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Intertwined topological phases induced
by emergent symmetry protection

Daniel Gonzalez-Cuadra® !, Alejandro Bermudez?, Przemystaw R. Grzybowski® '3, Maciej Lewenstein'* &
Alexandre Dauphin’

The dual role played by symmetry in many-body physics manifests itself through two fun-
damental mechanisms: spontaneous symmetry breaking and topological symmetry protec-
tion. These two concepts, ubiquitous in both condensed matter and high energy physics, have
been applied successfully in the last decades to unravel a plethora of complex phenomena.
Their interplay, however, remains largely unexplored. Here we report how, in the presence of
strong correlations, symmetry protection emerges from a set of configurations enforced by
another broken symmetry. This mechanism spawns different intertwined topological phases,
where topological properties coexist with long-range order. Such a singular interplay gives
rise to interesting static and dynamical effects, including interaction-induced topological
phase transitions constrained by symmetry breaking, as well as a self-adjusted fractional
pumping. This work paves the way for further exploration of exotic topological features in
strongly-correlated quantum systems.
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he notion of symmetry is paramount to unveil the fun-

damental laws of Nature, while spontaneous symmetry

breaking (SSB) is essential to understand Nature’s different
guises!. In particular, at long length scales, various phases of
matter can be understood by the pattern of SSB and the corre-
sponding local order parameters®. Although different SSB pat-
terns tend to compete with one another, a genuine cooperation
can also arise in strongly correlated systems with intertwined
orders3. More recently, topology has been recognized as an exotic
driving force shaping the texture of Nature, and leading to phases
characterized by topological invariants rather than by local order
parameters?. It is no longer the breaking of certain symmetries,
but actually, their conservation®, which gives rise to novel states
of matter, the so-called symmetry-protected topological (SPT)
phases®. In the noninteracting limit, topological insulators and
superconductors provide well-understood examples of this
paradigm’, while current research aims at understanding strong-
correlation effects, such as the competition of SPT and SSB
phases, due to interactions®.

Alternatively, a cooperation between SPT and SSB may allow
for intertwined topological phases that simultaneously display a
local order parameter and a topological invariant. For integer and
fractional Chern insulators, such intertwined orders have been
already identified in the literature®~!1. Nonetheless, in these cases,
the topological phases exist in the absence of any protecting
symmetry. In more generic situations, the existence of inter-
twined topological phases will depend on how the symmetry
responsible for the SPT phase can be embedded into the broader
symmetry-breaking phenomenon. Arguably, the first instance of
this situation is the Peierls instability!? in polyacetylene, neatly
accounted for via the Su-Schrieffer-Heeger (SSH) model at half-
filling!3. Here, the instability leads to a dimerized lattice distor-
tion and a bond-order wave (BOW), where electrons are dis-
tributed in an alternating sequence of bonding and antibonding
orbitals. A closer inspection shows that inversion symmetry is
never broken in such a SSB pattern, which leads to a topological
quantization of the electronic polarization'4, and is ultimately
responsible for the protection of the SPT phase.

In this work, we study a hitherto unknown possibility: the
occurrence of an intertwined topological phase when the SSB
pattern does not generally imply the existence of a protecting
inversion symmetry (Fig. 1). Instead, this protecting symmetry
emerges from a larger set of configurations allowed by the SSB,
such that its interplay with topology and strong correlations
endows the system with very interesting, yet mostly unexplored,
static and dynamical behavior. We demonstrate this topological
mechanism in the Z,-Bose-Hubbard model!>1¢, a microscopic
lattice model that displays strongly correlated intertwined topo-
logical phases at various fractional fillings. At one-third and two-
third filling, and for sufficiently strong interactions, we find a
period-3 BOW with a threefold degenerate ground state that
displays a nonzero topological invariant: the total Berry phase.
We show that inversion symmetry emerges from the larger SSB
landscape of a bosonic Peierls’ mechanism, protecting the inter-
twined topological BOW, and making it fundamentally different
from other non-topological BOWs. We unveil a rich phase dia-
gram with first- and second-order quantum-phase transitions
caused by the interplay of this emergent symmetry, topology, and
strong correlations. We also identify a dynamical manifestation of
the underlying topology that is genuinely rooted in strong cor-
relations and the interplay of the emergent and symmetry-broken
symmetries: a self-adjusted fractional pump. As discussed by
Thouless et al.17-18, the quantization of adiabatic charge transport
in weakly interacting insulators uncovers a profound connection
to higher-dimensional topological phases, as recently exploited in
cold-atom experiments!®20. Strong interactions can lead to
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Fig. 1 Emergent symmetry protection: we represent qualitatively a ground-
state manifold, where different quantum phases are characterized by their
symmetry and topological properties, and use spin patterns on the bonds of
a 1D lattice to exemplify the different configurations. (a) Ground state
satisfying both translation (T) and inversion (/) symmetry, but lacking any
nonzero topological invariant (y). The spontaneous breaking of translation
symmetry results in a phase with a three-site unit cell, represented in

(b) with different arrows accounting for the three possible magnetizations,
which may not respect the inversion symmetry, lacking a nonzero
topological invariant. Remarkably, such inversion symmetry can emerge
from all the possible configurations constrained by the SSB pattern, leading
to the low-energy sectors depicted in (¢, d). Note that these two phases are
not only distinguished by the SSB pattern, but also, and more importantly,
by topology. Accordingly, whereas (c) is topologically trivial, (d) presents
both a local order parameter and a nonzero topological invariant, and thus
corresponds to an intertwined topological phase where the protecting
symmetry emerges

fractional pumped charges?!22, showing a clear reminiscence to
the fractional quantum Hall effect (FQHE)23-26, We show that,
following a dynamical modulation of the interactions in the
Z,-Bose-Hubbard model, the system self-adjusts within the
landscape of SSB sectors, allowing for a cyclic path that displays a
fractional pumped charge 1/3, such that the correlated inter-
twined topological phase has no free-particle counterpart.

Results

Z,-Bose-Hubbard model. We consider a 1D system of inter-
acting bosons coupled to a dynamical Z, field and described by
the lattice Hamiltonian

H= =% [bl(t+ a7, )by + He| + 45 m(n, — 1)
i i (1)
+%Z‘7§'{,i+1 +/32_0f4‘+1a

where bj is the bosonic creation operator at site i, n; = b?hi is the
number operator, and o7;,,07;,, are the Pauli matrices asso-
ciated with the Z, fields on the bond (i, i + 1). The bare bosonic
Hamiltonian depends on the hopping strength ¢, and the on-site
Hubbard repulsion U > 0. Likewise, the Z, fields have an energy
difference between the local configurations A, and a transverse
field of strength § that is responsible for their quantum fluctua-
tions. The Z, fields renormalize the bosonic hopping via a.
Recent experimental progress?’ 2% suggests the possibility of
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realizing the Z,-Bose-Hubbard model experimentally using
ultracold atoms in optical lattices.

This model (1) hosts Peierls-type phenomena analogous to the
fermionic SSH model!3, but remarkably, in the absence of a Fermi
surface!®. There are, however, important differences: at half-
filling and in the slow-lattice limit relevant for polyacetylene®0, a
Peierls’ instability inevitably occurs for arbitrarily small fermion-
lattice couplings!2. In this limit, the fermionic ground state in one
of SSB sectors is adiabatically connected to a free-fermion SPT
phase®. In contrast, our bosonic Peierls phases allow for a
genuinely correlated topological bond-ordered wave (TBOW,,)
protected by bond-inversion symmetry, which cannot be
adiabatically connected to a free-boson SPT phase!®. We remark
that the symmetry protecting the TBOW,,, is completely fixed
from the SSB pattern of the Z, fields at any energy scale, and is
thus not an emergent symmetry.

We now describe a richer situation at filling #n = 2/3 (similarly
n=1/3). For A < t and A > t the spins are uniformly polarized
in the z direction, (0},,,) =0y with g > 0 and o5 < O,
respectively. For intermediate values, a Peierls-type SSB leads to a
trimerization of the Z, fields, namely a periodic repetition of a
three-site unit cell, with bonds characterized by arbitrary
expectation values (07 ,), (03 3), (05 ;). The resulting phase is an
insulator, with a gap that increases with the value of the coupling
a (see Supplementary Note 1 for details). Note that this
trimerization still leaves freedom for various bond configurations
that do not necessarily imply a protecting symmetry for the
bosons (Fig. 1b). One of the main results of our work is to show
how, for certain parameter regimes, such a protecting symmetry
becomes effective at low energies, whereas higher-energy
excitations of the Z, fields do not necessarily lead to it. Therefore,
the inversion symmetry can be understood as an emergent
symmetry that is crucial to protect the intertwined TBOW;/3
(Fig. 1d). In the following, we set « = 0.5t and A = 0.85¢.

We first study a system of L = 30 with sites and open-
boundary conditions using DMRG?!, for 8 = 0.01¢ and different
Hubbard interactions U. For weak interactions (U S 9t), the Z,
field is polarized along the same axis (Fig. la), and the bosons
display a quasi-superfluid behaviour with algebraically decaying
oft-diagonal correlations. Increasing the interactions leads to a
bosonic Peierls transition, whereby translational symmetry is
spontaneously broken, leading to a threefold degenerate ground
state with ferrimagnetic-type ordering (of,) = (03 3) > (0% ),
together with a bosonic period-3 BOW that displays inversion
symmetry with respect to the central intercell bond (see Fig. 2a, b,
left panel). The nature of a similar qSF-BOW phase transition is
analyzed in ref. 19 for the Z,-Bose-Hubbard model at half-filling.
The BOW phase described here exhibits similar properties to the
charge density waves in extended Hubbard models?>29, albeit
without the need of longer-range interactions. We note that a
fermionic counterpart of this phase has been predicted in charge-
transfer salts32-33, To characterize its topology, we use the local
Berry phase y* = fzndG 0)|0gy*(0)), where ‘w” ) is the uth
ground state of Hamlltoman (1) with a single bond twisted
according to t — teif 34, The left panel of Fig. 2¢ depicts the local
Berry phase for one of the ground states, which clearly vanishes
on the intercell bonds relevant for the inversion symmetry of
Fig. 1. We note that the three possible ground states become
degenerate in the thermodynamic limit, which can be character-
ized by the total Berry phase y = ZH . In this limit, the value of
yH for the three degenerate states on a fixed bond coincides, up to
permutations, with the value of this quantity on the three bonds
of the unit cell for each one of the states. Therefore, the sum
gives the same value in both cases. For the present BOW,,;, we
find y = 0, indicating that this phase is topologically trivial.
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Fig. 2 Simultaneous orders in intertwined topological phases: real-space
configuration of (a) the Z, field (47;,,) and (b) the bosonic bond densities
Bijg= (b b; 1) + c.c., using different colors for each element of the unit
cell at p = 0.01t. Different permutations within the unit cell lead to a
threefold quasi-degenerate ground state, each obtained from one another
by translating the modulation patterns of the ferrimagnetic and BOW
orders. The quasi-degeneracy comes from the finite-size effects, but
degeneracy is recovered in the thermodynamic limit. €) The local Berry
phases y# display a quantized value of O (U=10t) or z (U=15t) on the
bonds preserving the inversion symmetry of the unit cell, allowing us to
distinguish between the trivial and topological BOW phases. We note that
the topological BOW phase (right panels) does not have a fermionic
analog?8 in the ground state of the SSH model32:33, which instead realizes
the trivial BOW (left panels) for energetic reasons

By further increasing the interactions, a phase with a different
SSB pattern (07 ,) = (03 ;) < (0% ,) arises (right panels Fig. 2a, b).
Although the ferrimagnetic and BOW patterns look rather similar
to the previous case, the local Berry phase at the intercell bonds is
now quantized to y, = 7 (right panel Fig. 2c). Note again that this
phase presents three degenerate ground states in the thermo-
dynamic limit, and we find a total Berry phase y = , indicating a
nontrivial TBOW /3 phase. This exemplifies the scenario of Fig. 1:
from all the trimerized configurations possible a priori, the system
chooses one with additional bond-centered inversion symmetry,
allowing for a topological crystalline insulator®. In combination
with the local order parameters (right panel Fig. 2a, b), this shows
that the TBOW,,3 is an interaction-induced intertwined topolo-
gical phase, in which, contrary to half-filling!®, the protecting
symmetry is emergent and not fixed a priori by the SSB pattern.
The ocurrence of this mechanism is a hallmark of our
Z,-Bose-Hubbard model and does not have an analog in the
standard SSH model3233,

Interaction-induced topological phase transitions. Topological
phase transitions delimiting free-fermion SPT phases, and those
found due to their competition with SSB phases, are typically
continuous second-order phase transitions. In the presence of
strong correlations, however, first-order topological phase tran-
sitions may arise3>~3%, We now discuss how critical lines of dif-
ferent orders delimit the intertwined TBOW,;; in a strongly
interacting region of parameter space, showing that the TBOW,3
cannot be adiabatically connected to a free-boson SPT phase.

In the completely adiabatic regime =0, we observe that the
transition between trivial BOW,,; and intertwined TBOW 3 is of
first order, using an infinite DMRG algorithm3!. Figure 3a shows
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Fig. 3 Interaction-induced topological phase transitions: a unit-cell fields
(0% 441) as we increase U, where k € {1, 2, 3} are the three different bonds.
The left and right panels correspond to =0 and g = 0.025t, respectively.
In the first case, there is an abrupt transition between the trivial and
topological BOW. In the second case, the transition is continuous, and we
find a finite region, where inversion symmetry is broken. b First derivative of
the ground-state energy per unit cell E; through the transition. For =0,
there is a discontinuous jump, signaling a first-order topological phase
transition. The inset shows also a jump in the observable O,. For g =
0.025t, both gquantities behave smoothly. ¢ Total Berry phase, where the
same behavior is observed. The results shown are obtained directly in the
thermodynamic limit using iMPS (see the “Methods"” section)

the Ising fields (o} ,,,) within the unit cell, as the Hubbard
interaction is increased, while keeping f fixed. For f = 0 (left
column), we observe an abrupt transition characterized by a
discontinuity in the first derivative of the ground-state energy
0Eg/0U = (E(U + AU)ng(U))/AU%, signaling a first-order
phase transition (Fig. 3b). Introducing the bond observables,
Ok = (Egloj 411 — 0% 1 412lEs) with k even or odd, we can
characterize the corresponding bond-inversion symmetry within
the unit cell. The inset of Fig. 3b shows how O, displays a
discontinuous jump. The total Berry phase, computed here with
the help of the entanglement spectrum??, also changes abruptly,
as depicted in Fig. 3c. To the best of our knowledge, this is the
first topological characterization of a first-order phase transition
in an intertwined topological phase.

The situation changes as one departs from the adiabatic
regime. Figure 3 (right panel) shows a continuous second-order
transition both in 0E,/0U and in O, for = 0.025t. Remarkably,
there is a finite region between the trivial and topological BOW
phases, where the Z, fields have different expectation values,
breaking the emergent inversion symmetry within the larger
Peierls’ trimerization. These results are in accordance with the
behavior of the total Berry phase in Fig. 3c, which shows a
nonquantized value in this intermediate asymmetrical region. In
fact, the appearance of this region originates from a very
interesting interplay between the emergent inversion symmetry
and the Peierls SSB phenomenon: a direct continuous transition
between the trivial and topological BOWs would require a gap-
closing point in the bosonic sector, where every bond had the
same expectation value and the BOW would disappear. However,
this comes with an energy penalty, since the Peierls’ mechanism
favors the formation of a three-site unit cell!>. Therefore, the
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Fig. 4 Phase diagram: a in the background, we represent the product of
observables O,0,, which has a nonzero value only in the intermediate
phase, where bond-inversion symmetry is broken. The black dot marks the
first-order critical point separating the BOW,,3 and TBOW,,5 phases at
S =0. The dotted lines qualitatively denote the critical lines for g > 0. For
large values of this parameter, we find an intermediate phase where the
bond-inversion symmetry is broken. This phase is separated from the
BOW,,5 and TBOW,,3 phases by continuous transitions. This situation
might extend up to =0, although first-order transitions are also possible
for small but not-zero values of . b We also present the total Berry phase.
The latter has a nonquantized value in the region where the protecting
inversion symmetry is broken. The phase diagram is calculated in the
thermodynamic limit using iMPS (see the “Methods" section)

system energetically prefers to keep the trimerized unit cell at the
expense of breaking the bond-inversion symmetry within the unit
cell, and continuously setting the emergent inversion symmetry
responsible for the quantized Berry phase y=m of Fig. 3c (see
Supplementary Note 1 for details). This nontrivial interplay
between symmetry protection and symmetry breaking, driven
solely by correlations, is another hallmark of our
Z,-Bose-Hubbard model, absent at other fillings or in the
fermionic SSH model32-33, The intermediate phase could extend
up to B = 0, although first-order transitions are also possible for
low enough values of 3. An extended numerical analysis would be
required to distinguish between these two situations.

Finally, we present the phase diagram as a function of f and U
in Fig. 4a by depicting the product of O, 0,: it can only attain a
nonzero value if the bond-inversion symmetry within the unit cell
is broken (ie., if the transition occurs continuously via an
intermediate nonsymmetric region). Figure 4b shows the phase
diagram in terms of the total Berry phase, quantized to 0 and 7 in
the regions with inversion symmetry and with nonquantized
values in the region where the symmetry is broken.

Self-adjusted fractional pump. Topology can also become
manifest through dynamical effects, such as the quantized
transport of charge in electronic systems evolving under cyclic
adiabatic modulations: Thouless pumping!”. This topological
pumping lies at the heart of our current understanding of free-
fermion SPT phases’, and can also be generalized to weakly
interacting systems'8. As advanced in the “Introduction” section,
1D and quasi-1D systems at sufficiently strong interactions can
exhibit a fractional pumping?>40-44 that cannot be accounted for
using noninteracting topological pumping.

In this section, we show that adiabatic dynamics traversing
through intertwined topological phases allows for a self-adjusted
fractional pumping, due to the interplay of the SSB mechanism
and other gap-opening perturbations. By introducing guiding
fields that only act on a subset of the Z, fields, and raising/
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Fig. 5 Self-adjusted fractional pumping: a the trivial and topological BOW phases are threefold degenerate each. The six different states are represented
here as different points on an effective parameter space characterized by the expectation values of the bond fields t, =1+ a/t{0} ), withk € {1, 2, 3}. To
define an adiabatic cycle through these different BOWs, the protecting inversion symmetry must be broken at intermediate states in order to enclose the
degeneracy point at t; = t, = t3. b The Peierls mechanism forces the system to break this symmetry spontaneously when interactions are increased,
connecting states in the trivial and topological BOW phases (Fig. 3b). In order to select which state from the degenerate manifold the system will transition
to, we introduce an external inhomogeneous Z, field A, that is only applied to a subset of bonds within the unit cell. The fields partially break the
degeneracy of the BOWSs, and restrict the possible adiabatic evolution. A sequential combination of local fields and interaction-driven self-adjustments
allows the system to cycle around the degeneracy point in the effective parameter space. Note that the protocol must be repeated three times for the
ground state to reach the initial configuration. ¢ COM P (t) through the cycle for a finite chain of size L =90 and for = 0.025t. The discontinuous jump
(red), related to the presence of edge states, allows us to obtain the total charge transported in the bulk during one cycle, An;_gg = 0.92. Inset: finite-size
scaling yields a transported fractional charge at = =T, and an integer charge at the end of the adiabatic path (z = 3T)

lowering the Hubbard interactions, the free Z, fields self-adjust
dynamically during the adiabatic cycle. As a consequence, the
bosonic sector traverses a sequence of ground states that are
energetically favorable due to the Peierls’ mechanism. In this way,
the system self-adjusts along this adiabatic sequence, allowing for
an exotic fractional pumping induced by interactions?>40-44, The
details of this self-adjusted topological pumping are explained in
Fig. 5.

For finite systems, the pumped charge can be inferred from the
center of mass (COM) Py(7) =13 (j —jo) (¥(7)|7[¥(7)),
where j, is the center of a chain of size L, and |y(7)) is the
adiabatically evolved state at time 7. Figure 5¢ shows the DMRG
results describing how the COM changes along the cycle
connecting the BOW,;; and TBOW,,; possible ground states
for a finite chain of size L = 90. After 7= T, we observe a COM
displacement of Anl_g; = P;_oo(T) — P;_g(0) = 0.316, reflect-
ing the fractional charge. To obtain precisely the charge, we
perform a finite-size scaling analysis and find Anl =
lim; , An] =1/3 (inset). At 7=2T, the COM displacement
reaches a value consistent with 2/3 in the thermodynamic limit.
We note that these fractional values are characteristic of a
strongly correlated SPT phase with ground-state degeneracy, and
cannot be found for any noninteracting topological phase (see
Supplementary Note 2 for details). In our present case, the
adiabatic path in parameter space can be understood as a
dynamical analog of the spatial interpolation between the
different ground states, which leads to topological solitons and
fractionally quantized charges bound to them32. During each
period T, we interpolate between two such ground states, and a
fractional charge is pumped without creating any spatial solitonic
profile.

Let us now turn our attention to the discontinuous jump of the
pumped charge toward —1/3, as this is related to the presence of
many-body edge states for a finite system*>, and can be used to
define a bulk-boundary correspondence for our intertwined
TBOW,,3. The transported charge across the bulk, AnzT, can be
related to the discontinuous jumps during the cycle*>, namely
AmT = — 37, AP, (1;), where APy (1;) = Py (7]) — Pi(7;) quan-
tify the discontinuities occurring at instants 7;, and 7;" = 7;+¢
with ¢ — 0. In the thermodynamic limit, it converges to the

quantized value of the pumped charge A3l = lim; , An}T =1
related to the integer Chern number in an extended 2D system*’.
Since these discontinuities depend on the presence of edge states
in a finite system, the center-of-mass approach establishes a sort
of bulk-boundary correspondence that can be explicitly proven
via the adiabatic pumping. Moreover, the COM can be measured
in cold-atomic experiments?6, and it has been used to reveal the
topological properties of fermionic and bosonic SPT phases!®20.

By estimating the discontinuity, we can extract the transported
charge across the bulk during the whole adiabatic evolution that
brings the BOW back to itself after 7= 3T, obtaining a nearly
quantized value An;_op = 0.92. As shown in the inset, a truly
quantized charge is recovered in the thermodynamic limit,
signaling the topological nature of the system. These results allow
us to establish a bulk-boundary correspondence in the pumping
process®>, even though this was not guaranteed a priori, due to
the lack of the global symmetries regarding the tenfold
classification of topological insulators. In particular, one may
understand the edge states of the TBOW,; as remains of
topologically protected conducting edge states of an extended 2D
system (see Supplementary Note 2 for details). We note that, even
if the topological degeneracy point does not appear in the phase
diagram of the model, the quantized transported charge reveals
its presence in an effective parameter space, as a nonzero
quantized charge can only be obtained when the parameter
modulation encircles such a degeneracy point#’.

Discussion

We have shown how symmetry protection can emerge through
an interplay between symmetry breaking and strong correlations.
In the Z,-Bose-Hubbard model, this mechanism gives rise to an
intertwined topological phase for certain fractional fillings. The
unique properties of these phases are manifest in the special static
and dynamical features discussed in this work. A realistic
implementation of the model with cold atoms is suggested by
recent experimental results?’-28. The proposed self-adjusted
pumping protocol, in particular, could be used to reveal the
topological properties of the system and its fractional nature.
Future research directions include the study of topological defects
on top of the intertwined topological phases, where localized
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states with fractional particle number are expected to appear,
signaling deeper connections to the physics of the FQHE.

Methods

Numerical simulations. The numerical calculations have been performed using a
density matrix renormalization group algorithm (DMRG)3!. For the finite-size
calculations, we used a matrix product state (MPS)-based algorithm with bond
dimension D = 100. To directly access the thermodynamic limit, we used an
infinite MPS (iMPS) with a repeating unit cell composed of three sites and D =
150. The Hilbert space of the bosons is truncated to a maximum number of bosons
per site of ny = 2. This is justified for low densities and strong interactions.

Data availability

The data supporting the plots within this paper are available from the authors upon
reasonable request. The figures have been produced with Python and adapted with
Inkscape and Affinity Designer.

Code availability

The DMRG calculations have been performed with the tenpy library3!. The Python
scripts used to obtain the data in this paper are available from the authors upon
reasonable request.
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