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ABSTRACT Xylella fastidiosa infects several economically important crops in the
Americas, and it also recently emerged in Europe. Here, using a set of Xylella genomes
reflective of the genus-wide diversity, we performed a pan-genome analysis based on
both core and accessory genes for two purposes: (i) to test associations between
genetic divergence and plant host species and (ii) to identify positively selected genes
that are potentially involved in arms-race dynamics. For the former, tests yielded signifi-
cant evidence for the specialization of X. fastidiosa to plant host species. This observa-
tion contributes to a growing literature suggesting that the phylogenetic history of X.
fastidiosa lineages affects the host range. For the latter, our analyses uncovered evi-
dence of positive selection across codons for 5.3% (67 of 1,257) of the core genes and
5.4% (201 of 3,691) of the accessory genes. These genes are candidates to encode
interacting factors with plant and insect hosts. Most of these genes had unknown func-
tions, but we did identify some tractable candidates, including nagZ_2, which encodes
a beta-glucosidase that is important for Neisseria gonorrhoeae biofilm formation; cya,
which modulates gene expression in pathogenic bacteria, and barA, a membrane asso-
ciated histidine kinase that has roles in cell division, metabolism, and pili formation.

IMPORTANCE Xylella fastidiosa causes devasting diseases to several critical crops.
Because X. fastidiosa colonizes and infects many plant species, it is important to
understand whether the genome of X. fastidiosa has genetic determinants that
underlie specialization to specific host plants. We analyzed genome sequences of X.
fastidiosa to investigate evolutionary relationships and to test for evidence of posi-
tive selection on specific genes. We found a significant signal between genome di-
versity and host plants, consistent with bacterial specialization to specific plant hosts.
By screening for positive selection, we identified both core and accessory genes that
may affect pathogenicity, including genes involved in biofilm formation.
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Bacteria exhibit extensive, intraspecific variation in genome content. This variation is
the raw material for evolutionary adaptation, including the evolution of pathogenicity

and virulence (1–4). One example of genome variation comes from an early study of
Escherichia coli that compared two pathogenic strains and one nonpathogenic laboratory
strain (5). Of the entire set of protein coding genes annotated by the three genomes, only
39.2% were shared among the three isolates. Intriguingly, the two pathogenic strains
each had 1,300 unique genes, while the laboratory strain had only 585, suggesting that
genes that vary across accessions (i.e., accessory genes) contribute to virulence. Similar
patterns have been illustrated for plant pathogens (6, 7). In Xanthomonas, for example,
horizontal gene transfer (HGT) has shuffled virulent accessory genes from pathogenic
strains to previously nonpathogenic strains (4), facilitating the infection of common bean
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(Phaseolus vulgaris L.). In short, accessory genes contribute to host-pathogen interactions,
making them a critical focus for comparative analyses of genome evolution and function.

Here, we investigate variation in the genome content of another plant pathogen.
Xylella fastidiosa is endemic to the Americas and was first identified as the causal agent
of Pierce’s Disease (PD), an economically devastating disease in grapevines (Vitis vinifera
subsp. vinifera) (8, 9). X fastidiosa causes additional economically and ecologically impact-
ful diseases, such as citrus variegated chlorosis, coffee leaf scorch, oak leaf scorch, and
elm leaf scorch, among others. Historically, the geographic distribution of X. fastidiosa
was limited to the Americas, but it was recently introduced to the European continent
via anthropogenic transmission, which has further expanded its host range and has led
to emerging diseases, such as olive quick decline syndrome (OQDS) in Italy (10, 11). X.
fastidiosa has since been detected in various plant species across locations in Europe,
including France, Spain, and Portugal (12, 13). In susceptible hosts, X. fastidiosa can lead
to significant crop losses, and it continues to threaten crops globally (14, 15).

For each of these diseases, X. fastidiosa is transmitted by xylem-feeding insect vectors
into the plant host, where it then utilizes cell wall degrading enzymes to systemically col-
onize the xylem. In the xylem, it forms biofilms that are thought to be integral to patho-
genicity (16, 17). Colonization is also governed, in part, by virulence and pathogenicity
factors that influence a wide range of bacterial functions (e.g., biofilm formation, host
cell wall degradation, regulatory systems, stress responses, and bacterial membrane
composition), although it is likely that other abiotic factors (such as plant drought stress)
also contribute to disease progression (13). Given its economic impact, the effects and
mechanisms of X. fastidiosa infection have been studied widely, especially in grapevines
(18). However, many pathogenicity factors likely remain undiscovered, and crucial ques-
tions remain unanswered regarding the genetic factors that govern host-pathogen inter-
actions and potential host specialization (13).

In this context, it is helpful to recognize that X. fastidiosa consists of three commonly
recognized subspecies that form distinct phylogenetic clades: subsp. fastidiosa, multiplex,
and pauca. Each subspecies has unique phenotypic characteristics and DNA markers (19).
Two other subspecies, morus and sandyi, have also been suggested, though they are not
recognized as broadly (9). In fact, morus is believed to be a product of a recombination
event between fastidiosa and multiplex isolates (8). The recognition of subspecies is critical
because initial work suggests that subspecies correlate with specific plant hosts (20). While
it has long been known that genetic differences among strains facilitate host-plant speciali-
zation (18, 21–23), there is not a clear one-to-one correspondence between pathogen and
host. For example, some strains can infect more than one host species, as demonstrated
by a strain that causes PD in grapevines and also causes leaf scorch in almonds (21).
Consequently, the questions of the evolution and determinants of host specificity are still
central in understanding the distribution and effects of this pathogen.

In this study, we analyze the genome evolution of X. fastidiosa among isolates from
different plant hosts. Our study is not unique in some respects, as numerous compara-
tive genomic studies of X. fastidiosa have been published already. Many of these stud-
ies have focused on clarifying phylogenetic relationships. For example, Marcelletti and
Scortichini (2016) (19) studied 21 genomes to resolve taxonomic relationships among
subspecies, Giampetruzzi et al. (2017) (24) extended sampling to 27 genomes, in part
to place a novel strain (ST53) in the broader X. fastidiosa phylogeny, and Denancé et al.
(2019) (25) used kmers from 46 genomes to untangle species and subspecies relation-
ships. Another recent study compared the X. fastidiosa populations from Central/South
America (Costa Rica, Brazil), North America (California, Southeastern United States),
Europe (Spain, Italy), and Asia (Taiwan) to elucidate the evolutionary origins of the
subsp. fastidiosa and pauca (26). Still, other studies have focused on populations. For
example, Vanhove et al. (2020) isolated and sequenced X. fastidiosa subsp. fastidiosa
from symptomatic grapevines from five different California locations (27).

One common theme of genomic studies is that they identify the set of genes that
are present in most samples (i.e., core genes) and use those genes as the basis upon
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which to perform phylogenetic inference. These phylogenies have been used for vari-
ous purposes. For example, two recent papers have used phylogenies to explore the
question of host specificity. In one, Uceda-Campos et al. (2022) found that X. fastidiosa
isolates grouped on the phylogeny by geography but not by plant host species, sug-
gesting that host specificity is not correlated with phylogenetic relationships or genetic
divergence (28). In contrast, Kahn and Almeida (2022) used the phylogeny to infer the
ancestral character states of plant hosts and found that the ancestral host plant could
be inferred for most ancestral nodes (29). They concluded that genetic history affects
the host range and also identified ;30 genes whose presence or absence correlated
with specific plant hosts.

In this study, we combined 20 new X. fastidiosa genomes with publicly available data
to build a data set for a molecular evolutionary analysis and to investigate patterns of
host specificity in a phylogenetic context. For the host-specificity analyses, we focused
on core genes, but we also assessed the phylogenetic signal, patterns of gene gain and
loss, and potential host associations of accessory (i.e., noncore) genes. Our goals for
these analyses were to add to the growing literature about genetic correlations between
phylogenetic history and host specificity and also to further consider the dynamic evolu-
tion of accessory genes in this context (29). In addition, we performed extensive analyses
of the ratio of nonsynonymous to synonymous (dN/dS or v ) substitutions to identify
genes under positive selection (v . 1.0). Genes under positive selection may be
involved in arms-race (or Red Queen) dynamics between pathogens and hosts (30, 31).
In other systems, v analyses have identified genes with functions that contribute to host
defense, and they have also discovered entirely new sets of genes and pathways
involved in pathogen-host interactions (32–34). Here, we apply tests for positive selec-
tion in the hope of gaining insight into the sets of genes that may affect host-pathogen
interactions.

RESULTS
Core and accessory genes in Xylella. To investigate genome evolution in X. fastid-

iosa, we sequenced 20 novel X. fastidiosa genomes using hybrid approaches and
retrieved publicly available genomes and raw sequencing data (Tables S1 and S2).
After filtering for the isolation source and the genetic distance, we retained a sample
of 63 genomes that were broadly distributed among the subspecies. All of our analyses
were performed on this final set of 63 X. fastidiosa genomes with the X. taiwanensis
outgroup. The X. fastidiosa genomes ranged in size from 2.42 Mb to 2.96 Mb, with an
average length of 2.61 Mb (Fig. 1A) and an average of 2,478 predicted coding sequen-
ces (CDS) (Fig. 1B). The samples were extracted from 22 plant hosts that represented
12 botanical orders (Fig. 1C).

We categorized each gene as either core (present in 95% or more of the X. fastidiosa
samples) or accessory (35). Across all 64 genomes, we identified 10,477 genes within
the pan-genome. Of those, 1,257 were core genes, and 9,220 were accessory genes,
with nearly 4,000 genes found in only a single isolate (Table S4; Fig. 1D). We performed
functional analyses on both the core and the accessory gene sets by grouping protein
coding sequences into clusters of orthologous genes (COG) (Fig. 1E and F). We com-
pared COG category rankings between the core and accessory gene sets, and a statisti-
cally significant difference was found (paired Wilcoxon rank sum test; P = 0.0001). After
excluding genes with unknown functions, the largest COG categories in the core gene
set were “translation, ribosomal structure, and biogenesis” (123 genes), “cell wall/mem-
brane/envelope biogenesis” (119 genes), and “amino acid transport and metabolism”
(92 genes). In contrast, the largest categories for accessory genes were “replication,
recombination and repair” (547 genes), “intracellular trafficking, secretion, and vesicu-
lar transport” (364 genes), and “transcription” (298 genes). Additionally, we investi-
gated the core and accessory gene lists for significant Gene Ontology (GO) based
enrichment of specific biological processes (Tables S5 and S6).

Phylogenetic patterns of core genes, accessory genes, and hosts. To explore
phylogenetic relationships, we constructed a maximum likelihood phylogeny based on
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FIG 1 Histograms reporting the characteristics of the 64 Xylella genomes. (A) Genome lengths, exhibited in base pairs. (B) The number of
genes within the genomes. (C) A histogram of the plant species from which the genomes were isolated. (D) A histogram of the number of
genes found in x number of genomes. This histogram shows, for example, that nearly 4,000 genes were found in only of one the genomes
out of the entire sample of 64 genomes, whereas 1,024 genes were found in all 64 genomes. (E) The distribution of functional categories for
the set of 1,257 core genes. (F) The distribution of functional categories for the set of 9,220 accessory genes. A key to the COG categories
for panels (E) and (F) is in Fig. S4.
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a subset of 1,024 genes that were present in all 64 isolates. The topology was highly sup-
ported, displaying a mean bootstrap support of 93.75% across all nodes, with a median
of 100% (Fig. 2). The lowest bootstrap supports were primarily found at nodes separating
the X. fastidiosa strains that were isolated predominantly from grapevines, reflecting rela-
tively low evolutionary divergence among these samples. As expected (25), isolates

FIG 2 The inferred phylogeny of the 64 Xylella genomes, based on maximum likelihood inference on the core gene alignments. Each isolate is labeled at
the tips and is colored according to the order of the plant isolation source (host). The common name of the host is provided to the right of the order
information. The three X. fastidiosa subspecies are indicated, as are the bootstrap values at each node. The bootstrap values are pie charts, where black
represents the percentage of bootstrap support. The scale bar reflects the magnitude of sequence divergence per nucleotide site.
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clustered into three distinct clades representing the three main subspecies (ssps. fastid-
iosa, multiplex, and pauca), with 27, 23, and 13 isolates in each clade, respectively. To
account for the possibility that homologous recombination impacted the resolution of
the core phylogeny, we extracted regions of the core gene alignment that had an appa-
rent history of recombination (36), ultimately removing 85.1% of the alignment. The
phylogeny inferred from this alignment was nonetheless highly congruent with the phy-
logeny that did not consider recombination. Only five accessions had altered positions
between the recombination-adjusted and nonadjusted trees (Fig. S3).

To investigate the general evolutionary patterns of the accessory gene comple-
ment, we compared the core gene phylogeny against a phylogeny based on accessory
gene composition (Fig. 3). Both the core gene and the accessory gene phylogenies
clustered into three groups, and all members of the groups were consistent between
phylogenetic treatments. This pattern broadly suggests that accessory genes, while
defined by their inconstancy, are not exchanged en masse to a large enough extent to
alter phylogenetic signals among subspecies. Within subspecies, however, relation-
ships at the tips of the phylogeny often differed between the core and accessory trees.
As an example, the cluster corresponding to multiplex displayed the most discordance
between the core and accessory trees, with all operational taxonomic units (OTUs) con-
tributing to phylogenetic incongruence (Fig. 3). Interestingly, our multiplex sample also
had more plant host species than did our fastidiosa and pauca samples, suggesting the
possibility (but by no means proving) that host factors may affect or moderate genome
content (29). Nonetheless, we found a significant correlation between the distance
matrices based on the core and accessory phylogenies (Mantel test; R = 0.1144, P =
0.019), which is consistent with the fact that the two trees have the same three major
clades. The overarching impression of these analyses is that accessory gene composi-
tion does not turn over so rapidly, due to HGT or other mechanisms, to erase the phy-
logenetic and historical signals of subspecies diversification within X. fastidiosa.

We used both species phylogenies (based on alignments with and without putative
recombinant regions) to test for associations between the X. fastidiosa samples and
their isolation sources (i.e., geographic location or host plant information) using an
analysis of similarities (ANOSIM, see Materials and Methods). There was a weakly signif-
icant phylogenetic association (ANOSIM; R = 0.08178, P = 0.042) between the geo-
graphic location and the phylogeny built from the full core gene alignment (ANOSIM;
R = 0.08178, P = 0.042) but not with the phylogeny built from the nonrecombinant
regions (ANOSIM; R = 20.004147, P = 0.4895). Applying the same approach to the host
species revealed a significant phylogenetic signal for both phylogenies (ANOSIM;
R = 0.1381, P = 0.047; for the nonrecombining regions only, ANOSIM; R = 0.6698, P ,

1�1024). Since X. fastidiosa infects a wide range of plants, we also retrieved the taxo-
nomic order of each plant host to test for a phylogenetic signal at a deeper taxonomic
level, recapitulating the significant association with both phylogenies (ANOSIM;
R = 0.3152, P , 0.0001; for the nonrecombining regions only, ANOSIM; R = 0.1226, P =
0.0198). In other words, strains isolated from plants within the same taxonomic order
were more phylogenetically similar to one another than were isolates taken from unre-
lated plants.

We hypothesized that accessory genes are crucial in pathogen-host interactions.
Therefore, we repeated the ANOSIM analyses with a distance matrix based on the pres-
ence and absence of accessory genes (Fig. 3). We found a significant association
between accessory gene content and geographic isolation source (ANOSIM; R = 0.4553,
P = 0.5307) and a weakly significant association between accessory gene content and
host species (ANOSIM; R = 0.1503, P = 0.0372). The association was lost, however, at the
level of plant order (ANOSIM; R = 0.02367, P = 0.3033). Overall, associations were less evi-
dent based on accessory gene content versus the core-gene phylogeny.

Concerning gene gain and loss, the sheer number of accessory genes indicates that
the genome content of X. fastidiosa is, like those of other microbes (37, 38), shaped by
extensive gene gain and loss events that are probably mediated by HGT (39). We were

Screening for Host-Specificity in X. fastidiosa Applied and Environmental Microbiology

September 2022 Volume 88 Issue 18 10.1128/aem.01220-22 6

https://journals.asm.org/journal/aem
https://doi.org/10.1128/aem.01220-22


interested in assessing the pattern of gene gain and loss across the phylogenetic tree,
hypothesizing that both could be enhanced on branches that lead to host shifts. We
used GLOOME to estimate the number of gains and losses of accessory genes across
the X. fastidiosa phylogeny and represented those estimates phylogenetically (Fig. 4).
Ignoring the branch leading to the X. taiwanensis outgroup (PLS229), the internal
branches discriminating the X. fastidiosa subspecies were estimated to average ;550
separate gene gain and gene loss events. The remainder of the tip and ingroup

FIG 3 A comparison of a neighbor-joining (NJ) tree, which is based on distances due to gene presence or absence (on the left), to the likelihood tree,
which is based on the core gene alignments (from Fig. 2, on the right). As in Fig. 2, the isolates are labeled at the tips of the trees, with the colors
representing plant order. Both phylogenies contain three main X. fastidiosa clades, representing the three subspecies. Lines connect the same isolate
between the two trees, with angled lines representing topological discordance between phylogenies. The three Xylella subspecies are outlined with a black
box and are labeled.
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branches averaged ;100 gene gain and loss events (average gains/branch = 92.8
genes; average losses/branch = 100.0 genes; Fig. 4A and B).

While it is useful to estimate the number of gains and losses on each branch, we
thought it more helpful to normalize the numbers of estimated gain and loss events
by the branch lengths, which were estimated from the sequence analysis of the core
genes. This normalization by branch length converted the number of gene gains and
losses to rates of gene gain (or loss), relative to the sequence divergence. We then
sought to identify branches with aberrantly high rates of gene gain or loss (Fig. 4C and
D), which would be indicative of branches with especially notable turnover of acces-
sory genes. As was found in a previous microbial study (40), we found that most of the
phylogenetic lineages with outlier rates were located at the tips of the phylogenetic
tree. For example, of the 21 branches with high rates of gene gain, 19 were at the tips
of the phylogeny (Fig. 4A). Similarly, 18 of the 21 branches with high rates of gene loss
were external branches. These observations suggest features about the evolutionary
dynamics of the genetic turnover (see Discussion).

Characterizing selection with x. We characterized selection on individual genes
by estimating the dN/dS ratio (v ). We especially sought to identify genes that experi-
enced positive selection (i.e., v . 1.0), as these could indicate a potential signal of
genes that contribute to dynamics between the pathogen and its hosts. To do so, we
applied a series of nucleotide substitution models to individual genes, ultimately

FIG 4 The results of gene gain and loss analyses. (A) The phylogeny of the isolates, with branch lengths proportional to the number of gene gain events.
The colored branches are branches with outlier gene gain rates. (B) The phylogeny of the isolates, with branch lengths proportional to the number of gene
loss events. The colored branches are branches with outlier gene loss rates. (C) A plot of the gene gains against sequence divergence. In the plot, each dot
represents one of the 125 branches of the phylogeny. Outlier dots are colored red. (D) As in panel C, with gene the losses plotted against sequence
divergence.
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resulting in tests for positive selection on two levels: globally across a phylogeny and
across codon sites (see Materials and Methods). For these tests, we examined the full
complement of 1,257 core genes, a subset of 3,691 accessory genes, and a set of 187
multicopy genes.

Concerning testing selection globally for each gene, we first estimated a single v

value for each gene, using a method that assumes that v is constant across all branches
of the entire gene tree and across all codons in the nucleotide alignment. Applied to the
core genes, v estimates (v̂ ), ranged from 0.01048 to 2.92803 with an average of 0.21973
(Fig. 5A). Nineteen core genes had v̂ values higher than 1.0, but none of these were
significantly .1.0 (P . 0.01, FDR correction). In fact, the vast majority (1,144 of 1,257) of
the core genes had v̂ significantly ,1.0 (P , 0.01, FDR correction; Fig. 5A), reflecting
pervasive purifying selection. The range of v̂ was substantially broader for the accessory
genes, ranging from v̂ = 0.0001 to 9.60069, with an average of 0.51443 (Fig. 5B). Among
the accessory genes, 367 (9.9%) had a global estimate of v . 1.0, but only eight dis-
played statistically significant evidence for positive selection. These eight genes were
candidates to encode proteins involved in host-pathogen interactions, but seven of the
eight were annotated as hypothetical genes (Table S7). Overall, the average v̂ was sig-
nificantly higher in the accessory gene set compared to the core genes (Welch’s t test;
P , 2.2�10216), reflecting either lower purifying selection against these genes, more
positive selection, or both.

We also identified 187 genes that had 2 or more copies within a single accession in a
syntenic context but that were single copy in other accessions. We performed a codeml
analysis to estimate v for each multicopy gene, and v̂ ranged from 0.02272 to 4.26800,
with an average of 0.51129 (Fig. 5D). Over half of the genes had v̂ significantly ,1.0

FIG 5 Estimated values of v under M0 (the one-ratio model) in the core and accessory genes. The distribution of the
v̂ values is plotted for (A) the core genes estimated with gene trees, (B) the accessory genes with gene trees, (C) the
core genes estimated with the core gene alignment (CGA) phylogeny, and (D) the multicopy genes with gene trees.
The histogram bars are shaded to reflect the outcome of the likelihood ratio test (insignificant tests are colored red,
and significant tests are colored blue) between a model that estimated v̂ and a model with v fixed to 1.0. The
horizontal dashed line denotes v̂ for each gene set.
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(59.4%, P , 0.01, FDR correction), and only one, a hypothetical gene (group_1109), had
v̂ significantly higher than 1.0 (v̂ = 1.85845, P, 0.01, FDR correction).

The global test is a conservative criterion by which to search for positive selection.
Accordingly, we turned to an alternative method that tests for variation in v among
codon sites and identifies whether sites are under positive selection. To do so, we ran
sites models in codeml, representing a group of nested models. For completeness, we
first compared sites model M0, which represents the null hypothesis that there is a sin-
gle v value for all sites, against sites model M3, which permits v to vary among sites.
In the core genes, the likelihood ratio test was significant for 501 genes (P , 0.01, FDR
correction). We then took this set to compare and test for positive selection using the
sites models. A total of 67 core genes had evidence of positive selection among sites (P
, 0.01, FDR correction). We also tested for positive selection on codon sets within the
3,691 accessory genes, using the same approach. Of the total, 895 displayed evidence
of a variable v value among sites (P , 0.01, FDR correction), and 201 yielded evidence
of positive selection (P , 0.01, FDR correction). Finally, we applied the sites models to
the set of 187 multicopy genes, yielding another 33 genes with evidence of positive
selection. In summary, 5.3% (i.e., 67 of 1,257) of the core genes, 5.4% (201 of 3,691) of
the accessory genes, and 17.6% of the multicopy genes had significant evidence of at
least one codon with an apparent history of positive selection. Among the 201 acces-
sory genes, four (cya, group_454, group_1057, and group_3542) also displayed evidence
for positive selection via the global test.

DISCUSSION

Host-pathogen interactions can drive the rapid evolution of pathogenic bacteria,
particularly for genes involved in arms-race dynamics (30, 41). Here, we investigated
the genomic evolution of the plant pathogen, X. fastidiosa, through a comparative
genomic analysis of genomes representative of the diversity across the species, based
on a sample set of 64 genomes. The sample was isolated from 23 different plant hosts
(Fig. 1C) from throughout the world (Fig. S1). With these data, we constructed a pan-
genome that contained 1,257 core genes and 9,220 accessory genes, similar to those
of previous studies (24, 42). Of the core genes, the majority were, as expected (43),
involved in essential cellular processes, such as translation, cell wall biogenesis, and
amino acid metabolism (Fig. 1E). We used the set of core genes to infer a maximum
likelihood phylogeny, either with or without adjusting for the putatively recombining
regions of the genome (Fig. 2; Fig. S3). As with the previous systematic treatments of
X. fastidiosa (19, 25, 44), both phylogenies identified three clades corresponding to the
three main subspecies (fastidiosa, multiplex, and pauca).

We employed both phylogenies to investigate the relationship between the X. fas-
tidiosa phylogeny and the plant host. The question of host specialization was first
addressed using phylogenetic approaches with multilocus sequencing typing (MLST)
data. In this work, Sicard et al. (2018) (8) generated MLST data from 7 housekeeping
genes from 50 X. fastidiosa genotypes. After building a phylogeny, they tested coevolu-
tionary relationships between the host species and the X. fastidiosa MLST types but
found no significant evidence of coevolution, implying a lack of host specialization.
This topic was recently revisited with full genome data (28, 29), but the results were
inconsistent between studies. Uceda-Campos et al. (2022) (28) found no evidence that
the plant host species clustered on their X. fastidiosa phylogeny, but the samples did
cluster by geography. In contrast, Kahn and Almeida (2022) (29) inferred the ancestral
character states of plant hosts on the X. fastidiosa phylogeny and were able to resolve
the character states of some deep nodes. They inferred, for example, that coffee plants
were the ancestral host species for the node separating X. fastidiosa subsp. fastidiosa
from other subspecies. These patterns suggest that phylogenetic history is associated
with specific plant hosts and host ranges.

The disagreement among previous studies, and the fact that all such analyses are
properties of the sampled isolates, makes this issue worthy of further assessment. In
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our study, we found a significant, nonrandom association between phylogenetic rela-
tionships and both the species and taxonomic order of plant hosts (P , 0.0001) based
on core phylogenies. These results are consistent with some level of specialization of X.
fastidiosa to plant hosts and with the results of the recent analysis by Kahn and
Almeida (2022) (29). Moreover, these results were robust to phylogenetic - that is, the
inclusion or exclusion of genomic regions were inferred to have histories of recombina-
tion. Although it is difficult to quantitatively compare ANOSIM results across studies, it
is worth noting that the association of X. fastidiosa to plant order is similar in magni-
tude to the association between a gut colonizing bacterium (Bifidobacterium) and the
host species from which it was isolated (45).

Given some evidence for host specialization, we hypothesized that it is driven in
part by accessory gene content. Under this hypothesis, we predicted that an associa-
tion between genes and hosts should be as (or more) pronounced for the accessory
genes as for the core genes. Instead, we found no significant association between the
accessory gene complement and taxonomic order and only a weak association with
plant species. Our results are unlike, for example, the case of the bifidobacteria, where
the association with the host species was nearly as strong for the accessory genes as it
was for the host genes (45). We cannot be sure why we do not detect a signal for the
host specialization of the accessory genes, but we can think of three explanations. One
is that host associations, to the extent they exist, are not driven by accessory genes but
by evolutionary divergence in core genes. Another is statistical power; because there
are many more sequence changes among the core genes than there are changes in
accessory gene content, the distance matrix for the core genes likely has a higher sig-
nal-to-noise ratio than does the accessory gene content. Finally, if accessory genes do
mediate host shifts, it is possible, and even likely, that only a subset of the accessory
genes drive these shifts. Under this scenario, there may be significant associations for a
small subset of accessory genes, but the signal of this association is weak across the
entire accessory gene set. This conjecture seems reasonable, given that Kahn and
Almeida (2002) found that the presence or absence of a subset of only ;30 accessory
genes correlated with the plant host. In addition, it is worth emphasizing that X. fastid-
iosa interacts not only with plants but also with insect vectors and microbial commun-
ities, such that some subset of accessory genes likely contributes to these interactions
instead of those with plant hosts.

The pattern of gene gain and loss events. Another potential tool to study adapta-
tion to specific hosts is by examining shifts in gene composition through gene duplica-
tion, deletion, or HGT events (46, 47). We estimated the number of gene loss and gain
events along the core gene phylogeny and normalized those numbers relative to the
sequence divergence. Using this approach, we found that most branches followed a
consistent rate of gene gain or loss relative to the sequence divergence. The fact that
the accessory gene phylogeny recapitulates the three subspecies (Fig. 3) suggests,
along with previous evidence, that X. fastidiosa evolves predominantly through vertical
inheritance and intraspecific recombination rather than through HGT from other bacte-
rial species (20, 48).

We have, however, identified 19 and 18 lineages with enriched gain or loss events,
respectively, and most of these branches were at the tips of the phylogeny. Again, a
potential explanation for these gain and loss dynamics is that they reflect host shifts.
There are some isolated examples that are consistent with this hypothesis. For exam-
ple, isolates XF6c, Pr8x, RAAR17, and OLS0478 in pauca have branches with enriched
gene gains (Fig. 4A). Two of these (OLS0478 and Pr8x) were isolated from oleander and
plum, respectively, and they are the only isolates associated with those plant hosts in
their clades, suggesting a host shift. More globally, however, the evidence for this hy-
pothesis is unconvincing. When we, for example, contrast gene gains between pairs of
sister taxa with the same plant host, 3 of the 16 sister pairs had enriched rates of gene
gain. This proportion of enriched branches was not significantly lower than that of the
remainder of the tree (P . 0.05; Fisher’s exact test), despite the fact that the sister taxa
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did not experience a host shift. All of these inferences are, of course, dependent on our
sample and ignore the vector component of the X. fastidiosa life cycle. So, there are
limitations to our conclusions. At present, however, the evidence for an association
between host shifts and enhanced gene gain and loss events is weak.

This leaves unexplained the pattern of the enriched rates of gene gain and loss at
the tips of the tree. We suspect that this pattern is analogous to patterns of mutations
in populations, as suggested previously (40). New mutations begin as rare, low fre-
quency variants in single individuals. Eventually, most of these mutations are removed
by the processes of genetic drift and natural selection such that there are more new
mutations in populations than old mutations. In a phylogenetic context, these new
mutations would be evident at the tips of the trees, so it may be reasonable to expect
higher effective rates of gene gain and loss in the “newest” phylogenetic branches.
This explanation only has credence, however, if the observed gain and loss events are
both frequent and recent (i.e., newer than the sequence mutations that define the tip
branches).

The identification of positively selected genes. Many previous studies have impli-
cated genes and their protein products in ongoing arms-races between pathogens and
their hosts (49, 50). One way to approach this question is agnostic to function, which is to
screen for genes with a history of positive selection. Ours is not the first attempt to detect
selection in X. fastidiosa genomes. Previous studies have searched for selection by compar-
ing levels of polymorphism or rates of synonymous and nonsynonymous mutations in the
core genome using Tajima’s D and the McDonald-Kreitman test (26, 42). Other work has
measured v in core genes but without statistically testing for positive selection (48) or by
applying a global test for v values that are greater than 1.0 (27). To our knowledge, no
other study of X. fastidiosa has either tested for positive selection in accessory genes or
applied codon sites models. The set of positively selected X. fastidiosa genes represents
candidate pathogenicity factors that mediate interactions with the environment, including
the plant host, insect vectors, or members of the microbial community.

To study positive selection, we estimated v , which is the ratio of nonsynonymous
to synonymous mutations, for each core gene and for each accessory gene found in
four or more isolates. In total, this exercise encompassed 5,135 genes: 1,257 core
genes, 3,691 accessory genes, and 187 multicopy genes. We began by applying a
global test that estimates v over all sites and phylogenetic lineages. This approach can
be overly conservative, as a significance test of v . 1.0 requires that positive selection
is strong, acts across many sites in a gene, is present in most of the branches of the
phylogeny, or all of the above. As expected, we found only a few genes (eight acces-
sory genes in total) that were significant for positive selection with this test.
Unfortunately, the annotations of 7 of 8 of these genes yielded few insights into their
functions. To explore gene function further, we identified protein domains using the
Conserved Domain Database. We found, for example, that the gene group_7848 con-
tains a VirB3 protein domain, which is part of the Type IV secretory pathway and is
commonly associated with the membranes of the bacterial cell. The gene cya was also
implicated using this test, which encodes adenylate cyclase and plays an essential role
in the regulation of cellular metabolism (51). Interestingly, the cya protein is involved
in the cyclic AMP system, which is a global regulator in Gram-negative bacteria and
has been shown to modulate gene expression in pathogenic bacteria (52, 53).

The global test did allow, however, for two broad generalizations about the patterns
of selection in X. fastidiosa. First, as a group, the core genes are under strong purifying
selection, with most (.90%) having v estimates significantly less than 1.0. Second, acces-
sory genes generally have lower levels of purifying selection, as evidenced by a lower pro-
portion (45%) of significant tests for v , 1.0 and by much higher average v̂ values
(0.21973 versus 0.51443; Fig. 5A). The proportion of significant tests must be compared
between genic sets with caution because the smaller sample sizes (n = 4 to 59) for the
accessory genes likely reduces statistical power, relative to the minimum of 60 samples
for all core genes, as do any differences in gene lengths. Nonetheless, the contrasting
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pattern of v is consistent with the ideas that core genes have conserved biological func-
tions and that accessory genes are more amenable to evolutionary change due to their
nonessential, but still potentially biologically relevant, cellular roles (54). Accessory genes
may also experience higher variation in their selection dynamics because recombination
affects them more than it affects core genes (48).

Given few signals of positive selection with the global test, we turned to codon site
models. To our surprise, the proportion of positively selected genes was similar for
core genes (5.3%) and for accessory genes (5.4%). The salient question is whether these
genes give some clue to function. Of the 67 core genes with evidence for positive
selection at the codon level, 40% were unannotated. We performed a functional analy-
sis by grouping the protein coding sequences of these 67 core genes into COG catego-
ries to infer cellular functions. Excluding the category of unknown function, the largest
category was “cell wall/membrane/envelope biogenesis”, followed by the “amino acid
metabolism and transport”, “carbohydrate metabolism and transport”, “translation”,
and “intracellular trafficking and secretion” (Fig. S4A).

Of the 201 accessory genes with evidence for positive selection at the codon level,
82% were not annotated for function. The remaining set of 36 genes was enriched for
GO categories related to protein secretion by the type IV secretion system (Table S8).
To better infer function, we performed a COG analysis and found that the largest cate-
gories (excluding the category of unknown function) were “intracellular trafficking and
secretion”, “replication, recombination and repair”, and “secondary metabolites biosyn-
thesis, transport and catabolism” (Fig. S4B). Intriguingly, of this set of 201 genes, 50
overlapped with the set of 367 genes that had a gene-wide estimate of v̂ . 1. While
these are especially strong candidates for having a history of positive selection, a
disappointing 94% of them were unannotated for function. The three genes with
annotations were cya, nagZ_2, and bacterial adaptive response A (barA). The gene
nagZ_2 encodes a beta-glucosidase that is important for biofilm formation in Neisseria
gonorrhoeae, suggesting that it could play a similar role in X. fastidiosa. It merits further
functional analysis, since biofilms are important to the infection cycle (55). barA enco-
des a membrane associated histidine kinase that has a regulatory role in cell division,
metabolism, and pili formation, and it has been implicated in regulating the virulence
response of uropathogenic E. coli (56, 57). Finally, the multicopy genes also yielded
evidence of positive selection, including cdiA1, which is part of the secretory contact-
dependent growth inhibition (CDI) system that modulates biofilm formation in
Acinetobacter baumannii (58).

As a final exercise, we cataloged the incidence of positive selection in a set of 35
genes that have been listed as virulence and pathogenicity factors in X. fastidiosa (13).
Of the 35, we could identify 29 in our database based on the PD number annotations
and reference sequences (http://www.microbesonline.org/operons/gnc183190.html;
Table 1). We expected that this set of 29 genes would be enriched for evidence of posi-
tive selection relative to the genomic background because these genes are putatively
involved in arms-race interactions. The trend for these genes was in the expected
direction, because 4 of 29 (13.9%) were significant versus 301 of 5,135 (5.8%) in the
rest of the genome. However, the difference in proportions was not significant (Fisher’s
exact test; P = 0.1091). Nonetheless, this set of experimental genes is interesting. All
four genes with evidence of positive selection encode proteins associated with the
membranes of Gram-negative bacteria and are involved in membrane transport or
adhesin. Specifically, the genes fimF, xadA, and xatA encode proteins involved in fimb-
rial adhesion, nonfimbrial adhesion, and biofilm formation, respectively, and the gene
PD1311 encodes a protein involved in membrane transport (59–63). Because there is a
resolved protein structure for fimF (64), we investigated the location of positively
selected codons. Of the four positively selected codons (N80, D87, F137, and D142),
one (D87) was in a flexible loop, and a second (D142) comprised part of the second
b-sheet of the protein (64). Together this suggests that changes in the amino acid
sequence of fimF may be impacting its function.
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We must caution that positive selection analyses are subject to false-positives, and
they are also dependent on specific analysis features, such as the sample set, the crite-
ria for determining homology, and the sequence alignments. Nonetheless, we have
found several genes with some evidence of positive selection that may also contribute
to functions that are relevant to infection. We believe that they represent suitable can-
didates for further functional analyses to elucidate their roles in host-pathogen interac-
tions and perhaps even host specificity.

MATERIALS ANDMETHODS
Novel X. fastidiosa genomes. Fully extracted DNA from 20 X. fastidiosa isolates were provided by

the French Collection of Plant-Associated Bacteria (CIRM-CFBP; http://www6.inra.fr/cirm_eng/CFBP-Plant
-Associated-Bacteria) and from the University of California, Riverside. Genomic DNA was prepared for
Illumina sequencing using the Illumina Nextera DNA Flex Library Prep Kit, following the manufacturer’s
recommendations, and for Pacific Biosciences (PacBio) sequencing with the SMRTbell Express Template
Prep Kit 2.0. The SMRTbell libraries had a 10 kb DNA target insert size (Pacific BioSciences, Menlo Park,
CA) and used 360 ng of sheared DNA as an input. The DNA libraries were sequenced with both Illumina
and PacBio technologies at the University of California, Irvine Genomics High Throughput Facility
(https://ghtf.biochem.uci.edu). The Illumina sequencing reads were quality assessed using FastQC, and
the reads were trimmed using Trimmomatic v. 0.32 (65, 66), using the default options. The PacBio
sequencing reads were corrected and trimmed using Canu v. 1.5 (67). The long and short reads were
used for genome assembly with Unicycler v. 0.4.8 in hybrid assembly mode (68). Genome assembly sta-
tistics were calculated using Quast v. 5.0.2 (69). As is common practice (70), short contigs (,500 bp)
were removed from the assemblies using Seqkit v. 0.13.2 (71).

Genome assembly of public data and sample set curation. We complemented our set of novel
genomes with publicly available data. To do so, we downloaded all of the available whole-genome
assemblies of X. fastidiosa and X. taiwanensis (as an outgroup) from the National Center for

TABLE 1 Codeml results for experimentally identified virulence and pathogenicity genes, as
listed (13)

PD no. Gene name
Pan-genome
classification

No.
genomesa M0b

M2a versus
M1a P valuec

PD0058 fimF Accessory 41 0.31555 3.25e208
PD0062 fimA Accessory 26 0.81255 0.247
PD0233 rpfB Accessory 57 0.16832 1
PD0279 cgsA Core 64 0.14404 1
PD0406 rpfC Accessory 44 0.34502 1
PD0528 xatA Core 64 0.43097 1.38e-41
PD0731 xadA Accessory 58 0.39196 0.004
PD0732 xpsE Core 64 0.05825 1
PD0814 wzy Accessory 43 0.17675 1
PD0843 tonB1 Core 64 0.11374 0.534
PD0848 pilL Core 64 0.18195 1
PD0986 Core 64 0.10828 1
PD1099 dinJ/relE Accessory 25 0.10271 1
PD1100 Accessory 15 0.20708 0.731
PD1284 algU Core 64 0.19261 1
PD1311 Accessory 33 0.42541 3.47e205
PD1380 csp1 Core 64 0.15702 1
PD1391 gumH Accessory 46 0.12964 1
PD1394 gumD Core 63 0.11504 1
PD1485 pglA Accessory 59 0.28401 0.114
PD1678 phoQ Core 64 0.1086 1
PD1679 phoP Core 64 0.03272 1
PD1703 lesA/lipA Core 64 0.06614 1
PD1792 hxfB Core 64 0.10828 1
PD1826 chiA Core 64 0.11424 1
PD1856 engXCA1 Core 63 0.24034 1
PD1964 tolC Core 64 0.10051 1
PD1984 gacA Core 64 0.13444 1
PD2118 hxfA Core 64 0.10828 1
aThe number of genomes, out of 64, in which the gene was detected.
bM0 estimates a single v across the entire phylogeny of sequences.
cThe P value of the test after FDR correction. Bolded values are significant at P, 0.01. The notation e refers to the
power of 10.
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Biotechnology Information (NCBI) and the Sequence Read Archive (SRA) databases on July 9, 2020
(Table S1). In addition, we downloaded the raw, short-read sequences for an additional 20 isolates (27,
42). For each isolate, we gathered information about its geographic origin and its host plant from NCBI
and from the Pathosystems Resource Integration Center (PATRIC) database. To assemble the raw reads
from the 20 unassembled accessions into genomes, we assessed quality, trimmed the reads, and applied
SPAdes v. 3.14.0 (72) with the –careful option, following Vanhove et al. (2020) (Table S2) (27). If long
reads were also available, as they were for 5 isolates from the work of Castillo et al. (2020) (42), then
whole-genome assembly was performed with Unicycler v. 0.4.8 in hybrid assembly mode (68).

In total, we gathered and generated 148 Xylella genome assemblies. From this set, we removed iso-
lates that did not have information about their host isolation source or were lab-derived recombinant
strains. The remaining 129 genomes were reannotated by the same method, based on Prokka v. 1.14.6
analysis, which we applied to the new genomes to ensure homogeneity. The Prokka analyses were then
input into Roary v. 3.13.0 with options -i 80 -cd 100 -e -n -z to obtain a core gene alignment for initial
comparisons among isolates (35, 73). Here we defined core genes as those that were detectable in 100%
of the samples. This core set was aligned with MAFFT and polished using gBlocks v. 0.91b (74–76). The
polished alignment was used as an input for RAxML v. 8.2.12 to build a preliminary phylogenetic tree
(77), which we used to evaluate and curate the isolates (Fig. S1).

To curate the data set, we created a distance matrix from the RAxML phylogenetic tree, using the
Tree and Reticulogram Reconstruction (T-REX) server (78). Many of the genomes, most of which were
gathered for population genomic analyses, were sampled from the same plant host and were nearly
identical, genetically. To limit sampling biases in our species-wide study, we removed clones and near-
clones based on the distance matrix. That is, if two or more isolates had a pairwise distance of #0.0001
and came from the same host, we retained the isolate with the more contiguous assembly. We also
used CheckM (79) to assess genome completeness based on a set of conserved single copy genes (Table
S3). After applying these filters, our final data set consisted of 63 X. fastidiosa genomes and one out-
group genome (X. taiwanensis PLS229) that were isolated from 23 distinct plant host species (Table S1).

Pan-genome analysis. To perform a pan-genome analysis, we applied Roary to the 64 Xylella
genomes using the gff files from Prokka as an input. Roary was applied with the option -i 80, as used in
previous microbial studies (45, 70), to lower the BLASTP sequence identity to 80% from the default 95%.
We defined a core gene as a gene present in 95% of the isolates used in the analysis (i.e., a core gene
was present in at least 60 of the 63 X. fastidiosa accessions). From the Roary output, we extracted a rep-
resentative nucleotide sequence of each core and accessory gene using cdbfasta (https://github.com/
gpertea/cdbfasta) and translated the nucleotide sequence to amino acids using the transeq command
from EMBL-EBI (80). The representative sequences were the basis for functional categorization, using the
eggNOG-mapper v. 2 (81, 82), of both the core and the accessory genes. GO enrichment analyses were
performed online at (http://geneontology.org) using Xanthomonas campestris as the reference list (83).
To explore function further, we also used the Conserved Domain Database online tool (https://www
.ncbi.nlm.nih.gov/cdd/) to identify protein domains.

Phylogenetic tree construction. We used the core gene alignment from Roary to build a phyloge-
netic tree, based on a subset of genes that were present in all 63 X. fastidiosa samples and the X. taiwenen-
sis outgroup. To do so, we curated the alignments with gBlocks v. 0.91b (74), used the polished alignment
as an input for IQtree v. 2.0.3, and selected the best nucleotide model for phylogenetic tree construction
(84, 85). We ultimately constructed an unrooted tree using the GTR1F1R8 model with RAxML (Stamatakis
2014) (77), using the “best tree” option. The phylogenetic trees were visualized and annotated using the
ape package v. 5.5 in R v. 4.0.2 (86, 87). We used the most likely phylogeny to test for associations between
phylogenetic relatedness, geography, and host isolation source (plant taxonomic order information taken
from https://www.itis.gov/) via ANOSIM implemented in the vegan package v. 2.5-7 in R (88).

X. fastidiosa is naturally transformant and undergoes homologous recombination (9, 89), but recom-
bined genomic regions can obscure vertical phylogenetic relationships. To account for potential recom-
bination among the X. fastidiosa genomes, we applied Gubbins v. 3.2.1 (36, 90), again using the subset
of genes that were found in all 64 samples. From this input, Gubbins identified regions that were likely
to have undergone recombination and removed them from the alignment. We then built a phylogeny
from this recombination-adjusted core gene alignment using RAxML, as described above. We assessed
the congruence between the two phylogenetic trees (i.e., with and without the removal of potentially
recombining regions) using phytools v. 1.0-1 in R (91).

Finally, we also built a neighbor-joining (NJ) tree based on the presence-absence matrix of accessory
genes. We first calculated the Euclidean distances from the presence-absence matrix of the accessory
genes using the dist function in R (92). We then built an NJ tree from the Euclidean distances using the
ape package in R (86). We also utilized the ANOSIM and Mantel test (in the vegan package) to measure
the correlation between accessory gene content and phylogenetic relatedness. The Mantel test required
two distance matrices, which were the Euclidean distances estimated from the accessory gene pres-
ence-absence matrix and the distances from the RAxML core gene phylogeny generated by the Tree
and Reticulogram Reconstruction (T-REX) server (78).

Gain and loss of accessory genes.We utilized GLOOME to investigate gene gain and loss dynamics
along the core phylogenetic tree of X. fastidiosa (93). GLOOME uses a mixture-model approach coupled
with maximum-likelihood inference to infer rates of gains and loss of genes along the branches of a phy-
logeny. It takes as inputs the phylogenetic topology (in this case, the phylogenetic topology based on
the core genes) and a presence-absence matrix of genes. The pattern of genetic presence and absence
was obtained through M1CR0B1AL1Z3R, as recommended by the GLOOME authors, and then directly
input into GLOOME, using the default settings (94). The default settings included a fixed rate of gene
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gains and losses with gamma distributed rates across genes (or sites). Among the outputs, GLOOME
returned two phylogenetic trees with branch lengths representing either the number of expected gain
events or the number of loss events on each branch. As recommended (93), branch lengths representing
relative gain and loss rates were extracted from the phylogenetic trees using FigTree v. 1.4.4 (http://tree
.bio.ed.ac.uk/software/figtree/). To normalize the expected gain (or loss) events with the sequence diver-
gence, we calculated the ratio of inferred gain (or loss) against the branch lengths of the sequence-
based core phylogeny. Outlier branches with excess normalized gains or losses were identified using the
interquartile range criterion.

Positive selection analyses.We employed codeml from PAML v. 4.9 to calculate v , the ratio of non-
synonymous to synonymous rates (95, 96). We performed a codeml analysis on the nucleotide align-
ments of the single-copy core genes, single-copy accessory genes, and multicopy genes (defined as
genes with two or more copies in a single accession). For all tests, we required at least four sequences,
the minimum number suggested for codeml analysis (http://abacus.gene.ucl.ac.uk/software/pamlFAQs
.pdf). For each gene and sequence set, we ran analyses by generating an unrooted maximum-likelihood
tree for each gene based on the DNA alignment, using RAxML v. 8.2.12. This approach recognizes that
the phylogeny of a single gene may not follow the consensus phylogeny due to a history of recombina-
tion. For completeness, however, we also performed codeml analyses by assuming the global phylogeny
for the subset of genes that were present in all 64 samples. The outcomes of the two approaches were
highly correlated (Fig. S2), and so, for simplicity, we focused on results based on phylogenies inferred
separately for each gene.

Given the input phylogenies, we performed codeml analyses that relied on calculating likelihood
ratios (LRs) under various models (96). Briefly, we used the models to test the null hypothesis that v =
1.0 against the alternative of positive selection (v . 1.0) in two different ways. The first was a global
test across the entirely phylogeny of a gene (i.e., across all branches and all sites). This test requires the
comparison of two models: one (Model = 0 with Fix_omega = 1 and Omega = 1 in the codeml control
file) that estimates a single v from the data and another that sets v = 1.0 (Model = 0 with
Fix_omega = 0 in the codeml control file). The two models yielded evidence for positive selection when
the initial v estimate was .1.0 and when the likelihoods of the two models differed significantly, based
on P , 0.01 after FDR correction. The second set of analyses was across sites (i.e., testing for genes with
variable selection pressure across sites). For each gene, we first compared models M0 and M3 to test for
heterogeneity in evolutionary rates across codons. If that test was significant, we then compared sites
models M1a and M2a from codeml to test for specific codons with evidence of positive selection
(v . 1.0). For all of the summary statistics of v , we excluded estimates of v that were greater than 10
as potentially unreliable due to either a low ds or a poorly resolved optimization. Individual codon resi-
dues under positive selection were identified using the empirical Bayes analysis in codeml.

Data availability. All high-throughput sequence data generated in this study have been submitted
to the NCBI Sequence Read Archive database at https://www.ncbi.nlm.nih.gov/sra and can be accessed
with project number PRJNA833428.
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