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Abstract: Phages are naturally occurring viruses that selectively kill bacterial species without dis-
turbing the individual’s normal flora, averting the collateral damage of antimicrobial usage. The
safety and the effectiveness of phages have been mainly confirmed in the food industry as well as in
animal models. In this study, we report on the successful isolation of phages specific to Vancomycin-
resistant Enterococci, including Enterococcus faecium (VREfm) and Enterococcus faecalis from sewage
samples, and demonstrate their efficacy and safety for VREfm infection in the greater wax moth
Galleria mellonella model. No virulence-associated genes, antibiotic resistance genes or integrases were
detected in the phages’ genomes, rendering them safe to be used in an in vivo model. Phages may be
considered as potential agents for therapy for bacterial infections secondary to multidrug-resistant
organisms such as VREfm.

Keywords: bacteriophage; Galleria mellonella; vancomycin-resistant Enterococcus faecium

1. Introduction

By some estimates, infections from multidrug-resistant organisms (MDROs) will cause
10 million deaths per year by 2050 worldwide—more deaths than cancer [1]. Despite the
efficacy of antibiotics to prevent or treat bacterial infections, their long-term use is associated
with many sequelae, including the development of MDROs and the disruption of the
microbiota, the gut microbiota, in particular, which may lead to the translocation of bacteria,
including MDROs, into the bloodstream with a subsequent increase in complications and
mortality [2]. Vancomycin-resistant Enterococcus faecium (VREfm) is a major and prevalent
MDRO with considerable clinical infection control and public health implications [3,4]. The
ability of VREfm clones to transfer genes encoding resistance to drugs such as vancomycin
and daptomycin to other bacteria [5], their adaptation to harsh environments, and their
long-term survival on high-touch surface areas contribute to an increased risk of VREfm
colonization and transmission to other patients through the environment, the hands of
healthcare workers, and/or equipment [6–9]. Particularly, VREfm colonization in the
gastrointestinal tract can also lead to VREfm infection in high-risk individuals, such as
cancer patients [2,4,10]. VREfm dominance in the gut can occur when the gut microbiome
is disturbed and does not recover completely. It is hypothesized that the loss of some
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bacterial populations after antibiotic therapy and the disruption of the normal flora enables
the expansion of VREfm and its dominance of the gut microbiome [11], leading to the loss
of heterogeneity of the gut microbiome and an increased rate of morbidity and mortality in
these patients [11,12].

Considering the public health concerns related to MDROs in healthcare settings and
the lack of accepted and effective interventions for their eradication, new strategies to
prevent or treat potential MDRO infections, thus improving clinical outcomes, are needed.
Bacteriophages (or phages) are naturally occurring viruses that kill selective bacterial
species. They are the most abundant organisms in the biosphere with an estimated num-
ber of 1031 phage particles [13]. Phages may constitute a good or adjunct alternative to
antibiotics because of their (1) specificity to prevent or control specific bacterial species
without disrupting the host’s microbiome and averting other drawbacks of antimicrobial
usage [13–15], (2) co-evolution with the bacterial host that limits resistance, (3) safety and
lack of side effects for humans [16,17], and (4) cost-effectiveness in phage production for
large-scale applications [18]. Several studies have been reported in the United States on
the safety and efficacy of phages and no known significant adverse events have been de-
tected in healthy immunocompetent individuals or immunocompromised patients [19–23].
We recently reviewed the studies involving phage therapy against MDROs in a clinical
setting [22]. These studies demonstrated good phage efficacy and safety.

In this study, we isolate VREfm phages from wastewater to design effective combina-
tions against prevalent VREfm strains isolated in the hospital environment. Furthermore, we
use the Galleria mellonella or the greater wax moth larva model as an in vivo pre-screening
model, preceding the mammalian model, to study the safety and efficacy of bacteriophages
in eradicating the predominant strains of VREfm. This host is an alternative and innovative
model to study microbial virulence, as well as to evaluate the efficacy of antimicrobial
agents such as antibiotics and phage therapy [24,25].

2. Materials and Methods
2.1. Bacterial Strains and Media

A vancomycin-susceptible enterococci (VSE) was used to isolate phages from wastew-
ater samples. Phages were then propagated on several VREfm strains isolated from the
hospital environment, rectal swabs from cancer patients, and wastewater samples, along
with the VSE strain and an Enterococcus faecalis strain purchased from the Félix d’Hérelle
collection (www.phages.ulaval.ca, accessed on 20 July 2022). Tryptic Soy Broth (TSB, Becton
Dickinson) was used for bacterial culture and phage amplification.

2.2. Phage Recovery

A wastewater sample was obtained from a local municipal facility in Houston, Texas.
The sample was centrifuged at 10,000× g for 10 min and filtered using a 0.45 µm syringe
filter. The phage isolation procedure is reported elsewhere [26]. Briefly, an overnight culture
of 100 µL of VSE was added to 5 mL of 2 times concentrated TSB and 5 mL of the filtered
sewage sample, and incubated overnight at 37 ◦C as a first amplification. After several
amplifications, the final filtrate was checked for the presence of VREfm-specific phages by a
spot test [26,27]. Several clear phage plaques were picked, purified, and characterized.

2.3. Host Range

The recovered VREfm phages were first characterized by determining their host ranges
on a panel of 12 strains of enterococci isolated from different sources: stool samples
from VREfm-colonized patients and VREfm-infected patients, patient room environments,
sewage samples, clinical isolates of daptomycin-resistant VREfm strains, VSE, and Entero-
coccus faecalis strains [28].

www.phages.ulaval.ca
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2.4. Electron Microscopy

A 1.5 mL sample of phage lysate (titer of at least 109 PFU/mL) was centrifuged at
23,500× g for 1 h at 4 ◦C. The supernatant was removed, leaving approximately 100 µL in
the tube. The phage pellet was washed twice with 1.4 mL of ammonium acetate (0.1 M,
pH 7.5). The residual volume (100 µL) was used to prepare the observation grid as follows:
A 400-mesh carbon-coated Formvar nickel grid was glow-discharged using the PELCO
easiGlow (Ted Pella, Redding, CA, USA) followed by floating onto a 10 µL droplet of
provided sample for 5 min. The sample grid was then floated on a 10 µL droplet of 2%
aqueous phosphotungstic acid (pH 7.0) for 30 s and examined with a FEI Tecnai G2 Spirit
Twin TEM (FEI Corp., Hillsboro, OR, USA). The residual liquid was removed from the
grid by touching the edge with blotting paper. Digital images were acquired with a Gatan
UltraScan 1000 2k × 2k camera and Digital Micrograph software (Gatan Inc., Pleasanton,
CA, USA). Phages were observed at 120 kV using a Tecnai G2 Spirit TWIN transmission
electron microscope (200 nm) located at the Electron Microscopy Core of the University of
Florida’s Interdisciplinary Center for Biotechnology Research [29,30].

2.5. Phage DNA Preparation and Sequencing

DNA extraction was performed on the selected phage lysates using the Phage DNA iso-
lation kit (NORGEN Biotek) according to the manufacturer’s instructions with DNase/Rnase
treatment [31]. Genome sequencing was performed using an Illumina MiSeq with 250 bp
paired-end reads. The extracted DNA was further cleaned up using a QiaQuick PCR
purification kit as per the manufacturer’s instructions (Qiagen). The library was prepared
using a Nextera Flex kit followed by sequencing on a 250 PE run on the Illumina MiSeq [32].

2.6. Bioinformatic Analysis

Raw reads were processed using FaQCs [33] and assembled using the Geneious as-
sembler [34,35]. For each phage, a single contig produced the final assembly. Gene calling
and annotation were performed using the RASTtk [34] pipeline through PATRIC’s Genome
Annotation service [35] and tRNA predictions were completed using ARAGORN [36]. Cod-
ing sequences (CDS) and reads were searched for virulence and antibiotic resistance genes
by using BLAST [37] to compare assembled genomes against the Virulence Factor Database
(VFDB) [38], the PATRIC Virulence Factor Database [39], the Antibiotic Resistance Gene
Database (ARDB) [40], and the Comprehensive Antibiotic Resistance Database (CARD) [41].
ShortBRED [42] was used for targeted searches of coding sequences and reads for genes
in VRDB, CARD, and the Resfam Antibiotic Resistance Gene Database through EDGE
Bioinformatic [43,44]. Phage genus was predicted from the sequenced relatives identified
by using BWA-Mem (version 0.7.9) [45] by aligning contigs to NCBI’s RefSeq database and
by CDS homology using Phage Search Tool Enhanced Release (PHASTER) [46]. Phage
lifestyles were predicted using PHACTs [47]. Integrases and attachment sites were searched
for using PHASTER and by parsing annotated genomes for “integrase.” The percentage of
total reads mapped to the host was determined by aligning reads to NCBI’s RefSeq database
using BWA-Mem and determining the number of reads that mapped to an Enterococcus
faecalis genome over the total number of reads. Alignments were produced using Mauve
(version 2.4.0) [48].

2.7. In Vivo Efficacy of the Phages

Isolated and characterized phages were combined in a phage cocktail or phage mixture
and tested for their efficacy and safety in an in vivo model. Galleria mellonella larvae were
injected with VRE004, a VREfm strain isolated from stools of a VRE-infected HCT recipient
at a concentration of 107 colony-forming units (CFU)/10 µL. Two isolated phages were
combined in a cocktail and injected at a concentration of 2 × 106 plaque-forming units
(PFU)/10 µL 1 h post-bacterial injection. An additional group of larvae received the
same phage cocktail 1 h prior to VREfm injection as a prevention or prophylactic group.
Control groups included larvae injected with bacteria alone, phages alone (to measure
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toxicity due to phage administration), sterile medium (to measure any lethal effects due
to physical trauma from the injection), or without any manipulation [49]. Each group
comprised 8 larvae and the experiments were replicated 5 times. The insect’s health state
and mortality were observed and scored after 24 h and 48 h of incubation at 37 ◦C using a
published health index scoring system [50]. Using STATA version 12, we conducted two
mixed-effect logistic regression models, with conditions predicting the number of surviving
larvae by 48 h of follow-up and controlling for replicates. For the first model, we compared
a saline solution (control) to phages alone. For the second model, we compared VREfm
alone to VREfm with phages. Finally, we conducted a one-way analysis of variance to
compare VREfm alone to the presence of the phage cocktail and to the control group with
respect to VREfm abundance. For each relevant statistically significant finding, we reported
the p-value with 95% confidence intervals.

3. Results
3.1. Characterization of the Isolated Phages

Two enterococci phages (MDA1 and MDA2) targeting several VREfm and VSE strains
were successfully isolated. Both phages belonged to the Caudovirales order. Phage MDA1
belongs to the Podoviridae family, whereas phage MDA2 belongs to the Myoviridae fam-
ily. Podoviridae and Myoviridae can be mainly distinguished by the length of their tails;
Podoviridae are characterized by their short tail and Myoviridae have a long contractile
tail [29]. Phage MDA1 has an icosahedral head of 40.4 ± 1.4 nm in diameter and a non-
contractile tail with a length of 18.6 ± 1.6 nm. Phage MDA2 has an icosahedral capsid of
100.8 ± 7.2 nm in diameter, and a contractile tail of 179 ± 25 nm in length and 17.2 ± 5.1 nm
in width (Figure 1). Both phages were lytic and were able to eradicate at least 6 out of the
12 tested VREfm strains. The Podoviridae phages had a wider host range, infecting a total
of 11/12 bacterial strains compared to 6/12 bacterial strains with the Myoviridae phages.
The phage cocktail was able to eradicate all the 12 tested bacterial strains, including the
daptomycin-resistant VREfm strains (Table 1).

Pharmaceutics 2022, 14, x FOR PEER REVIEW 5 of 11 
 

 

 

(1) 

 
 

(2) 

Figure 1. Visualization of phages MDA1 (1) and MDA2 (2) under the electron microscope. Scale bars 
indicate 100 nm and 200 nm. 

The genomes of MDA1 and MDA2 were 18,058 bp and 140,226 bp long, respectively. 
MDA1’s linear genome had a GC content of 33% (Figure 2). No tRNA was found in the 
genome. When compared to other published enterococcal genomes, phage MDA1’s ge-
nome had 82% homology with Enterococcus phage vB_Efae230P-4 (Figure S1) [51]. Phage 
MDA2 had a circular genome with a GC content of 35.8%, which was similar to that of 
other enterococcal phages and of its enterococcal hosts (38%) [51–53]. Six tRNAs were 
found in its genome. tRNAs are usually present in the phage genome as a result of vari-
ance in codon usage between their genome and their host’s genome, enabling phages to 
bypass codons overused in the phage genes and compensate for the extra bias [54,55]. The 
linearized genome of phage MDA2 is represented in Figure 3. When compared to other 
published enterococcal genomes, the genome of MDA2 was 70%, similar to that of phage 
phiEF24C [56]. Both Podoviridae vB_Efae230P-4 and Myoviridae phiEF24C were isolated 
from the environment in Japan and targeted vancomycin-resistant E. faecalis [51,56] (Fig-
ure S2). Of interest, no virulence-associated genes, antibiotic resistance genes or integrase 
genes were detected in the phages’ genomes (Tables S1 and S2). 

  

Figure 1. Visualization of phages MDA1 (1) and MDA2 (2) under the electron microscope. Scale bars
indicate 100 nm and 200 nm.



Pharmaceutics 2022, 14, 1591 5 of 11

Table 1. Activity of phages against VREfm isolated from different sources. Boxes with (+) to show
the ability of the phage to lyse the VREfm strain tested, (-) indicates that the phage had no effect on
the tested bacteria.

Phages

MDA1 MDA2

Bacteria

Patient
strains

Stool

VRE001 + +
VRE002 + -
VRE004 + +
VRE008 - +

Dapto-
resistant

VRE33S + -
VRE8S + -

Environmental
strains

Sewage VREsewage1 + -
VREsewage2 + -

Rooms
VRE1147 + +
VRE1181 + +

Others
VSE + -

E. faecalis + +
Abbreviations: VREfm—vancomycin-resistant Enterococcus faecium; VSE—vancomycin-susceptible Enterococcus
faecium; E. faecalis—vancomycin-susceptible Enterococcus faecalis; Dapto-resistant—daptomycin-resistant.

The genomes of MDA1 and MDA2 were 18,058 bp and 140,226 bp long, respectively.
MDA1’s linear genome had a GC content of 33% (Figure 2). No tRNA was found in
the genome. When compared to other published enterococcal genomes, phage MDA1’s
genome had 82% homology with Enterococcus phage vB_Efae230P-4 (Figure S1) [51].
Phage MDA2 had a circular genome with a GC content of 35.8%, which was similar to
that of other enterococcal phages and of its enterococcal hosts (38%) [51–53]. Six tRNAs
were found in its genome. tRNAs are usually present in the phage genome as a result of
variance in codon usage between their genome and their host’s genome, enabling phages
to bypass codons overused in the phage genes and compensate for the extra bias [54,55].
The linearized genome of phage MDA2 is represented in Figure 3. When compared to other
published enterococcal genomes, the genome of MDA2 was 70%, similar to that of phage
phiEF24C [56]. Both Podoviridae vB_Efae230P-4 and Myoviridae phiEF24C were isolated from
the environment in Japan and targeted vancomycin-resistant E. faecalis [51,56] (Figure S2).
Of interest, no virulence-associated genes, antibiotic resistance genes or integrase genes
were detected in the phages’ genomes (Tables S1 and S2).
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different genomic regions including the DNA packaging (blue), the head and tail morphogenesis
genes (pink), host lysis genes (purple), and the replication–transcription region (green). Grey arrows
represent genes coding for hypothetical proteins. tRNAs are represented by vertical lines.

3.2. Safety and Efficacy of the Phage Cocktail

The phage cocktail (MDA1 and MDA2) was administered to VRE-injected larvae and
survival was monitored for 48 h. At 48 h, larvae injected with saline only (control) were
just as likely to be alive as larvae injected with the phage cocktail only (82.5% vs. 85% alive;
OR = 1.2, SE = 0.8, p = 0.75) demonstrating the safety of the phages. Additionally, by 48 h of
follow-up, larvae injected with VREfm (including daptomycin-resistant VREfm) and phages
were 3.7 (treatment group) and 6.5 times (prophylactic group) more likely to survive than
larvae injected with VREfm only (55% vs. 25% alive; OR = 3.7, SE = 1.8, p = 0.07 and 67.5%
vs. 25% alive; OR = 6.5, SE = 3.3, p < 0.001, respectively), demonstrating the efficacy of
phages against VREfm in a larva model. Then, 16S analysis was performed on all the larvae
to qualitatively identify VREfm abundance in each group. Larvae from the same group
were pooled and homogenized with sterile media and sent for DNA extraction and 16S
sequencing and analysis. The larvae groups that received sterile media or phages alone
did not have any VREfm and were comparable to the control (without any manipulation).
VREfm abundance was significantly higher in the group receiving VREfm alone compared
to the control (p < 0.001), the group receiving VREfm and then phages (p < 0.001), or the
group receiving phages and then VREfm (p < 0.001). As expected, there were no significant
differences in VREfm abundance between the control, the group receiving VREfm and then
phages, or the group receiving phages and then VREfm.

3.3. Data Availability

The genome sequences of MDA1 and MDA2 have been deposited in GenBank under
accession numbers MW623430 and MW633168, respectively.
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4. Discussion

Vancomycin-resistant enterococci have long been widespread in the community as
well as in hospital settings [6,57–60]. New interventions against these pathogens are needed
for prevention and treatment of resistant enterococcal infections. Phages constitute a safe
and effective strategy against pathogenic bacteria. In this study, we were able to isolate
two different phages from sewage samples. The genomic characterization of these phages
indicated the absence of virulence, antibiotic resistance, and integrase genes, making them
safe to be used in the larvae model and all in vivo models. The phages were able to eradicate
multiple VREfm, including daptomycin-resistant VREfm strains isolated from different
sources such as the environment, hospital rooms, and patients. Additionally, we showed
the efficacy of a phage cocktail against this bacterium in vitro and in an in vivo larva model.
Indeed, the VREfm-specific phage cocktail composed of the two distinct phages was shown
to be effective in a larvae model, reducing VREfm abundance and increasing larval survival
over a 48 h phage treatment compared to the group that did not receive phages but only
VREfm. Our results highlight the feasibility and the potential success of these phages in
eradicating VREfm.

Phage therapy is gaining more attention among the scientific and medical communities
in Western countries for many reasons, including the slow process for new antibiotic
development, and the increasing incidence of MDROs worldwide. Phages may present an
approach that can potentially aid in the fight against MDRO colonization and infections.
Naturally occurring phages with good safety profiles have been used in Western countries
to treat infections caused by MDROs [20,22,23]. Nevertheless, there are a lack of in vivo
VREfm-specific phage studies performed on VREfm-colonized and VREfm-infected patients,
including daptomycin-resistant VREfm.

The efficacy and safety of antimicrobial agents such as phages are assessed in an
animal model before their potential application in humans. In vivo experiments are crucial
to identify safety issues and the potential loss of activity due to host factors. However,
experiments using murine models is time-consuming, expensive, and could be ethically
objectionable. Galleria mellonella larvae or wax moth is an alternative and innovative
model to study microbial virulence, as well as to evaluate the efficacy of antimicrobial
agents such as antibiotics and phages [25,61,62]. It can serve as a pre-screening in vivo
experiment preceding a mammalian model. This model is inexpensive, simple, and does
not require ethical approval; moreover, Galleria mellonella survives at 37 ◦C, and has a
significantly similar innate immune system to vertebrates [25,61–63]. The Galleria mellonella
model has been adopted to evaluate phage therapy against multiple bacterial pathogens,
demonstrating the efficacy of phages in vivo in increasing bacterial clearance and survival
rates [24,64–67]. To our knowledge, no study has investigated this in vivo model to evaluate
the efficacy of bacteriophages against VREfm.

Few phages with activity against VREfm have been isolated [68–72]. To our knowledge,
two studies tested VREfm phages in an in vivo model. Briefly, a single intraperitoneal
injection of 3 × 108 plaque-forming units of the VREfm ENB6, isolated from raw sewage at
a local municipal sewage treatment plant, administered 45 min after bacterial challenge
with a clinical VREfm isolate, was enough to rescue VREfm bacteremic mice. In the absence
of that phage, VREfm bacteremia was fatal within 48 h [68]. A recent report showed the
successful treatment of a VREfm abdominal infection in a pediatric liver transplant patient
that was failing many courses of antibiotics and surgical management. An individualized
two-phage cocktail was administered intravenously over 2 h twice daily at a concentration
of 8 × 107 PFU/mL over a ten-day course of 2 mL/kg bodyweight followed by another
ten days of 2 mL/kg bodyweight at a concentration of 5 × 108 PFU/mL. To reduce the
theoretical risk of an allergic reaction against the phage preparation, an H1-antagonist was
administered before every phage application. A reduction in c-reactive protein starting the
day after the first dose and constant clinical improvement were observed. There were no
observed adverse events attributable to phage administration and VREfm was not detected
in the routine screening from rectal swabs [72].
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5. Conclusions

Phages may constitute an alternative strategy to manage resistant bacteria such as
VREfm in an innovative, safe, and natural way. Our results highlight the feasibility and
the potential success of these phages in inhibiting VREfm in in vitro and in vivo models.
Future studies in animal models as well as clinical trials to test the ability of these phages to
safely and effectively eradicate VREfm-colonized or infected animal and human hosts, such
as immunocompromised cancer patients, in particular, are long overdue. In addition, the
impact of phage therapy on the gut microbiota balance and the regulation of the immune
system in these hosts should also be determined in future trials.
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