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Abstract: For decades, metalloproteinase 17 (ADAM17) has been the goal of wide investigation.
Since its discovery as the tumour necrosis factor-α convertase, it has been studied as the main drug
target, especially in the context of inflammatory conditions and tumour. In fact, evidence is mounting
to support a key role of ADAM17 in the induction of the proliferation, migration and progression of
tumour cells and the trigger of the pro-fibrotic process during chronic inflammatory conditions; this
occurs, probably, through the activation of epithelial-to-mesenchymal transition (EMT). EMT is a
central morphologic conversion that occurs in adults during wound healing, tumour progression
and organ fibrosis. EMT is characterised by the disassembly of cell–cell contacts, remodelling
of the actin cytoskeleton and separation of cells, and generates fibroblast-like cells that express
mesenchymal markers and have migratory properties. This transition is characterised by loss of
epithelial proteins such as E-cadherin and the acquisition of new mesenchymal markers, including
vimentin and a-smooth muscle actin. The present review discusses the current understanding of
molecular mechanisms involved in ADAM17-dependent EMT in order to individuate innovative
therapeutic strategies using ADAM17-related pathways.
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1. Introduction

The proteolytic release of transmembrane proteins, the so-called ectodomain shedding,
is a crucial step in a wide variety of cellular and biological processes necessary for many
fundamental physiological functions, while dysregulated shedding results in detrimental
effects on cell behaviour and is linked to severe diseases [1,2]. The Disintegrin and Metal-
loproteinase 17 (ADAM17) holds in the plasmatic membrane of several cell types and is
able to cleave multiple varieties of cell surface proteins [3]. It is somatically expressed in
mammalian organisms and represents an indispensable regulator of numerous signalling
pathways controlling physiological and pathophysiological processes such as develop-
ment, regeneration, immunity, chronic inflammation and carcinogenesis [4,5]. Interestingly,
ADAM17 might also represent a master-switch during several fibrotic pathologies and
has a central role in the regulation of the epithelial-to-mesenchymal transition (EMT), a
critical cellular process in cancer metastasis and pathological fibrosis [5]. Numerous studies
confirmed that ADAM17 plays a major role in modulating tumour growth and metastasis
through regulating cell signalling pathways. In fact, in the progression of carcinomas, ep-
ithelial cells lose their characteristics, which are substituted by those of mesenchymal cells
through the EMT process, which is induced by the excessive deposition of the extracellular
matrix (ECM) and TGF-β signalling [5–8].

This review provides an overview of the role of ADAM17 in EMT-associated pathways,
highlighting new therapeutic perspectives on fibrotic diseases and cancer. As this review
underlines, several studies on ADAM17 structure and function in health and disease have
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been achieved. Being implicated in essential signalling pathways of the immune system,
organ fibrosis and cancer progression makes ADAM17 an attractive therapeutic target.

2. The Sheddase ADAM17: Biology and Function
2.1. ADAM17 Structure

ADAM17 belongs to the family of ADAMs membrane-tethered disintegrin and metal-
loproteases that cleave cell membrane proteins and/or degrade the extracellular matrix.
The human genome contains 20 ADAM genes, and most of the ADAM proteins are pro-
teolytically active [9–11]. ADAMs play a key role in the modulation of cell phenotype
through their effects on the adhesion, migration and proteolytic activity of many cell types
and in the regulating, signalling and responses of cells [10,11].

Functional ADAMs mediate the ectodomain shedding of several proteins, such as
cytokines, growth factors, receptors, adhesion molecules and endocytic receptors [12]. The
ADAMs that are proteolytically inactive are involved in the participation of intercellular
communication due to their adhesive properties [13]. Among ADAMs family members,
ADAM17, also noted as tumour necrosis factor (TNF)-α converting enzyme (TACE), or bet-
ter called “molecular scissor”, is the most well-studied protein. ADAM17 was discovered
and cloned in 1997 as a metalloproteinase, and Roy Black’s group and others provided
direct evidence that cleaves transmembrane TNFα to its soluble form [14,15]. These find-
ings helped to change the significance of ADAMs from simple adhesion molecules to key
regulators of cell signalling. ADAM17 is a multi-domain protein composed of 824 amino
acids and consists of a series of conserved protein domains that include an N-terminal
signal sequence (1–17 aa), followed by a pro-domain (18–214 aa) in which there is a cysteine
switch-like region, a catalytic domain with a typical HEXXHXXGXXH sequence and a
Zn-binding domain region, a disintegrin domain (474–572 aa), a cysteine-rich membrane-
proximal domain (MPD) (603–671 aa), followed by a short juxtamembrane segment of
17 amino acid residues that has been named “Conserved ADAM-seventeeN Dynamic
Interaction Sequence” (CANDIS), a transmembrane domain (672–694 aa) and a cytoplasmic
tail (695–824 aa) [16,17]. The ADAM17 module is depicted in Figure 1.

2.2. ADAM17 Activation

ADAM17 is implicated in shedding events controlling the release of several members
of the epidermal growth factor (EGF) family, cytokine receptors, critical adhesion molecules
and pro-inflammatory mediators [15]. Furthermore, ADAM17 has a central role in many
signalling pathways, whereby to perform these activities, it has to be activated and tightly
regulated; interestingly, the pro-domain removal resulted in being a prerequisite for its
activation [6,18]. Indeed, the pro-domain of ADAM17 preserves it in an inactive form
by blocking the metalloproteinase catalytic site [19–22]. Commonly, the pro-domain of
ADAM17 behaves as an inhibitor of the enzyme through the association of a cysteine
switch box (SH-group) to the zinc atom in the active catalytic site [23]. The pro-domain is
cleaved by furin, a pro-protein convertase, in the trans-Golgi network [23,24] at the last
four amino acids (RVKR) preceding the catalytic portion, thus providing the mature form
of ADAM17 [25,26]. Studies provided lines of evidence that ADAM17 resulted “packaged”
into lipid rafts mediating the transport of the protease to the Golgi apparatus and that this
spatial arrangement also led to ADAM17 activity modulation by preserving the protein
separated from its substrates [27]. Interestingly, Srour and collaborators, based on in vitro
and in vivo studies, demonstrated that the pro-protein convertases PACE-4, PC5/PC6,
PC1 and PC2 are able to work as furin-like enzymes that can directly cleave the ADAM17
protein [28]. Finally, after maturation, ADAM17 translocates into the cell surface to perform
proteolytic and non-proteolytic functions [29]. Since the pro-domain is highly sensitive to
proteolysis, once removed from the catalytic site, it will be destroyed promptly, preventing
its re-association with this domain. A schematic representation of ADAM17 activation is
reported in Figure 2.
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In addition to the pro-domain and catalytic domain, ADAM17 includes other domains
for which physiological functions are still widely unknown: a disintegrin domain, which is
involved in molecular interactions with other transmembrane proteins such as the integrins;
the MPD portion as well as CANDIS can modulate conformational changes and activity
by forming electrostatic interactions activity of ADAM17 [30]. Therefore, proximal to this
stank region, there is a transmembrane portion involved in ADAM17 interaction with
its essential regulators iRhom1 and 2, and an intracellular cytoplasmic domain whose
physiological function is still unclear [12].

Recently, research has shown that an early, important regulatory mechanism is rep-
resented by the interaction with an adapter factor identified as iRhom1 and iRhom2,
pseudoproteases of the rhomboid superfamily, which are essential modulators of ADAM17
maturation and activity [30,31]. Subsequently, it was revealed that iRhom1 plays a central
role in ADAM17 maturation, particularly in the brain [32,33]. The iRhom proteins seem
to show a role in the selectivity of ADAM17 for some, but not all, substrates [34]. In
the last years, various in vitro investigations supplied more accurate knowledge on the
molecular relationship between ADAM17 and iRhoms by the use of knockout mice in
diverse inflammatory conditions and tumours. Finally, in human patients, mutations in
the ADAM17 and iRhom2 genes were identified, which confirmed the importance of the
iRhom2-ADAM17 system in immunity and tumorigenesis [32].

2.3. ADAM17 Distribution and Substrates

ADAM17 has extensive somatic distribution, being expressed significantly in the
brain, heart, kidney, salivary gland and skeletal muscle, and its expression levels vary
during embryonic development and adult life [6,14,35,36]. The pivotal importance of
ADAM17 in almost every cellular process is established in its different array of substrates
represented by growth factors, cytokines, receptors and adhesion molecules. Actually, there
are over 80 substrates cleaved by ADAM17, and many of them are involved in chronic
inflammation, organ fibrosis and tumour progression. The large repertoire of substrates
processed by ADAM17 include molecules that are crucial for tumour immunosurveillance,
and the study of the shedding mechanisms coordinated by this protease has led to the
proposal of novel events of resistance to noted cancer therapies [37]. As predicted by the
notable variety of ADAM17 substrates, gene targeting of Adam17 in vivo led to the death
of mice between embryonic day 17.5 and the first day after birth, determining massive
developmental defects in the brain, heart, lung, skin, skeletal and immune system [38,39].
Finally, some patients with homozygous mutations in ADAM17 have shown acute and
chronic inflammatory diseases such as recurrent severe sepsis, eventually leading to their
early death [40]. Given its capability as sheddase, ADAM17 plays a multifunctional role in
cancer progression that can vary among different cancer types and phases of the disease.
As a consequence of its ability to trigger the EGF receptors (EGFR) pathways by shedding
EGFR ligands, ADAM17 activity is linked to several tumours such as colon and breast
cancer development [41,42]. Targeting ADAM17, the progression of colon cancer was
inhibited in an in vivo model of the disease, determining a reduction in shedding of
amphiregulin and the activation of EGFR signalling [43–45]. ADAM17 contributes to the
development and progression of breast cancer by significant levels of TGF-α, which plays
an important role in this pathological process [46,47]. Excess ADAM17 activity contributes
to an increased release of EGFR ligands, which can promote cancer evolution, whilst low
ADAM17 activity can determine problems in development and regeneration caused by
decreased EGFR signalling [48]. Despite all this evidence, however, a complete picture of
ADAM17 regulation is still missing (the role of ADAM17 as sheddase is shown in Figure 2).

3. The Surprising Role of ADAM17 in the EMT System

Over the last decades, ADAM17 has been reported to be an indispensable key regu-
lator in several biological processes from proliferation to migration. It is, therefore, not
surprising that ADAM17, involved in the pathophysiology of numerous human diseases,
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is critically implicated in EMT [5,6]. EMT is a highly orchestrated process in which epithe-
lial cells shed multiple cellular features linked with epithelial differentiation, including
epithelial adherens junctions, apical-basal polarity, cytokeratin expression and the reor-
ganisation of their actin cytoskeleton [49,50]. Furthermore, EMT allows the cells to reach
new destinations and generate new cell populations. Concomitantly, the cells undergo a
significant dramatic morphological transformation and acquire phenotypes more typical
of mesenchymal cells coupled with the enhanced cellular motility characterised by an
increased expression of mesenchymal markers, such as E-cadherin and vimentin [51]. EMT
can be induced by different extracellular triggers such as various soluble and juxtacrine
factors and physical interactions with the ECM through integrin receptors; in addition,
the EMT programme can be activated in response to cellular stressors such as hypoxia or
therapeutic targets [52,53]. Since ADAM17 mediates the ectodomain shedding of various
pro-inflammatory molecules, it is of no surprise that ADAM17 has attracted attention as a
potential driver of inflammation and also repurposed pathologically during fibrosis [2,42].
In support of this notion, ADAM17 is overactivated or overexpressed in numerous human
chronic inflammatory diseases, and it is noted that EMT represents a convergence point be-
tween inflammation and the progression of degenerative fibrotic diseases and cancer [2,42].
Several well-designed studies have shown correlations between the increased levels of
ADAM17 expression and the severity of fibrosis in patients with degenerative fibrotic
diseases. Furthermore, interestingly, ADAM17 drives several signalling pathways critically
involved in the induction of the EMT process [2,42,54]. The specific role of ADAM17 in
the pathophysiology of inflammatory and fibrotic diseases is very complex and depends
on the cellular context. To exploit the therapeutic potential of ADAM17, it is important to
understand how its activity is regulated and how specific organs and cells can be targeted
to inactivate or activate this enzyme. For this reason, we undertook this review to reassess
the current knowledge on the roles of ADAM17 in the regulation of EMT and, in the
following paragraphs, we report the recent insights into potential molecular mechanisms
underlying ADAM17-dependent regulation of the EMT process and their relevance to
inflammatory, fibrotic and cancer diseases are discussed.

4. Mechanism of ADAM17 Signals Modulation in Fibrotic Diseases and Cancer
4.1. ADAM17-Mediated Regulation of EMT in Degenerative Retinopathy

The EMT process has been described in proliferative vitreoretinopathy (PVR) and wet
age-related macular degeneration (AMD) [55]. PVR is the most common cause of failed
retinal detachment repair and is characterised by a sequence of inflammatory and fibrotic
mechanisms [56]. Retinal pigment epithelium (RPE) cells, a cellular monolayer composed of
mitotically quiescent cells, are known to de-differentiate and lose their fully matured state as
a result of a variety of stresses, including oxidative stress and mechanical dissociation of cell–
cell junctions [57]. Dissociation of cultured RPE cells leads to morphological changes of the
cells into fibroblast-like cells through the activation of the EMT programme [57]. During this
process, the RPE cells, trans-differentiated into mesenchymal cells, show increased motility
and enhanced ability to proliferate and acquire resistance to apoptosis and the capacity to
produce extracellular matrix proteins [57]. RPE cells undergoing EMT contribute to scarring
and wound contractions in PVR as well as subretinal fibrosis in advanced AMD [58], which
is characterised by the formation of choroidal neovascularisation (CNV) [59]. Several
ADAMs seem to be involved in these processes whose expression is variable within the
retina; both ADAM10 and ADAM17 are widely expressed during the embryonic period in
the different layers of the retina, whereas ADAM12 is mainly expressed in the ganglion
cell layer in a later stage of development [60]. The ADAM10, in particular, is activated
by TGF-β1 and, specifically, determines the E-cadherin cleavage [61]. The shedding of
E-cadherin modulates the activation of the β-catenin signalling pathway, which is involved
in the pathogenesis of several fibrotic diseases [62]. Furthermore, both ADAM10 and
ADAM17 are involved in the regulation of the Notch-mediated signalling EMT programme
important during retina development [63].
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Important investigations in this field were conducted by Park et al. on Epstein Barr-
transformed adult RPE cells that showed a spindle-like shape phenotype that expresses
several mesenchymal markers and secretes TGF-β and VEGF [55]. These cells lose expres-
sion of E-cadherin and N-cadherin, which is the most common cell–cell junction proteins
in RPE cells [64], gaining expression of mesenchymal markers, such as vimentin and/or
a-SMA. Using these transformed cells, the authors investigated the molecular mechanisms
of EMT in PVR or CNV conditions using the multi-kinase inhibitor Sorafenib (SRF, Nexavar;
Bayer HealthCare Pharmaceuticals, Inc., Whippany, NJ, USA) to study the effects on the reg-
ulation of EMT by ADAM proteins. SRF, initially approved for the treatment of advanced
renal cell carcinoma and hepatocellular carcinoma (HCC), was recently demonstrated to
have antifibrotic activity in vitro [65–67].

SRF inhibits STAT3 phosphorylation in a variety of tumours, including HCC [68–70].
Moreover, SRF also inhibits TGF-β-induced STAT3 activation during TGF-β-mediated EMT
in mouse hepatocytes [67]. Data collected are promising because they show that, in trans-
formed RPE cells, SRF is able to downregulate migration-related signalling molecules, such
as HIF-1a, p-STAT3 and MMP2; this process seems to be nardilysin (NRD-1)-dependent.
NRD-1, a zinc peptidase of the M16 family localised diffusely in the cytoplasm and secreted
to the cell surface [71], binds to the extracellular domain of ADAM17, determining its
catalytic activity [72]. This role of NRD-1 was confirmed by NRD-1 knockdown that down-
regulates the EMT process in EBV-transfected RPE cells [55] (the mechanisms hypothesised
are reported in Figure 3). Obviously, the discovery of the precise mechanisms that govern
the acquisition of the EMT phenotype from RPE cells in retinal diseases would likely be
useful to identify new therapeutic approaches.

4.2. Pro-Fibrotic Activity of ADAM17 in Diabetic Nephropaty

Recent experimental evidence reports that ADAM17 is involved in chronic kidney
disease (CKD), playing a pro-inflammatory and pro-fibrotic role [73]; blocking ADAM17
activity is, in fact, fibrosis and inflammation resulted attenuated, suggesting ADAM17
as a possible new valuable therapeutic target in CKD treatment. In addition, ADAM17
expression is also variable within the renal parenchyma and seems to be highly expressed
in distal renal tubules and increased in the whole kidney in diabetic experimental mice [74].

Diabetic nephropathy is a major cause of chronic kidney disease and kidney failure.
Although the kidney undergoes pathological changes in all its compartments, the earliest
manifestation of glomerular sclerosis is the deposition of the ECM protein [75]. High
glucose (HG) is the base of diabetic nephropathy by determining ECM production in
glomerular mesangial cells. TGFβ1 is a major mediator of the HG-induced fibrotic response,
and renal cells cultured in HG condition determines phosphorylation and the nuclear
translocation of Smad3 [76]. In this scenario, ADAM17 mediates the HG-induced TGF-
β1 upregulation and ECM protein production in kidney cells acting on the release of
ligands for the EGFR [77,78]. ADAM17 activation is, in fact, required for HG-induced
upregulation of the pro-fibrotic cytokine TGF-β1 [78,79]. Researchers demonstrated that the
phosphorylation in two C-terminus sites of ADAM17 seems to be involved in the activation
of the pro-fibrotic responses of ADAM17. HG also induced furin-dependent maturation of
ADAM17 on the cell surface [79]. Furthermore, HG-induced ADAM17 activation requires
the upstream regulator focal adhesion kinase (FAK) [79]. FAK acts, recruiting both Src and
PI3K, with the subsequent phosphorylation of ADAM17. These studies suggest that the
inhibition of ADAM17 activation through targeting HG-specific activators such as FAK or
acting on FAK interaction with ADAM17 could represent innovative fields of investigation
for the treatment of diabetic nephropathy (Figure 4).
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therefore, downregulates the events involved in EMT programme. The expression of mature ADAM17 in RPE/EBV cells
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4.3. Adam17 Promotes EMT in Gastric Carcinoma

The process of cancer-associated EMT, consisting of the loss of cell–cell junctions,
decreases in the epithelial markers, increases expression of mesenchymal markers and cy-
toskeleton rearrangement, which leads to an increase in cellular invasiveness. Additionally,
these changes go hand in hand with the secretion of MMP-2/-9 and FAK [80]. MMP-2/-9
are proteolytic enzymes that degrade the ECM proteins, thus modifying ECM composition
and acting directly on cell surface molecules, determining EMT activation [81]. ADAM17
overexpression elevates the expression of MMP-2 and MMP-9, while ADAM17 knock-
down downregulates the expression of the same MMPs. This evidence clearly suggests
that ADAM17, through the elevation of the MMP-2 and MMP-9 expression, accelerates
EMT [7]. ADAM17 knockdown resulted, furthermore, in the downregulation of vimentin,
Snail and N-cadherin and the upregulation of E-cadherin; in contrast, ADAM17 overex-
pression led to the upregulation of vimentin, Snail, N-cadherin and downregulation of
E-cadherin, confirming that ADAM17 promotes EMT in gastric carcinoma cells [7]. As TGF-
β/Smad signalling is closely related to EMT in cancer [82], recent investigations reported
that ADAM17 knockdown downregulated TGF-β and p-Smad2/3 in gastric carcinoma,
while ADAM17 overexpression resulted in the upregulation of TGF-β and p-Smad2/3,
but without having any effect on total Smad2/3 protein [7]. Hence, this is a confirmation
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that ADAM17 promotes EMT probably via TGF-β/Smad signalling in gastric carcinoma
(Figure 4).
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Figure 4. A simplified representation of signalling pathways triggered by ADAM17 in diabetic nephropathy, gastric
carcinoma and liver fibrosis. ADAM17 activation is required for high glucose (HG)-induced upregulation of the TGF-β1.
HG also induces maturation of ADAM17 on the cell surface. Furthermore, FAK is identified as a central upstream regulator
of HG-induced ADAM17 activation through its recruitment of both Src and PI3K, with subsequent phosphorylation of
ADAM17. In addition, ADAM17, through an increase in MMP-2 and MMP-9 expression, induces EMT in gastric carcinoma
cells. Finally, the role of ADAM17 in promoting EMT of HCC cells involves the activation of Notch signalling pathway,
which occurs through Notch proteolytic cleavage.

In conclusion, ADAM17 promotes proliferation, migration and invasion in gastric
carcinoma cells. Importantly, the results detail a mechanism (reported in Figure 4) of
ADAM17-mediated EMT through upregulating TGF-β/Smad signalling pathway. These
findings suggest that ADAM17 might be an important therapeutic target candidate in
gastric cancer.

4.4. ADAM17-Mediated Mechanisms in Liver Fibrosis

Liver fibrosis is characterised by an excessive accumulation of ECM or scar tissue.
The liver resident mesenchymal cells, particularly hepatic stellate cells (HSCs), have been
described to be the primary source of ECM in liver fibrosis. As a consequence of liver
damage, HSCs start to proliferate and undergo their differentiation into myofibroblasts
that have a proliferative, contractile and fibrogenic phenotype [83]. Activated HSCs are
characterised by the expression of various specific molecules such as α-SMA, desmin, glial
fibrillary acidic protein, platelet-derived growth factor receptor and a massive amount of
collagen I [84]. Activated HSCs, once transformed into myofibroblast-like cells, promote
chronic inflammation, leading to cirrhosis and HCC. HSCs are major cellular components
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of HCC stroma, where they modulate the proliferation and invasiveness of cancer cells
and are considered the primary source of EMT-dependent fibrogenic myofibroblasts in the
injured liver [85,86]. This switch in HSCs differentiation was mediated by ADAM proteases,
and different molecular mechanisms have been reported related to ADAM-mediated EMT
in the liver [87,88]. ADAM17 performs its role in promoting EMT of HCC through the
activation of the Notch signalling pathway, which occurs after Notch proteolytic cleavage
and active Notch intracellular domain (NICD) release [89]. Recent discoveries report that
the pro-EMT effects of ADAM17 were antagonised by specific micro-RNA whose anti-
EMT effects determined a decreased expression of mesenchymal markers (N-cadherin
and Vimentin) and of pro-EMT transcription factors (ZEB1, SNAIL and TWIST), with
a concomitant increased expression of epithelial marker E-cadherin [90]. Based on this
evidence, researchers investigated the use of ADAM17 inhibitors, such as ZLDI-8, showing
their ability to prevent EMT in HCC cells by decreasing the release of Notch NICD, thereby
improving the therapeutic efficacy of anticancer drugs [90–92]. Therefore, ADAM17,
involved in the transactivation of Notch signalling in liver cancer stem cells, seems to
contribute to the enhancement of HSCs aggressiveness [93]. In addition, Notch signalling
was implicated in the ADAM17-dependent activation of integrin β1, thereby promoting the
proliferation, migration and invasion of HCC cells [94]. In the context of these new findings,
a new G-protein-coupled receptor 50 (GPR50)-mediated regulation of ADAM17-induced
Notch signalling in HCC progression was also demonstrated [95]. Data collected so far
suggest that ADAMs have been implicated at all stages of HCC progression, starting from
inflammation and subsequently through to fibrosis, angiogenesis, proliferation, EMT and
invasion (Figure 4). The spatial and temporal dynamics of ADAMs activation and their
mechanisms of action are, however, still insufficiently characterised, and future work is
needed, focusing on better characterising the ADAMs’ contribution to HSCs differentiation
in the HCC progression.

4.5. Role of ADAM17 in Idiopathic Pulmonary Fibrosis

Idiopathic pulmonary fibrosis (IPF) is a type of interstitial lung disease that is prevalent
in elder smokers. The phases of IPF include alveolar epithelial cell damage and activation,
inflammatory cell infiltration, EMT initiation and ECM protein accumulation [96]. During
the progression of IPF, most fibroblasts originate from lung epithelial cells, which undergo
EMT and play a crucial role in fibrotic disease progression. The TGF-β signalling pathway
has been suggested to contribute to the EMT process and produce ECM proteins, such as
fibronectin (FN) [97]. Therefore, TGF-β and EMT may be a hallmark of fibroblast activation.

As reported above, ADAM17 is responsible for the cleavage of extracellular domains
of substrate proteins [54], thus regulating some important physiological and pathophys-
iological processes and the expression of membrane-bound proteins such as cytokines
and growth factors [98]. Increased ADAM17 expression is identified in several inflamma-
tory diseases, cancers, and organ fibrotic changes, including IPF [35,36,99,100]. During
the progression of chronic IPF, the volume and ventilation of the lungs are gradually
decreased due to abnormal proliferation of fibroblasts through the EMT process, which
causes collagen deposition and finally leads to architectural distortion [101]. A recent
study demonstrated that ADAM17 regulates TGF-β-mediated EMT through the cleav-
age of vasorin (VSN), a type I transmembrane protein initially identified in screening to
isolate novel proteins containing a signal sequence. VSN was shown to attenuate TGF-β
signalling by sequestering the growth factor, and its expression was found restricted to
the aorta, kidney and placenta [102,103]. In addition, ADAM17 is responsible for the
angiotensin-converting enzyme 2 (ACE-2) ectodomain shedding occurring in lung fibroge-
nesis, demonstrating that ADAM17 certainly participated in IPF [103]. However, the role
of ADAM17 in TGF-β-induced EMT in IPF remains uncertain.

Recently, new impetus has been given to research in this field, finding that connective
tissue growth factor (CTGF), an immediate-early protein mediated by TGF-β, regulates
the growth of fibroblasts and the secretion of ECM [104]. A previous study suggested that
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subcutaneous co-injection of TGF-β plus CTGF induced sustained fibrosis in mice [105].
In lung tissue obtained from IPF patients, an enhanced expression of both CTGF protein
and mRNA was observed [106], and, moreover, CTGF/integrin-linked kinase signalling
mediates the activation of EMT in lung alveolar epithelial cells [107]. Data recently collected
revealed an unexpected role for ADAM17 in the regulation of this phenomenon, showing
that TGF-β might activate ERK, ADAM17 and Ribosomal S6 kinase-1 (RSK1) signalling
pathways; this activation cascade determines the phosphorylation of the enhancer-binding
protein β (C/EBPβ) that binds the CTGF promoter region, leading to CTGF synthesis
and expression. These investigations start from several lines of evidence of the role of
RSK1 and protein kinase C (PKC) in the phosphorylation of C/EBPβ, a transcription
factor that participates in the modulation of pro-inflammatory protein expression [108,109].
Moreover, CTGF participates in the mechanism leading to TGF-induced FN expression
in human lung epithelial cells [110]; in an experimental model represented by TGF-β-
induced renal fibrosis in mice, this mechanism was inhibited, blocking MEK activity and
so attenuating CTGF expression [111]; however, it remains unclear as to whether RSK1
and C/EBPβ are involved in TGF-β-induced CTGF expression in human lung epithelial
cells and what is ADAM17’s role in EMT activation in the lung. Starting from the results
obtained from Blom et al. [104], suggesting that CTGF acts as a modulator of TGF-β-
dependent fibrogenesis and EMT activation in lung epithelial cells [104], studies have since
progressed; it was demonstrated that TGF-β-induced CTGF expression in human lung
epithelial cells provides the participation of ERK, ADAM17, RSK1 and C/EBPβ [110], and
both ADAM17 and CTGF seem to mediate TGF-β-induced FN expression [110]. It is clear
now the involvement of ADAM17 in the TGF-β-induced expression of CTGF and EMT in
the lung; in fact, ADAM17 gene silencing reduced TGF-β-induced CTGF and FN expression
in human alveolar basal epithelial cell line [110]. Furthermore, through the use of CTGF
gene knockdown, a reduced TGF-β-induced FN expression was observed, confirming
the correlated importance of ADAM17 and CTGF in TGF-β-induced FN expression in
human lung epithelial cells [110]. Further clarifications on the molecular mechanisms
involved in IPF fibrosis emerged through studying the ERK pathway activation that seems
to regulate the expression of pro-fibrotic proteins in IPF such as osteopontin [112]. By using
a specific ERK inhibitor, TGF-β-induced CTGF expression was reduced in the alveolar
basal epithelial cells to levels comparable to those obtained through the use of RSK1
gene silencing; additionally, TGF-β enhanced the phosphorylation of ERK and RSK1 that
was decreased by using ERK inhibitors [110]. This experimental strategy allowed for
the demonstration that ERK mediates TGF-β-induced ADAM17 phosphorylation, and
ADAM17 regulates TGF-β-induced RSK1 phosphorylation; overall, these results suggest
that the ERK/ADAM17/RSK1 signalling pathway activation was required for TGF-β
enhanced CTGF expression in the lung [110].

The same ERK/ADAM17/RSK1 pathway has a positive effect on C/EBPβ phospho-
rylation and activation, and ADAM17 plays a key role in TGF-β-induced CTGF expression
and EMT through the ERK/RSK1/C/EBPβ pathway [110].

In conclusion, data collected evidenced that TGF-β activates the ERK/ADAM17/RS-
K1/C/EBPβ signalling pathway, after which it promotes the link of C/EBPβ to the C/EBPβ
site on the CTGF promoter region to regulate CTGF expression in human lung epithelial
cells, revealing a signalling pathway related to ADAM17-dependent EMT and fibrosis,
which may provide a new therapeutic orientation for the treatment of IPF (Figure 5).

The ADAM17 substrates of the EMT signalling pathways identified in the above-
reported pathologies are summarised in Table 1.
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Figure 5. ADAM17 promotes idiopathic pulmonary fibrosis via EMT activation. Representative scheme illustrating the
results of TGF-β-induced CTGF expression mediated via the ERK/ADAM17/RSK1/C/EBPβ pathway in human lung
epithelial cells. TGF-β activates the ERK/ADAM17/RSK1/C/EBPβ signalling pathway, which finally leads to CTGF
expression, promoting EMT in human lung epithelial cells.

Table 1. Substrates of EMT pathways signalling activation in which ADAM17 has been implicated.

Pathology Signalling Pathway Substrates References

Proliferative vitreoretinopathy TGF-β1/EMT signalling EGFR ligands [55]

Diabetic Nephropaty TGF-β1/Smad 2/3/EMT signalling Heparin Binding (HB)-EGF [78]

Gastric carcinoma TGFβ1/Smad2/3/EMT signalling HB-EGF [82]

Liver fibrosis Notch/EMT signalling Integrin B1 [89]

Idiopathic Pulmonary Fibrosis ERK/ADAM17/RSK1/C/EBPβ/EMT signalling Vasorin [110]

5. Future Directions and Conclusions

Since its discovery, ADAM17 has been defined as the “enzyme that does it all”, playing
a pivotal role in several areas of cancer and inflammation [54]. However, therapeutic
inhibition of ADAM17 has been historically complicated due to its multifunctionality and
high similarity with other members of ADAMs and the related MMPs family. ADAM17 is
an enzyme ubiquitously expressed in humans, which cleaves more than 80 substrates other
than TNF-α. For this reason, its systemic inhibition ends up being organ- or tissue-specific
and is regulated by multiple cascade mechanisms; this poses a serious obstacle to the
development of a broadly effective antifibrotic or anticancer therapy. To overcome these
limitations, several experimental approaches have been utilised to identify molecules able
to discriminate between ADAM17 and its relatives and to inhibit ADAM17 in a specific
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tissue or cell type. Those recently developed derived from the chemical synthesis of highly
specific molecules or from the engineering of endogenous inhibitors of ADAM17. In this
regard, the discovery of iRhoms showed a revolutionary yet physiological way to selectively
inhibit ADAM17, and a novel ADAM17 inhibitor named ZLDI-8 was recently developed
through the use of computer-aided drug design and enzyme activity assay, which seems to
act by reversing the EMT process through suppressing the Notch signalling pathway.

Based on this experimental evidence, going beyond the natural role in the wound
healing response and in the resolution of inflammation, ADAM17 represents a potential
source of deregulation in the tumour environment and its therapeutic targeting, when
over activated in the tumour environment, either alone or in combination with other
immune-modulating therapies, merits investigation. Furthermore, in a promising way,
the relationship between ADAM17 activation, inflammation and EMT seems to be an
unexpected feature in the progression of organ fibrotic diseases and cancer. Consistent with
its role, targeting ADAM17 was shown to have anticancer activity in multiple preclinical
systems but, although early phase clinical trials have shown no serious side effects with
ADAM17 inhibitors, the consequences of long-term treatment are unknown. Of course,
prior to any routine clinical use, the predictive impact of ADAM17 would need to be
confirmed in clinical trials. Although it is still complicated and much has yet to be dis-
covered and understood, this should not discourage the effort to identify the gears in the
regulatory mechanism of ADAM17 that can guarantee promising therapeutic strategies for
the selective modulation of this enzyme.
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