.; Meana, A.; Muñoz, M.; Garcia, M.; Muñoz, E.; Martin, C.; Bernad, A. A preclinical
model for the analysis of genetically modified human skin in vivo. Hum. Gene Ther. 2002, 13, 959–968. [CrossRef]

http://doi.org/10.1159/000330682
http://doi.org/10.1016/j.burns.2006.08.022
http://doi.org/10.1177/088532829300700402
http://doi.org/10.1016/S0278-2391(97)90187-7
http://doi.org/10.1016/0278-2391(82)90108-2
http://doi.org/10.1016/j.jcrs.2008.04.040
http://www.ncbi.nlm.nih.gov/pubmed/18721701
http://doi.org/10.1002/14651858.CD011308.pub2
http://doi.org/10.1159/000446252
http://doi.org/10.1371/journal.pone.0180695
http://www.ncbi.nlm.nih.gov/pubmed/28672010
http://doi.org/10.1016/S0305-4179(97)00077-6
http://doi.org/10.1016/S0140-6736(02)07991-6
http://doi.org/10.1159/000205234
http://doi.org/10.1089/10430340252939069

	Introduction 
	Results 
	Analysis of Thrombin Concentrate and Fibrinogen Samples 
	Viability Assay 
	Polymerizable Hydrogel Formation 
	In Vitro Fabrication of Polymerizable Skin Hydrogel 
	In Vivo Fabrication of Polymerizable Skin Hydrogel 

	Discussion 
	Materials and Methods 
	Thrombin and Fibrinogen Preparation 
	Fibrinogen Quantification 
	Thrombin Activity Quantification 
	Stability Study 
	Primary Cultures of Keratinocytes and Fibroblasts 
	Viability Assay 
	Preparation of Polymerizable Hydrogel 
	In Vitro Fabrication of Polymerizable Skin Hydrogel 
	In Vivo Fabrication and Transplant of Polymerizable Skin Hydrogel 
	Immunofluorescence 
	Immunohistochemistry 
	Data Analysis 

	Conclusions 
	References

