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Abstract

Introduction: Computer simulations suggest that intercellular coupling is more robust than membrane excitability with
regard to changes in and safety of conduction. Clinical studies indicate that SCN5A (excitability) and/or Connexin43 (Cx43,
intercellular coupling) expression in heart disease is reduced by approximately 50%. In this retrospective study we assessed
the effect of reduced membrane excitability or intercellular coupling on conduction in mouse models of reduced excitability
or intercellular coupling.

Methods and Results: Epicardial activation mapping of LV and RV was performed on Langendorff-perfused mouse hearts
having the following: 1) Reduced excitability: Scn5a haploinsufficient mice; and 2) reduced intercellular coupling: Cx43CreER(T)/fl

mice, uninduced (50% Cx43) or induced (10% Cx43) with Tamoxifen. Wild type (WT) littermates were used as control.
Conduction velocity (CV) restitution and activation delay were determined longitudinal and transversal to fiber direction
during S1S1 pacing and S1S2 premature stimulation until the effective refractory period. In both animal models, CV
restitution and activation delay in LV were not changed compared to WT. In contrast, CV restitution decreased and
activation delay increased in RV during conduction longitudinal but not transverse to fiber direction in Scn5a heterozygous
animals compared to WT. In contrast, a 50% reduction of intercellular coupling did not affect either CV restitution or
activation delay. A decrease of 90% Cx43, however, resulted in decreased CV restitution and increased activation delay in RV,
but not LV.

Conclusion: Reducing excitability but not intercellular coupling by 50% affects CV restitution and activation delay in RV,
indicating a higher safety factor for intercellular coupling than excitability in RV.
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Introduction

Various factors [1] determine impulse propagation throughout

the heart, among which membrane excitability, intercellular

coupling, and tissue architecture (i.e. myocyte size [2], collagen

[1], and fiber orientation [3]) are most important. An

appropriate interplay between these factors is necessary for

proper impulse propagation [1,4]. The effect of modification of

these factors on conduction has been extensively investigated

[4,5,6,7]. These studies show that if impulse conduction is

challenged, either by reducing membrane excitability [5,7] or

intercellular coupling [6], the effect on impulse conduction at

basic cycle length is minor. These data suggest that the heart has

‘conduction reserve’ [8,9,10], and that single factors determining

impulse conduction either need to be modified to the extreme

[6], or moderately in combination [4,5,7], in order to exceed the

myocardial conduction reserve and cause impulse propagation

impairment.

Under physiologic conditions, no differences in conduction

characteristics exist between the right (RV) and left ventricle (LV).

However, when determinants of impulse conduction are compa-

rably altered in RV and LV, impulse impairment occurs

preferentially in RV [4,5,6,7]. This suggests that RV conduction

reserve is lower than that of LV, leaving the RV more vulnerable

to impulse propagation impairment in the mouse heart.

Conduction velocity restitution and activation delay are

considered to be important determinants for electrical stability.

Abnormal conduction velocity restitution favors the occurrence of

ventricular fibrillation as demonstrated by Saumarez et al [11].

Conduction velocity restitution is defined as conduction velocity in

dependence of the diastolic interval [12]. At short diastolic

intervals less sodium current is available and membrane
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excitability is reduced. Reduced excitability lowers the safety factor

for conduction. Thus, conduction velocity restitution is a measure

for the safety of conduction.

Activation delay (between a stimulus and recording site) differs

from conduction velocity restitution in that it involves next to

activation delay imposed by conduction velocity, a stimulus-to-

activation delay. The latter occurs because of: 1. current to load

mismatch due to the fact that the initial wave front is small and has to

excite a large area of surrounding myocardium and 2. charging cell

membranes and activating sodium conductance require time. Due to

structural remodeling, current to load mismatch sites frequently occur

in diseased hearts and may affect the stimulus to activation delay.

Several studies on hearts from patients with heart disease have

shown that SCN5A and Cx43 expression is reduced by

approximately 50% [13,14,15,16]. Computer simulations of ionic

mechanisms of propagation in cardiac tissue carried out by Shaw

and Rudy suggest that a 50% reduction in membrane excitability

has more effect on conduction and safety of conduction compared

to a 50% reduction in intercellular coupling [17].

For the current study we have performed a retrospective analysis

of data of 2 previous studies on mice with a 50% reduction in Scn5a

expression [5] and on mice with Cx43 expression levels of 50% or

10% [6]. We aimed to find evidence for the preferential role of

intercellular coupling compared to excitability to maintain normal

conduction and safety of conduction in whole hearts with impaired

excitability or intercellular coupling by detailed analysis of

conduction delay and conduction velocity restitution in these models.

The study demonstrates that reduced membrane excitability

increases longitudinal activation delay and impairs conduction

velocity restitution significantly in RV. In LV a similar trend was

observed. Reduced intercellular coupling by 50% had neither effect

on conduction velocity restitution nor on activation delay in either

RV or LV. However, reduction of intercellular coupling to 10% did

result in increased activation delay and impairment of conduction

velocity restitution in RV. This implies that in the intact mouse

heart a 50% reduction of excitability is sufficient to increase

activation delay and decrease safety of conduction, but that these

effects are only observed after reduction to only 10% intercellular

coupling These data are compatible with the results of Shaw and

Rudy obtained from a computer model of cardiac propagation [17].

In addition, our data show that the effect of decreased excitability on

conduction is more outspoken in RV than LV.

Figure 1. Determination of Conduction Velocity and Activation delay. A. The ventricles were stimulated from the center of the grid at S1S1

stimulation of 100 ms. The stimulation protocol was composed of sixteen basic stimuli followed by 1 premature stimulus (S1S2). The premature
stimulus started at 90 ms and at the subsequent trains, the coupling interval of the premature stimulus was reduced in steps of 5 ms, until the
effective refractory period (ERP) was reached, which was defined as the longest possible coupling interval of the premature stimulus that fails to
activate the entire heart. B. CV parallel (longitudinal; CVL) and perpendicular (transverse; CVT) to myocyte fiber direction was determined from each
activation map. For CVL, the distance between 4 consecutive electrodes parallel to fiber orientation and perpendicular to the isochrones was
measured (x) and divided by the time difference (622 = 4 ms). Similarly, CVT was determined as Dy/Dt. Activation delay is defined as the local
activation time (stimulus is time zero) at a fixed distance from the center of activation origin (stimulus site). Activation delay is registered at two sites
(A and B), located on a line parallel to longitudinal and transversal conduction propagation during S1S1. Subsequently, activation delay is measured at
the same sites during the premature stimuli S1S2. Finally, activation delay is normalized by substracting the activation delays of S1S1 from activation
delay at S1S2.
doi:10.1371/journal.pone.0020310.g001
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Materials and Methods

Animals
Electrophysiologic recordings were analyzed from 2 studies

[5,6].

Study 1, reduced cell-to-cell coupling [6] in young heterozygous

Connexin43 (Cx43) mice: Cx43Cre-ER(T)/flox plus carrier (n = 8) in

which Cx43 is reduced to 50%. Cx43 expression was further

decreased to only 10% by intraperitoneal injections on 5

consecutive days with 4-hydroxytamoxifen. Cx43 expression was

unaffected in Cx43flox/flox plus carrier littermates (n = 8), which

served as control. Mice were of mixed genetic background of

129P2/OlaHsd-C57BL/6. Cx43 levels were verified by western

blotting [6].

Study 2, reduced excitability [5] in young heterozygous Scn5a

(HZ) mice of C57BL/6 background (n = 8). These animals have

50% reduction of Nav1.5 expression as established by western

blotting , corresponding to 50% reduction of the sodium current

[18]. Young wild-type (WT) C57BL/6 mice (n = 10) served as

control.

The investigation conformed to the guiding principals of the

Declaration of Helsinki. All animal experiments were performed

after approval by the Utrecht University Animal Ethics Review

Committee (approval number 102296).

Preparation of the hearts
For both studies, mice were anaesthetized by intraperitoneal

injection of urethane (2 g/kg bodyweight). The chest was opened

and the heart was excised and submerged in Tyrode’s solution 17

at 4uC. With the help of a binocular microscope the heart was

dissected from the lungs as well as other tissue and the aorta was

cannulated. Subsequently, the heart was connected to a Langen-

dorff perfusion setup and perfused at 37uC and perfusion pressure

of 80 cm H20. Perfusion buffer composition (in mM): NaCl 90,

KCl 3.6, KH2PO4 0.92, MgSO4 0.92, NaHCO3 19.2, CaCl2 1.8,

glucose 22, creatin 6, taurin 6, insulin 0.1 mM, gassed with 95%

O2 and 5% CO2. In all experiments the heart started to beat

immediately after initiating perfusion. Flow rate was approxi-

mately 2 ml/min. To ensure proper temperature of the prepara-

tion, the heart was placed against a heated (37uC) and

continuously moisturized support.

Recording of Electrograms during Langendorff

Perfusion. Electrical recordings of RV and LV were made

with a 247 points unipolar electrode (19613 grid, spacing 300 mm)

as described previously [5,6]. The ventricles were stimulated from

the center of the grid at S1S1 cycle length of 100 ms. Electrograms

were acquired using a 256-channel data acquisition system

(Biosemi, Amsterdam). The premature stimulation method

(sixteenth basic stimulus followed by 1 premature stimulus) was

applied until the effective refractory period was reached; starting at

90 ms, the coupling interval of the premature stimulus S1S2 was

reduced in steps of 5 ms, until the effective refractory period

(figure 1A) [6].

Data Analysis. The moment of maximal negative dV/dt in

the unipolar electrograms was selected as the time of local

activation and determined with custom written software based on

Matlab (The Mathworks Inc.) [19]. Activation times were used to

construct activation maps. Activation maps were constructed

during S1S1 pacing and after each premature stimulus. Of each

activation map the following parameters were determined

(figure 1B): 1) Conduction velocity parallel (longitudinal; CVL)

and perpendicular (transverse; CVT) to fiber direction. Fiber

direction was determined by conventional histology and was

perpendicular for RV and oblique for LV with regard to the long

axis of the heart (data not shown). Activation times of at least 4

consecutive electrode terminals along lines perpendicular to

intersecting isochronal lines (1 ms) were used to calculate

conduction velocity.

2) Activation delay is defined as the local activation time

(stimulus is time zero) at a distance L from the center of activation

origin (stimulus site). Activation delay is registered at two sites (A

and B), located on a line parallel to longitudinal and transversal

Table 1. Reduced membrane excitability group conduction
velocity and stimulus-to-activation delay measurements.

S1S2 WT RV HZ RV WT LV HZ LV

CVL 100 34.962.2 (10) 25.862.0 (8)1 33.562.5 (7) 25.362.2 (5)

90 34.262.1 (10) 24.361.6 (8)1 32.962.4 (7) 22.664.1 (5)1

85 31.962.4 (10) 25.461.7 (7) 29.161.4 (7) 24.362.6 (3)

80 29.962.4 (10) 21.961.8 (7)1 27.161.1 (7) 21.361.2 (3)

75 29.662.4 (10) 22.661.8 (5) 24.663.3 (4) 18.361.5 (3)

70 29.461.9 (10) 18.462.9 (3) 26.162.2 (4)

65 29.861.7 (8) 27.968.2 (2) 26.163.9 (3)

60 29.361.6 (7) 27.163.0 (2)

55 28.363.7 (4)

CVT 100 21.862.2 (10) 17.961.4 (8) 19.660.9 (7) 15.261.6 (5)

90 22.462.9 (10) 17.160.9 (8) 18.660.9 (7) 15.462.0 (5)

85 20.862.1 (10) 15.561.1 (7) 18.260.9 (7) 15.261.9 (3)

80 19.562.3 (10) 15.261.3 (7) 17.661.1 (7) 17.262.0 (3)

75 19.861.7 (10) 14.561.0 (5) 15.161.7 (4) 18.261.0 (3)

70 20.262.1 (10) 17.660.5 (3) 14.162.1 (4)

65 21.262.2 (9) 18.663.2 (2) 12.662.3 (3)

60 20.863.1 (7) 20.563.5 (2)

55 24.163.5 (4)

StADL 100 0.060.0 (10) 0.060.0 (8) 0.060.0 (7) 0.060.0 (5)

90 0.660.2 (10) 2.361.0 (8) 0.660.2 (7) 2.160.7 (5)

85 1.060.2 (10) 2.660.6 (7)1 1.560.4 (7) 2.760.7 (3)

80 1.760.3 (10) 3.760.8 (7)1 2.460.5 (7) 4.260.9 (3)

75 2.360.4 (10)* 5.962.4 (5) 3.360.32(4)* 6.360.9 (3)

70 4.160.6 (10) 5.860.2 (3)1 6.160.4 (4)*

65 5.461.0 (9) 8.562.0 (2) 10.262.6 (3)

60 5.760.6 (7) 14.062.51

55 7.861.7 (4)

StADT 100 0.060.0 (10) 0.060.0 (8) 0.060.0 (7) 0.060.0 (5)

90 0.760.3 (10) 2.161.2 (8) 0.760.3 (7) 2.160.5 (5)

85 1.260.3 (10) 2.460.6 (7) 2.460.8 (7) 3.260.6 (3)

80 2.560.6 (10) 3.660.7 (7) 3.461.0 (7) 6.261.9 (3)

75 2.660.7 (10) 6.762.8 (5) 4.061.4 (4) 8.262.2 (3)

70 4.761.1 (10) 8.062.1 (3) 5.861.1 (4)

65 5.361.3 (9) 11.860.8 (2) 7.361.7 (3)

60 5.860.9 (7) 16.860.3 (2)1

55 6.660.9 (4)

All values are mean6SEM. WT – wild-type, HZ – heterozygous. S1S2 coupling
interval is in ms. CVL/T – longitudinal/transverse conduction velocity (cm/s);
StADL/T – stimulus-to-activation delay longitudinal/transverse (ms).
*intra-variable differences: P,0.05 between consecutive S1S2 and S1S2-5 ms.
Inter-variable differences are within either RV or LV:
1P,0.05 between wild-type and heterozygous animals.
doi:10.1371/journal.pone.0020310.t001
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conduction propagation during S1S1. Activation delay is deter-

mined during S1S1 and for successive premature beats. From these

values, absolute activation delays were calculated as follows; Local

activation time at site A and B during S1S1 was subtracted from

measured values at S1S2, defining S1S1 activation time as ‘zero’,

allowing comparison of changes in delay between the groups.

It is important to realize, that even though the absolute increase

in delay is measured, this parameter is influenced by two factors: 1)

the stimulus-to-activation delay (which may change with prema-

turity of the stimulus), and 2) activation delay caused by

conduction. As such, to measure delay that is independent of the

stimulus delay, the conduction velocity was measured as well.

3) Conduction velocity restitution; restitution is the property

that, as the diastolic interval of a premature beat varies, the

conduction velocity of that beat also varies, typically decreasing

with decreasing diastolic interval [20] and is rate dependent. The

Table 2. Reduced intercellular coupling group conduction velocity and stimulus-to-activation delay measurements.

S1S2 100% Cx43 RV 50% Cx43 RV 10% Cx43 RV 100% Cx43 LV 50% Cx43 LV 10% Cx43 LV

CVL 100 31.061.6 (16) 33.062.2 (8) 24.863.3 (9) 32.863.3 (9) 37.563.3 (7) 31.962.3 (6)

90 29.261.6 (16) 31.361.5 (8) 22.662.7 (9)¥,{ 31.562.9 (9) 33.062.9 (7) 26.862.8 (6)

85 28.161.4 (16) 31.561.7 (8) 21.562.8 (9)¥,{ 30.063.7 (9) 31.463.0 (7) 24.263.0 (6)

80 28.061.5 (16) 30.461.5 (8) 18.262.7 (8)¥,{ 24.862.3 (9) 30.863.3 (7) 22.263.2 (6)

75 28.561.4 (15) 28.561.7 (8) 15.663.0 (8)¥,{ 22.861.8 (6) 29.363.7 (6) 20.562.7 (6)

70 25.961.3 (12) 28.161.8 (7) 15.962.4 (9)¥,{ 22.164.2 (5) 26.762.8 (5) 23.062.0 (4)

65 24.961.1 (12) 27.161.4 (3) 14.862.9 (7)¥,{ 20.063.8 (4) 23.362.2 (4) 19.561.6 (4)

60 24.061.2 (8) 14.764.1 (4)¥ 20.362.9 (4)

55 20.662.2 (4) 15.964.2 (3)

CVT 100 24.661.1 (16) 21.561.9 (8) 14.362.0 (9)¥,{ 18.261.2 (9) 18.561.6 (7) 13.361.5 (6)

90 24.061.2 (16) 21.261.62 (8) 12.761.5 (9)¥,{ 17.561.4 (9) 18.761.4 (7) 13.561.5 (6)

85 23.761.1 (16) 20.261.63 (8) 12.562.0 (9)¥,{ 16.261.0 (9) 17.461.6 (7) 14.461.5 (6)

80 23.661.2 (16) 1.6 (8) 12.762.3 (8)¥ 15.460.8 (9) 17.561.2 (7) 12.361.9 (6){

75 21.861.1 (15) 19.461.7 (8) 11.761.7 (8)¥,{ 14.760.8 (6) 16.061.5 (6) 13.661.4 (6)

70 21.961.1 (12) 19.561.7 (7) 10.661.8 (9)¥,{ 16.261.7 (5) 13.061.6 (5) 12.261.7 (4)

65 21.061.4 (12) 19.162.9 (3) 11.562.4 (7)¥ 13.261.3 (4) 13.562.2 (4) 11.561.2 (4)

60 17.760.7 (8) 10.262.2 (4)¥ 14.561.6 (4)

55 16.860.4 (4) 11.863.1 (3)

StADL 100 0.060.0 (16) 0.060.0 (8) 0.060.0 (9) 0.060.0 (9) 0.060.0 (7) 0.060.0 (6)

90 0.460.2 (16) 0.960.3 (8) 0.460.1 (9) 1.160.4 (9) 0.360.2 (7) 0.860.3 (6)

85 1.160.5 (16) 1.460.6 (8) 1.160.3 (9) 2.160.6 (9) 0.360.2 (7)1 1.660.4 (6)

80 1.660.7 (16) 1.760.7 (8)* 1.660.5 (8) 2.460.4 (9) 0.960.2 (7) 2.861.0 (6)

75 2.060.4 (15) 2.860.6 (8) 3.160.9 (8) 4.361.1 (6) 1.560.2 (6) 3.160.5 (6)

70 2.860.5 (12)* 4.760.8 (7) 4.461.6 (9) 4.760.9 (5) 3.360.7 (5) 5.661.5 (4)

65 5.060.9 (12) 6.262.0 (3) 7.662.7 (7) 4.660.8 (4) 4.160.6 (4) 8.862.3 (4)

60 5.961.0 (8) 9.463.1 (4)* 10.161.7 (4)

55 7.360.9 (4) 20.8612.7 (3)

StADT 100 060.0 (16) 0.060.0 (8) 0.060.0 (9) 0.060.0 (9) 0.060.0 (7) 0.060.0 (6)

90 0.660.2 (16) 0.860.3 (8) 0.660.2 (9) 1.460.7 (9) 0.660.3 (7) 1.260.5 (6)

85 0.960.3 (16) 1.460.4 (8) 1.760.3 (9) 2.960.9 (9) 0.760.2 (7) 1.960.3 (6)

80 1.560.5 (16) 1.960.5 (8) 2.860.8 (8) 3.560.9 (9) 1.960.7 (7) 3.060.7 (6)

75 2.060.5 (15) 2.860.6 (8) 4.561.0 (8)¥ 4.861.0 (6) 2.460.5 (6)* 4.461.0 (5)

70 2.960.4 (12)* 4.661.0 (7) 5.861.0 (9)¥ 6.061.3 (5) 4.160.6 (5) 5.861.3 (4)

65 4.660.7 (12) 5.561.3 (3) 10.662.3 (7)¥ 7.561.1 (4) 7.061.8 (4)* 9.062.2 (4)

60 6.060.8 (8) 11.363.5 (4) 12.161.7 (4)

55 7.160.7 (4) 19.5611.2 (3)

All values are mean6SEM. S1S2 coupling interval is in ms. CVL/T – longitudinal/transverse conduction velocity (cm/s); StADL/T – stimulus-to-activation delay
longitudinal/transverse (ms).
*intra-variable differences: P,0.05 between consecutive S1S2 and S1S2-5 ms.
Inter-variable differences are within either RV or LV:
1P,0.05 between 100% and 50% Cx43.
{P,0.05 between ventricles with 50% and 10% Cx43.
¥P,0.05 between ventricles with 100% and 10% Cx43.
doi:10.1371/journal.pone.0020310.t002
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conduction velocity restitution curve can be measured by plotting

conduction velocity along S1S1 and the S1S2 coupling interval.

Curves of both ‘conduction velocity restitution’ and ‘activation

delay’ were constructed from average values of at least 2

measurements. For specific number of measurements per S1S1

and S1S2 coupling intervals, see Tables 1 and 2.

To facilitate comparison between activation maps, similar colors

in all figures represent equal activation time.

Statistics
CV restitution and activation delay curves data were analyzed

using two-way repeated measurements ANOVA with a LSD post-

hoc test (corrected for comparisons made).

Probability values of P#0.05 were considered statistically

significant. Data was analyzed using SPSS 13.0 software.

Results

Conduction Velocity Restitution and Activation Delay
Tables 1 and 2 provide mean6SEM values of the study groups

during S1S1 and S1S2 coupling intervals. Table 3 supplies a

summary of RV and LV conduction velocity restitution and

activation delay of the groups.

Reduced Membrane Excitability
Conduction velocity restitution (closed markers) and activation

delay (open markers) curves of WT (circles) and Scn5a HZ (squares)

animals are depicted in figure 2 (A to D). In RV, CVL restitution

was significantly affected by the reduced membrane excitability

(solid markers in figure 2A). Decreased CVL in RV was mainly

seen during long S1S2 coupling intervals. Interestingly, with S1S2

coupling intervals near the refractory period, CVL increased in the

Scn5a HZ mice rather than further decreased as occurred in WT

animals. This sudden increase in CVL in RV of Scn5a HZ animals

close to the effective refractory period was accompanied by a

significant increase in activation delay (open squares in figure 2A).

The increased CVL restitution at S1-S2 between 70 and 60 ms,

was accompanied by a steeper course of longitudinal activation

delay. CVL restitution and longitudinal activation delay of the

Scn5a HZ were not significantly affected in LV as compared to WT

(figure 2B, solid and open markers, respectively).

Interestingly, transverse impulse propagation was not signifi-

cantly affected in both RV and LV by reduced Scn5a expression

(figure 2C and 2D, respectively), although the trend was similar to

changes in RV. Comparable to CVL, CVT in RV increased at

short S1S2 coupling intervals, which was accompanied by a steeper

increase in the transverse activation delay of RV. CVT restitution

and transverse activation delay in LV of the HZ animals were not

significantly affected compared to WT animals.

Figure 3 shows activation maps of a WT (panel A) and Scn5a HZ

(panel B) RV for different coupling intervals of the premature

stimulus. In WT animals the delay between the stimulus and

earliest activation hardly changed with shortening of the coupling

interval (earliest activation started within 5 ms after the stimulus).

However, in the Scn5a HZ mice activation delay was significantly

greater. For example, earliest activation at an S1S2 interval of

60 ms starts 15 ms after the stimulation was applied.

Reduced Intercellular Coupling
Figure 4 shows conduction velocity restitution (solid markers)

and activation delay (open markers) curves of Cx43flox/flox animals

(control levels of Cx43, circles), animals with 50% reduced

intercellular coupling by (squares), and animals with only 10%

Cx43 expression (triangles). A 50% reduction in Cx43 expression

did alter neither conduction velocity restitution nor activation

delay of both longitudinal and transverse propagation, of both RV

and LV, as compared to animals with 100% Cx43. However,

reduction of Cx43 to 10% in RV resulted in significantly reduced

conduction velocity restitution, both longitudinally and transverse-

ly. Activation delay was increased in both directions in RV, but

only significantly in transverse direction (Figure 4A&C). In LV of

hearts expressing only 10% Cx43, conduction velocity restitution

and activation delay were not different from 50% or 100% Cx43

(Figure 4B&D).

Figure 5 demonstrates activation patterns of RV with 100%

(panel A), 50% (panel B), and 10% Cx43 expression (panel C). An

increase in total activation delay in the recording area was virtually

absent till a coupling interval of 70 ms in animals with 100%,

50%, and 10% Cx43 expression.

Discussion

Conduction velocity restitution and activation delay were

examined in mice with reduced excitability, and reduced

intercellular coupling. The main findings of this study are: 1)

During longitudinal propagation conduction velocity restitution

decreases and activation delay increases if excitability is reduced

by 50%, but only significantly in RV. Similar trends were observed

during transverse propagation in RV and propagation in LV; 2)

reduced intercellular coupling by 50% did not affect conduction

Table 3. Summary of right and left ventricular CV restitution and activation delay.

Right Ventricle Longitudinal Conduction Transversal Conduction

CV restitution Activation Delay CV restitution Activation Delay

Reduced Excitability (50%) k l
Prior to block

k l
Prior to block

, ,

Reduced Coupling (50%) , , , ,

Reduced Coupling (10%) l , l l

Left Ventricle

Reduced Excitability (50%) , , , ,

Reduced Coupling (50%) , , , ,

Reduced Coupling (10%) , , , ,

k = increased; l = decreased; , = unchanged.
doi:10.1371/journal.pone.0020310.t003
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velocity restitution nor activation delay, but reduction to 10%

resulted in a significant decrease in conduction velocity restitution

during both longitudinal and transversal propagation in RV.

Activation delay at 10% Cx43 was increased in RV, but only

significant for transverse propagation. In LV, conduction velocity

restitution and activation delay was similar for 100%, 50% and

10% Cx43 levels.

These results, which show that cell-to-cell coupling is more

robust with regard to conduction than excitability, are compatible

with the observations made by Shaw and Rudy in a computer

Figure 2. CV restitution and activation delay curves of mice demonstrating reduced membrane excitability. CV restitution (solid
markers) and activation delay (open markers) curves of WT (circles) and Scn5a HZ (squares). Hearts are paced at S1S1 of 100 ms with S1S2 coupling
interval reduced in steps of 5 ms until the effective refractory period. A and B demonstrate the RV and LV CVL restitution and activation delay curves,
C and D show the curves during transverse propagation.
doi:10.1371/journal.pone.0020310.g002
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model of propagation. In addition, our animal experiments show

that RV is more vulnerable for changes in excitability than LV.

Reduced Membrane Excitability
Previous studies have shown that the effect of reduced

membrane excitability [5] or reduced intercellular coupling [6]

on mouse heart electrophysiology are different. However, one

common denominator exists between these mouse models: RV

impulse propagation impairment is significantly affected, in

contrast to LV [4,5,6,21]. Activation delay and conduction

velocity restitution of the genetically modified mice demonstrate

a higher vulnerability of RV for electrophysiological changes.

Reduced excitability has a peculiar effect on conduction velocity

restitution and activation delay in RV. At S1S1 and long S1S2

coupling intervals CVL is decreased in RV of HZ mice, while CVT

is not significantly altered. This fits well to the theory of Spach of

discontinuous conduction in the heart [22]. Conduction in the

long and low resistive axis of the myocytes was more vulnerable to

premature stimulation than in transverse directions and conduc-

tion block preferentially occurred in the long axis. This is

explained by source-sink relationships between excited (source)

and unexcited (sink) cells in the propagation path (for a review see

[1]). The resistance of the longitudinal conduction path is low,

while that of the transverse pathway is high, due to the shape of

the myocytes and preferential location of gap junctions at the

intercalated disk [23]. As a result, more current is needed in the

longitudinal direction for activation than transverse, resulting in

higher vulnerability to longitudinal conduction slowing during

reduced sodium current due to premature stimulation, and in our

study, combined with genetic reduction of sodium channel

expression.

When the coupling interval is further reduced (Fig. 2A),

activation delay increases, while CVL of HZ in RV is no longer

significantly decreased compared to WT RV. Shaw and Rudy

discussed extensively the mechanism of reduced membrane

excitability on conduction velocity [17]. It is evident that when

membrane excitability is reduced, conduction velocity will

decrease. However, at shorter S1S2 coupling intervals activation

delay increases (up to 25 ms delay prior to conduction block),

while conduction velocity does not further decrease. It is plausible

that during such long delay additional support to conduction is

delivered from another inward current, i.e. the L-type Calcium

current (ICa(L)) [17]. In well-coupled fibers excitability and

conduction are determined by INa. However, under conditions

Figure 3. Activation maps of wild-type and Scn5a heterozygous RV. RV activation maps of WT (panel A) and Scn5a heterozygous (panel B)
mice paced at S1S1 of 100 ms and during S1S2 activation with 5 ms decrement until the effective refractory period is reached. Isochronal lines are set
to 1 ms. Red denotes earliest activation, blue latest. Equal color represents equal activation times.
doi:10.1371/journal.pone.0020310.g003
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Figure 4. CV restitution and activation delay curves of mice with reduced intercellular coupling. CV restitution (solid markers) and
activation delay (open markers) curves of Cx43flox/flox animals (control levels of Cx43, circles), and animals with reduced intercellular coupling of 50%
(squares) and 10% (triangles). Hearts are paced at S1S1 of 100 ms with S1S2 coupling interval reduced in steps of 5 ms until the effective refractory
period. A & B are RV and LV longitudinal CV restitution and activation delay curves. C and D demonstrate the transverse RV and LV CV restitution and
activation delay curves.
doi:10.1371/journal.pone.0020310.g004
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of reduced membrane excitability, the fast nature of sodium

channel inactivation allows contribution of ICa(L), the increase in

axial current delivered to depolarize downstream cells [17].

Another explanation may result from the high activation delay,

which allows greater recovery time from inactivation for the

Nav1.5 channels in the myocytes distal of the stimulation site,

resulting in even higher conduction velocity at shorter coupling

intervals.

Reduced Intercellular Coupling
Reduction of intercellular coupling by 50% has little effect on

conduction velocity restitution and activation delay. Although

impulse delay in RV increased and conduction velocity restitution

decreased at 50% Cx43 compared to wild type, these alterations

were not significant. These changes became significant after

reduction to 10%. Both longitudinal and transverse conduction

velocity restitution were decreased in RV and activation delay

increased, albeit only significant for transverse propagation.

Jongsma and Wilders [24] demonstrated in a computer model of

impulse propagation that moderate reduction of gap junctional

coupling has little or no effect and that large reductions of

intercellular coupling are required for significant reduction of

conduction velocity. Also in the study of Shaw and Rudy the

reduction of conduction velocity at a 50% reduction of

Figure 5. Activation maps of 100% , 50% and 10% Cx43 for RV. The figure shows RV activation maps for 100% Cx43 (A), 50% Cx43 (B), and
10% Cx43 (C). Either S1S1 of 100 ms or S1S2 coupling interval (decrement of 5 ms) is specified above the activation map. Isochronal lines are at 1 ms
intervals. Red denotes earliest activation, blue latest. Equal color represents similar activation time.
doi:10.1371/journal.pone.0020310.g005
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intercellular coupling is small (approximately 15%), but reduction

of intercellular coupling to 10% leads to a ,60% decrease in

conduction velocity. These data are compatible with experimental

findings in Cx43 knockout mice, which show that a 50% reduction

in Cx43 expression does not affect conduction, but is significantly

reduced by 19 (longitudinal) and 41% (transversal) after reduction

to 10% Cx43 expression [6,25]. More importantly, changes in gap

junctional conductance (gj) have a greater impact on transverse

conduction. CVL is rather insensitive to changes in effective gj

[24]. Spach et al [2] demonstrated that the mean activation delay

between cells during transverse propagation is significantly higher

than during longitudinal propagation. Due to the nature of gap

junction distribution in the adult myocardium, in the longitudinal

direction tight end-to-end coupling between the myocytes ensures

minor cell-to-cell delay during longitudinal propagation. While

during transverse propagation, more cell-to-cell borders are

present and the increased lateral detachment produced a

prominent increase in mean lateral cell-to-cell delay [2]. These

studies explain the impact of severe uncoupling on the reduced

CVL restitution which is not accompanied by an increased

activation delay.

Limitations
The study shows that conduction velocity restitution has

methodological limitations. As we try to investigate the effect of

reduced membrane excitability and reduced intercellular coupling

on activation delay and conduction velocity restitution, we apply

trains of 16 S1S1 followed by a decremented S1S2 coupling interval

(until the effective refractory period). This method, however,

generally applied in measurements of cardiac electrical restitution

is expected not to affect activation delay. Our measurements,

however, show that under certain conditions such as reduced

excitability, activation delay increases with shortening of the

coupling interval. Thus, conduction velocity may increase at shorter

coupling intervals because the activation delay allows more time for

the tissue to recover. Furthermore, slight differences in genetic

background between the models may have influenced the results.

The effect of combined reductions in both sodium current and

electrical coupling on conduction velocity and arrhythmogenesis

was recently studied by our group [26]. Reduction of both

electrical coupling and excitability resulted in normal conduction

velocity parallel to fibre orientation but in pronounced conduction

slowing transverse to fibre orientation in RV only, although this

did not affect arrhythmogeneity. Although these data are available

for retrospective analyses, they have not been added, because the

mouse model used was different. In this study, the reduced peak

sodium current was based on the 1798insD mutation [27].

Although peak sodium current is indeed decreased in this model, it

is also characterized by increased late sodium current and AP

prolongation. The latter may strongly influence the restitution

curves.

Conclusion
The mechanism by which reduced membrane excitability and

reduced intercellular impairs impulse conduction is mainly derived

from results obtained from computer simulations. In this study we

demonstrate experimentally the effect of alterations in impulse

conduction determinants in Langendorff-perfused mouse hearts

and the different effects of these alterations exerts on impulse

propagation impairment.

These experiments on intact myocardium underpin computer

simulations which show that reduction of excitability has far

greater impact than reduction of intercellular coupling. In

addition, the data demonstrate that vulnerability of RV for

changes in excitability is greater than of LV.
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