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Dietary metabolites and the gut microbiota:
an alternative approach to control inflammatory
and autoimmune diseases
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It is now convincingly clear that diet is one of the most influential lifestyle factors contributing to the rise of inflammatory

diseases and autoimmunity in both developed and developing countries. In addition, the modern 'Western diet' has changed in

recent years with increased caloric intake, and changes in the relative amounts of dietary components, including lower fibre and

higher levels of fat and poor quality of carbohydrates. Diet shapes large-bowel microbial ecology, and this may be highly relevant

to human diseases, as changes in the gut microbiota composition are associated with many inflammatory diseases. Recent

studies have demonstrated a remarkable role for diet, the gut microbiota and their metabolites—the short-chain fatty acids

(SCFAs)—in the pathogenesis of several inflammatory diseases, such as asthma, arthritis, inflammatory bowel disease, colon

cancer and wound-healing. This review summarizes how diet, microbiota and gut microbial metabolites (particularly SCFAs) can

modulate the progression of inflammatory diseases and autoimmunity, and reveal the molecular mechanisms (metabolite-sensing

G protein-coupled receptor (GPCRs) and inhibition of histone deacetylases (HDACs)). Therefore, considerable benefit could be

achieved simply through the use of diet, probiotics and metabolites for the prevention and treatment of inflammatory diseases

and autoimmunity.
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Over the past few decades, the incidence of inflammatory and
autoimmune conditions in Westernised nations has risen sharply.1

Subsequently, the modern western diet is one environmental factor
that has changed with increased overall caloric intake, and changes in
the relative amounts of dietary components, including reduced intake
of high-calibre nutrients in exchange for more refined and highly
processed variants.2 As such, diet-related inflammatory conditions
such as obesity, type 2 diabetes (T2D), cardiovascular disease, chronic
kidney disease and autoimmune diabetes (T1D) have become a stigma
for Western society.3–6 It is well established now that our diet
influences our gut commensal bacteria or microbiota by creating a
paradigm between beneficial and non-beneficial bacterial species.7

On the other hand, research into what we eat and how it can affect
our microbiota is in the early stages. In particular, consumption of
dietary fibre and its effects on gut microbiota.8 During fermentation of
fibre, the microbiota produce metabolites or short-chain fatty acids
(SCFAs), which can exert beneficial effects in health by maintaining
the homeostasis of metabolic function, as well as having profound
anti-inflammatory effects by modulating the development and
priming of the immune system.9 The strong anti-inflammatory effects
by SCFAs may act via specific G protein-coupled receptors (GPCRs)
and/or via inhibiting HDACs; these metabolites promote homeostasis
of the gut epithelium, promoting a tightly controlled border between

gut microbes and host.10 Likewise, these metabolites can also influence
the immune cells residing closely in the lymphoid compartments of
the gut, or can circulate systemically to affect those in peripheral
tissues. Here, we provide an overview of the dietary influence on gut
microbiota, and how the microbial metabolites produced can alter the
outcome of inflammation and autoimmunity. We also discuss dietary
SCFA approaches that can be employed to block inflammatory
pathways and prevent or treat inflammatory diseases and
autoimmunity.

SCFAS IN THE PARADIGM OF GOOD AND BAD NUTRIENTS

Our diet is composed of a variety of dietary macronutrients—
carbohydrates, proteins, fats and fibres. Changes in those nutritional
components can act as priming triggers for autoimmunity,11,12

whereas the overconsumption of others can lead to cell damage and
inflammation.13 For instance, the amount of fibre and fat in the diet
shapes large-bowel microbial ecology14 that has been associated with
many inflammatory diseases.15 This is in line with a study showing
that consumption of dietary fibre has globally declined below the
recommended daily intake, particularly in Westernised societies.16

Meanwhile, in Mediterranean societies where high intake of
fibre from vegetables, fruits and nuts is preferred to intake of
highly processed meats and industrialised goods, diet-associated
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complications, such as cardiovascular diseases, have considerably low
prevalence.17 But why is fibre so important? Foods high in fibre
provide many health benefits, as it becomes the source of energy for
both our own gut cells and the microbial communities that reside
there in symbiosis.18 Industrialised diets might deeply alter the gut
microbiota and affect beneficial microbes and their effects on gut,
immune and metabolic homeostasis7,19,20 —a topic that we are going
to discuss later throughout this review. The importance of diet and its
effects on the gut microbiota are reflected in a recent study showing
changes in microbiota diversity through evolution in people following
ancestral lifestyles relative to Westernized societies,21 indicating that
changes in the gut microbiota critically shape human biology. Recent
studies have shown that resistant starches mediate many of the effects
ascribed to fibre, and their supply is critical for optimal gut function.22

Resistant starches that can be obtained from vegetable, fruits, wheat,
corn and nuts are one such form of dietary fibre. They are aptly named
because of their strong ability to resist degradation by the body’s
digestive processes, which continues through to the caecum and large
intestine, where they are fermented by the gut microbiota.22 This
property of resistant starches is often utilised in commercial foods to
reduce energy density because of the inability of the human body to
digest them. In the mammalian gut, primarily the colon, resistant
starches are degraded and fermented by gut microbiota that
subsequently produce metabolites, the most prominent being SCFA:
acetate (two carbons), propionate (three carbons) and butyrate (four
carbons).22 These metabolites are produced at varying ratios, with
acetate being the most abundant in the colon (~60%), followed by
propionate (~25%) and then, to a much lesser degree, by butyrate
(~15%).23 In addition, acetate may itself fuel the production of fellow
SCFA such as butyrate via alternate biochemical pathways. More than
95% of SCFAs are absorbed by the colon, with butyrate being the
preferential energy source for colonocytes, as well as having a profound
effect on maintaining gut epithelial homeostasis and function.22

THE GUT: THE ORIGIN OF INFLAMMATORY DISEASES

A 'leaky gut' in humans and mice, referring to increased gut
permeability, disturbed microbial balance and impaired mucosal
immunity, has been linked as the preceding step to the initiation of
inflammatory diseases and autoimmunity. This is possibly because
alteration in microbial ecology and decreased production of SCFAs
altered mechanisms of mucosal barrier function.24,25 For instance,
the gut epithelial layer acts as a barrier, preventing the translocation of
gut bacteria that can become pathogenic once they reach other
organs.26–29 The SCFA acetate produced by intestinal bacteria reduces
gut mucosal permeability.30 This study inferred that acetate produc-
tion could be one of the principal features of probiotic bacteria that
are thought to provide immune benefits and protection against certain
pathogens. A 'leaky' intestinal mucosal barrier underpins the break-
down of immune tolerance and leads to intestinal inflammation and
diseases, including coeliac disease, colorectal cancer, allergies, asthma,
chronic kidney disease, as well as autoimmune T1D.1,31,32

In murine models, colonic epithelial cells can suffer DNA damage
from harmful dietary by-products, such as those generated from
protein fermentation, which alarmingly can lead to colon cancer.33

Clarke et al. observed that rats with azoxymethane-induced colorectal
cancer that were fed diets high in resistant starches have a significantly
reduced number of tumour formations compared with rats fed control
diets with highly digestible starches.34 Interestingly, increasing butyrate
concentrations in the caecum, as well as in the proximal and distal
colon, were negatively associated with tumour formation in the large
bowel. In addition, Conlon et al. identified an inverse relationship

between increased caecal butyrate concentrations and the amount of
DNA single-strand breakage in colonocytes.35 Consequently, epithelial
cells treated with butyrate regain gut motility and have reduced
intestinal permeability.36 The diet-derived microbial metabolites
accumulating in the gut environment interact with epithelial and
immune cells via specific receptors to modulate their respective
molecular pathways. Targets of these metabolites include specific
GPCRs, which bind free fatty acids such as SCFAs. The effect of
metabolite interaction with GPCRs can significantly influence mucosal
and immune homeostasis.

GPCRS AND MECHANISMS OF ACTION IN THE GUT

Over the years, a vast number of GPCRs have been identified, some
currently with unknown ligands or function; however, only a select
few have been characterised as molecular sensors of diet-related
microbial products. Of particular interest to this review are the
receptors of SCFAs, namely GPR43 (FFA2), GPR41 (FFA3) and
GPR109a. GPR43 is activated by SCFAs with varying potency—
acetate4propionate4butyrate. Expression of GPR43 has been found
on gut epithelial cells and certain immune cells.37 Similarly, GPR41
also binds the three major SCFAs, but with differing affinities.38

GPR109a is primarily activated by both niacin and butyrate ligands.
Whereas under normal physiological conditions niacin levels are not
high enough to activate the receptor, levels of butyrate, obtained from
the gut environment, and its oxidised form β-hydroxybutyrate, are
sufficient to stimulate a response.39 Expression of GPR109a has been
found on a variety of immune cells, as well as on adipocytes,
hepatocytes, gut and retinal epithelium, vascular endothelium and
neuronal tissue.39 Owing to its connection to the NF-κB pathway,
GPR109a activation can lead to suppression of pro-inflammatory
mediators such as iNOS, COX2, tumour necrosis factor (TNF)-α,
interleukin (IL)-1β and IL-6. Thus, focus on GPR109a as a therapeutic
target to treat inflammatory diseases has been growing.
In patients suffering from colitis, a form of inflammatory bowel

disease, experimental treatment with butyrate enemas has reduced
clinical signs of inflammation and even led to remission in some
cases.40 As butyrate potently activates GPR109a, many studies have
focused on the effects of GPR109a activation in treating inflammatory
conditions of the bowel. Colonic epithelial cells from neonatal mice
cultured with butyrate in vitro generate an enhanced production of
mRNA for anti-inflammatory IL-18; yet colonic epithelial cells from
mice lacking GPR109a failed to have this upregulating response.41

Adding to this, our group demonstrated recently that NLRP3
inflammasome activation in colonic epithelial cells required two
signals.42 First, the priming, induced by gut microbial products and
second activation mediated by membrane hyperpolarization. Macia
et al. showed that dietary fibre had beneficial effects on epithelial
integrity by promoting epithelial NLRP3 activation through effects on
both signals one and two. By reshaping the gut microbial composition,
dietary fibre improved inflammasome priming. The SCFAs, released by
anaerobic fermentation by colonic bacteria, activated the inflammasome
through their binding to GPR43 and GPR109a.42 This beneficial role on
epithelial integrity was confirmed in a model of dextran sulphate
sodium (DSS)-induced colitis in vivo in which the protective role of
dietary fibre was mediated through NLRP3 activation in the epithelial
compartment following GPCR activation.42

THE ROLE OF DIET, MICROBIAL METABOLITES AND

MUCOSAL IMMUNOLOGY

Interactions with the external environment in vertebrates occur at
various sites including the mucosal surfaces of airways, skin and the
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gastrointestinal tract.43 The gut, being the largest immunological organ
in our body and in constant contact with food antigens, commensal
microbiota and foreign pathogens, has to be extremely adept at innate
and adaptive immune regulations.44 In order to effectively manage
these interfaces, the gut has evolved with a highly dynamic anatomy
that interacts with the resident microbiota and the mucosal immune
system.45 The gut mucosal immune system consists of three distinct
mucosal lymphoid structures: the mucosa-associated lymphoid tissue
found in the gastrointestinal tract either in clusters (Peyer’s patches) or
in isolated lymphoid tissue, the lamina propria where cytokines and
immunoglobulins are secreted by effector cells and the epithelium
layer in which intraepithelial lymphocytes reside.43 Another distinct
population of immune cells named the innate lymphoid cells (ILCs) is
essential for the maintenance of intestinal homeostasis.47 The ILCs are
responsive to microbial composition, and their development and
function depends on the specific expression of transcription factors:
T-bet for Group 1 ILCs, GATA-3 for Group 2 ILCs or RORγt for
Group 3 ILCs.48 Numerous studies have established a role for ILCs in
maintaining a healthy intestinal barrier through the production and
secretion of cytokines such as IL-22 and IL-17, or activity of the
transcription factor aryl hydrocarbon receptor.49–51 Whereas more
research is needed to fully uncover the role of ILCs in regulating
host–microbe interactions, it is clear that ILCs confer another level of
protection to the epithelial cells from pathogenic exposure by repairing
tissue damage, promoting gut barrier function and preventing
systemic inflammation.
Recent studies have shown that SCFAs produced from bacterial

fermentation of fibre have anti-inflammatory and immunomodulatory
effects through the impact of regulatory T (Treg) cells as an important
factor in immune tolerance.52 The SCFA butyrate promotes inducible
Treg (iTreg) number and function in the colon of mice.53,54

IL-10-producing iTregs develop after TGF-β cytokine exposure in the
periphery from naive CD4+ T cells.53 In addition, adoptive transfer
of CD4+ CD45RBhi naive T cells into Rag1−/− mice showed their
conversion into Treg cells when mice were fed a butyrylated diet.53

Indeed, it is likely that commensal bacterial species that promote iTregs
in the gut55 do so through production of high amounts of acetate or
butyrate. In parallel, Smith et al. further expanded on this finding by
demonstrating a direct effect of SCFA on colonic Tregs through the
increased expression of GPR43 mRNA; however, this effect was absent
in mice deficient in GPR43.54

Importantly, the actions of SCFAs are not limited to intestinal sites.
A portion of diet-derived microbial metabolites passes across the
mucosa into the lamina propria, where it enters the systemic
circulation via the portal vein. Whereas butyrate enacts strong effects
in the gut, its levels in circulation throughout the body are often
negligible or undetectable. Acetate, the most abundantly produced
SCFA, is, however, readily detectible in the peripheral circulation at
~ 50–150 μM. Therefore, the SCFA acetate is one means by which the
microbiota may regulate the immune system beyond the gut.

'YOU ARE WHAT YOU EAT': THE ROLE OF MICROBIAL SCFAS

IN T2D AND DIABETIC COMPLICATIONS

The Western diet underlies obesity, T2D, as well as asthma and
cancer.56–58 All these conditions are elements of the metabolic
disorders, where diet contributes to the chronic inflammation of
visceral adipose tissue, insulin resistance and increased intestinal
permeability,59 allowing dissemination of gut bacteria or bacterial
products (endotoxaemia). Genetically obese mice had increased
intestinal permeability and lipopolysaccharide (LPS) levels in the
portal blood, which promote inflammatory liver damage.60 This is

evidenced by the increased levels of TNF-α and reduced zona
occludens 1 mRNA in the proximal colon of obese C57BL/6J mice,
which correlated with increased macrophage infiltration and levels of
inflammatory cytokines TNF-α and IL-6 in the mesenteric fat.61 In
contrast, the gut anti-inflammatory agent 5-aminosalicyclic acid was
shown to improve metabolic parameters in diet-induced obesity
(DIO) mice, with associated regulation of gut adaptive immunity
and reduced gut permeability,62 thus implicating the role of gut
leakiness and inflammation in DIO mice. A similar link between
obesity-induced abnormalities in lipid homeostasis, gut permeability
and non-alcoholic steatohepatitis was also found in human subjects,63

similar to increased circulating zonulin and IL-6 in obesity-associated
insulin resistance.64 Two groups65,66 have demonstrated that induction
of IL-22 produced by Group 3 ILCs is impaired in obese mice, and
IL-22-deficient mice fed a high-fat diet are more susceptible to
developing metabolic disorders. Lymphoid tissue-inducer cells secrete
large amounts of IL-22 that maintains gut mucosal barrier integrity
and keeps the host–microbial balance.66,67 In addition, IL-22 is
involved in the recruitment of B cells and other lymphocytes to the
germinal centres of isolated lymphoid tissues important for pathogen
clearance,68 in line with the theory of endotoxaemia induced by
inflammation and increased intestinal permeability. The effects of
IL-22 extend beyond the gut as IL-22 is a natural regulator of beta-cell
insulin biosynthesis and secretion, protecting beta-cells from stress and
preventing insulin hypersecretion, ultimately suppressing islet inflam-
mation in obesity.65 Administration of exogenous IL-22 to db/db or
DIO mice improves obesity-driven insulin sensitivity and gut barrier
dysfunction, and reduces chronic inflammation in the liver and
adipose tissues.66

The potential link between gut microbiota and the obese phenotype
was established a decade ago.69 Since then obese mice treated with
prebiotics selectively increased Bifidobacterium and showed a decrease
in concentrations of LPS and inflammatory cytokines in blood,
and this associated with improvements in gut barrier function.70

Faecal microbiota transferred to germ-free mice from mothers
with gestational diabetes induced increased adiposity and insulin
sensitivity,19 thus demonstrating the association between human
metabolic disorders and altered microbiota composition. More
recently, a study assessing the role of drug effect on gut microbiota
of T2D subjects showed that the T2D subjects lacking butyrate-
producing gut bacteria could be restored following treatment with
metformin, an antidiabetic therapy, suggesting a role for SCFA-
producing microbes in disease and health.71 In addition, SCFAs
stimulate the release of the gut hormone glucagon-like-peptide-1
and 2 (GLP-1 and GLP-2),72 which is responsible for modulating gut
barrier function and reducing uptake of inflammatory compounds
that may trigger the chronic low-grade inflammation often linked with
obesity and cardiovascular disease. Indeed, prebiotic-treated mice
show an increased GLP-2 production associated with lower plasma
LPS levels and oxidative stress markers.70 The SCFA acetate has also
been demonstrated to regulate production of leptin, an adipose-based
hormone crucial for regulating energy homeostasis.73 Some studies
have elucidated the roles of SCFAs and GPCRs and production of
leptin in vitro and in vivo.74,75 Although concentrations of propionate
in serum are quite low or undetectable, treatment of adipose tissue
explants with propionate significantly downregulated the production
of TNF-α and CCL5 by macrophages, and increased the expression of
lipoprotein lipase and GLUT4 (associated with lipogenesis and glucose
uptake).76 Similarly, acetate and propionate stimulated adipogenesis
through GPR43.75,77 Meanwhile, GPR109a promotes lipolysis, as
niacin treatment in mice deficient in GPR109a fails to increase the
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secretion of adiponectin.78 In contrast, Tang et al. showed that mice
with DIO and T2D displayed increased plasma acetate in correlation
with higher expression of GPR43 and GPR41 in the islets, and this
contributed to compromised capacity of beta-cells to respond to
hyperglyceamia.79 This is in line with increased local glucose-
dependent acetate formation by pancreatic islets, also seen in people
with diabetes independent of fibre intake.80 However, several studies
show inconsistent results using GPR41- or GPR43-deficient mice.81–85

Given SCFAs modulate immune responses,53 the extent to which diet
and the gut microbiota account for progression of metabolic
syndrome through immune regulation is still poorly understood.
Mathis and co-workers86 showed that low-grade of inflammation in
the adipose tissue correlates with reduced Treg cell numbers with
downregulated expression of gut-homing markers CD103 and GPR83.
In addition to metabolite-sensing GPCRs, SCFAs also exert activities

through epigenetic effects, particularly the HDACs. HDACs regulate
chromatin remodelling and gene expression, as well as the function of
numerous transcription factors.1 HDACs are a group of enzymes that
remove acetyl groups from the histones that bind DNA.87 Removing
acetyl groups alters the binding of histones to DNA, which changes the
expression patterns of different genes.88 Through this activity, HDACs
can have an important role in gene expression. In adipose tissue, a
high-fat diet impairs adipogenic differentiation of C/EBPα, PPARγ,
FABP4 and adiponectin associated with elevated expression of HDAC
9.89 The pro-inflammatory obese state can also lead to the develop-
ment of chronic kidney disease due to a 'leaky' intestinal mucosal
barrier,32 possibly because compromised epithelial integrity allows the
dissemination of gut bacteria or bacterial products (endotoxaemia)
resulting in kidney damage.90 Feeding mice with high-fibre diets
prompted a reduction in markers of kidney damage including serum
concentration of creatinine and urea.91 Similarly, inhibition of HDAC
activity by acetate led to reduced DNA methylation in kidney tissue.92

Epigenetic modifications are essential for development and proper
functioning of the kidney, as they modulate TGFβ signalling,
inflammation, profibrotic genes and the epithelial-to-mesenchymal
transition, promoting renal fibrosis and progression of chronic kidney
disease.93 As such, HDACs have been shown to have integral roles in
the regulation and activity of different immune cells.94 In leukocyte
cells, such as macrophages, neutrophils and eosinophils, HDACs have
been linked to controlling cell survival and proliferation, as well as the
regulation of cytotoxicity.95 In B cells, HDACs have been shown to be
important for inducing the apoptosis of proliferating cells.96 HDACs
are also important for promoting CD8+ T cells, particularly in regards
to increased function and differentiation.97,98 Besides influencing
immune cell survival, HDACs have also been linked to the suppression
of cytokine production, having a role in controlling the inflammatory
response.99 HDACs are a very important part of immune regulation,
both in promoting and regulating the immune system, and are a
potential target for microbial metabolites in influencing the immune
system.

DIET, SCFAS AND AUTOIMMUNE CONDITIONS

Impairments in gut barrier function have also been implicated as
contributors to autoimmune diseases. Studies into such diseases,
including T1D and certain variants of inflammatory bowel disease,
emphasise not only genetic factors but also environmental and dietary
factors.31 Twelve-week-old non-obese diabetic (NOD) mice that are
pre-diabetic exhibit increased intestinal permeability and, when
infected with a bacterial pathogen Citrobacter rodentium, show
increased activation and proliferation of diabetogenic CD8+ T cells,
which accelerate the onset of insulitis.100 Increased intestinal

permeability is associated with clinical diagnoses of T1D,101 with a
link between serum zonulin levels and development of T1D in patients
and their relatives.102 Moreover, diabetes-prone BioBreeding rats fed
with hydrolysed casein diet reduced disease incidence by 50%,
correlating with decreased lactulose:mannitol ratio and serum zonulin
levels, indicative of a tighter intestinal barrier.103

Variances in gut microbiota in children diagnosed with T1D,
although conflicting, have been widely examined. Children who
develop T1D have a less diverse gut microbiota with a decreased
presence of Firmicutes phylum correlated with decreased fecal butyrate
than children with no T1D that presented an increase in Bacteroidetes
phylum.104,105 In line with these findings, NOD mice deficient in the
adaptor protein myeloid differentiation factor 88 (MyD88), important
for the detection of microbial antigens, fail to develop T1D under SPF
conditions; yet germ-free conditions lead to an exacerbated develop-
ment of T1D.106 In addition, a following study by Markle et al.
demonstrated the role of the gut microbiota in the marked gender
differences that characterise T1D in NOD mice.107 Similar to humans,
male NOD mice display a considerably delayed onset and a reduced
incidence of T1D. Remarkably, the female cohort gavaged with male
gut microbiota were protected from T1D development, in comparison
with female cohorts gavaged with a female gut microbiota or left
untreated, which displayed typical disease incidence.107 Treatment of
NOD mice with probiotics coincides with maintenance of beta-cell
function and prevention of T1D,108 and probiotic treatment in
genetically susceptible children for the prevention of T1D is currently
the focus of the ongoing PRODIA study in Finland.109 Whereas these
studies provide compelling evidence for the role of gut microbiota in
modulating T1D development, the specific metabolites responsible for
preventing or ameliorating the diabetic immune response remain to be
identified.
As alluded to throughout this review, SCFAs may have a major role

in prevention of autoimmune diseases, and may underlie at least some
microbiota-related associations with human disease. We have shown
that SCFAs from the mother cross the placenta and protect against
inflammatory asthma in offspring through epigenetic imprinting,
mediating changes in gene transcription such as Foxp3 target genes
important for tolerance/autoimmunity.56 Foxp3 is a transcription
factor necessary for Treg development and function. SCFAs produced
from bacterial fermentation of fibre not only promote iTreg number
and function in the colon53,54 but also induce the promotion of
extrathymic generation of Tregs via epigenetic effects.

110 This, in turn,
allows Tregs to better control autoreactive lymphocytes and prevent the
development of autoimmune disease.111 For instance, epigenetic
alterations such as histone modifications of the FOXP3 locus are
important for proper Foxp3 expression and the functional activity of
Tregs.

112 Foxp3 also epigenetically modulates transcriptional activity of
target gene loci by altering DNA methylation, transcription factor
associations and histone modifications. These include the histone
acetyltransferases Tip60 and p300 and the HDAC HDAC7.113,114 Tregs,
driven by the Foxp3 transcription factor, are particularly important for
limiting autoimmunity and chronic inflammation.114,115

SCFAs may also exert effects directly on autoreactive cells. B cells
have been implicated in the pathogenesis of certain inflammatory
diseases, including T1D and lupus, because of their ability to produce
autoantibodies, as well as cross present self-antigens to autoreactive
T lymphocytes.116,117 In a mouse model of lupus, treatment with
butyrate and synthetic HDAC inhibitors led to the suppression of
mechanisms that promote hypermutated antibody responses and
class-switching, which culminate in the generation of high-affinity
autoantibodies.118,119 Inhibition of HDACs to limit autoreactive B cells
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will likely be relevant to other inflammatory diseases such as T1D
(our unpublished findings). A potential use for HDAC inhibitors to
modify autoreactive B cells relates to individuals diagnosed with T1D,
who also develop Celiac disease. Celiac disease is an autoimmune
condition involving the inflammation of the small intestine,
specifically in response to the presence of gluten food antigen. B cells
and gluten-specific CD4+ T cells from the intraepithelial lymphocyte
compartment and lamina propria lead the inflammatory response.
Apart from priming an immune response, studies in Balb/c and NOD
mice have shown a 15% decrease in Treg cell number in response to
dietary gluten.120 This effect is because of the overexpression of IL-15
in Celiac disease, which suppresses Treg activation.121 Owing to the
highly regenerative ability of the small intestine, however, function can
be recovered when individuals diagnosed with Celiac disease adhere to
a strict gluten-free diet.122

GUT MICROBIOTA AND THEIR METABOLITES AS

THERAPEUTICS

Targeting the gut microbiota is becoming a revolutionary therapy to
correct metabolic dysfunction and inflammatory responses to treat
diseases. It is now evident that the Western diets, possibly because of
the lack of fibre, contribute not only to the loss of microbiota diversity
but also promote an unbalance towards pathogenic gut bacteria
associated with many inflammatory diseases. In a recent study,
Sonnenburg et al.123 demonstrated that humanised gnotobiotic mice
on a Westernised diet (lacking fermentable carbohydrates) related with
decreased gut microbiota diversity, particularly Clostridiales and
Bacteroidales—predominant producers of SCFAs. Worryingly, feeding

with this diet over subsequent generations led to the extinction of
those bacterial phyla by the fourth generation, and the missing phyla
could only be recovered via faecal microbiota transplant in combina-
tion with a diet high in fermentable carbohydrates. Thus, we believe
that dietary SCFAs could be an excellent alternative approach to
preventing or correcting the deterioration of western gut microbiota,
given it is the safest and most cost-effective way to have an impact on
the large global patient population.
Targeting the gut microbiota using therapies such as probiotics

(treating the individual with healthy bacteria), prebiotics (treating the
individual with nutrients to promote good bacteria) and the relatively
crude fecal transplant has been largely studied.124–126 So far, the
outcomes from those methods are controversial or not so efficacious,
given targeting specific components of the diets or a specific type of
bacteria could be beneficial for some but detrimental for others. The
advantages of using dietary fibre to target individual microbial
metabolites relate to its properties of being highly resistant to human
digestion and, therefore, directly modulating the whole microbiota
community rather than individual bacteria species. Furthermore, this
dietary manipulation of microbial metabolites can be used to naturally
tailor a beneficial microbial ecology for each individual based on their
personal gut microbial diversity. Figure 1 illustrates the mechanisms of
action for the microbial SCFAs, that is, through metabolite-sensing
GPCRs and/or HDAC epigenetic remodelling on epithelial cells and/or
immune cells such as Tregs. One simple model is that reduced
production of SCFAs through Western style diet, or antibiotic use
and so on, contributes to altered microbial ecology and altered
mucosal barrier function, resulting in exposure of the mucosal
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Figure 1 General model of how diet may be contributing to human inflammatory diseases such as obesity, T1D, T2D and kidney and cardiovascular diseases.
Diet-induced changes to gut microbiota, and reduced production of SCFAs, lead to changed signalling through GPCRs, changes to gene transcription through
HDAC effects and resulting changes to gut homeostasis, Treg biology and regulation of inflammation.
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immune system to bacteria or their products, which then in turn
could affect immune tolerance. Therefore, targeting microbiota
through dietary SCFAs could be a promising therapeutic approach
to prevent or treat autoimmunity and inflammatory diseases
associated with metabolic syndrome, where it has been observed that
gut dysbiosis predates the development of the disease.

CONCLUDING REMARKS

In developing our understanding of how dietary components shape
the overall panorama of the gut microbiome, and the subsequent
metabolite profile, we can identify the likelihood of events leading to
inflammation and autoimmunity. Emerging dietary treatments are not
only economical, but also offer a non-invasive approach alternate to
the risks of surgical procedures for chronic states of inflammation.
Although it is in its early days, the implementation of diet and/or
microbial metabolites or engineering the gut microbiota as a tool to
prevent or treat inflammatory diseases is an exciting prospect that may
have a great impact on human health.
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