Citation: Laytragoon Lewin N, Karlsson J-E, Robinsson D, Fagerberg M, Kentsson M, Sayardoust S, et al. (2021) Influence of single nucleotide polymorphisms among cigarette smoking and non-smoking patients with coronary artery disease, urinary bladder cancer and lung cancer. PLoS ONE 16(1): e0243084. https://doi. org/10.1371/journal.pone. 0243084

Editor: Narasimha Reddy Parine, King Saud University, SAUDI ARABIA

Received: May 11, 2020
Accepted: November 13, 2020
Published: January 28, 2021
Copyright: © 2021 Laytragoon Lewin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper.

Funding: Grants were received from Jönköping Clinical Cancer Research Foundation (Grant 110426-1), Futurum the Academy for health and care (Grant 144631), Medical Research Council of Southeast Sweden (FORSS, Grant 567001), Internal research Laboratory Medicine (Grant and Swedish Match AB. The funders had no role in the

Influence of single nucleotide polymorphisms among cigarette smoking and non-smoking patients with coronary artery disease, urinary bladder cancer and lung cancer

Nongnit Laytragoon Lewin $\mathbb{C}^{1 \text { * }}$, Jan-Erik Karlsson $\oplus^{2,3}$, David Robinsson $\mathbb{C 1}^{4}$, Matida Fagerberg ${ }^{4}$, Magnus Kentsson ${ }^{2}$, Shariel Sayardoust ${ }^{5}$, Mats Nilsson ${ }^{6,7}$, Levar Shamoun ${ }^{1}$, Bengt-Åke Andersson ${ }^{1}$, Sture Löfgren ${ }^{1}$, Lars Erik Rutqvist ${ }^{8}$, Freddi Lewin ${ }^{9}$
1 Dept Laboratory Medicine, Ryhov Hospital, Jönköping, Sweden, 2 Dept of Internal Medicine, Ryhov Hospital, Jönköping, Sweden, 3 Dept of Health Medicine and Caring Sciences, Linköping University, Linköping, Sweden, 4 Dept Urology, Ryhov Hospital, Jönköping, Sweden, 5 Dept Periodontology, Ryhov Hospital, Jönköping, Sweden, 6 Futurum, Academy of Health and Care, Region Jönköping, Jönköping, Sweden, 7 Dept Medical and Health Sciences, Linköping University, Linköping, Sweden, 8 Scientific Affairs Group, Swedish Match AB, Stockholm, Sweden, 9 Dept Oncology, Ryhov Hospital, Jönköping, Sweden
* nongnit.lewin @ rjl.se

Abstract

\section*{Introduction}

Cigarette smoke is suggested to be a risk factor for coronary artery disease (CAD), urinary bladder cancer (UBCa) or lung cancer (LCa). However, not all heavy smokers develop these diseases and elevated cancer risk among first-degree relatives suggests an important role of genetic factor.

\section*{Methods}

Three hundred and ten healthy blood donors (controls), 98 CAD, 74 UBCa and 38 LCa patients were included in this pilot study. The influence of 92 single nucleotide polymorphisms (SNPs) and impact of cigarette smoking were analysed.

\section*{Results}

Out of 92 SNPs tested, differences in distribution of 14 SNPs were detected between controls and patient groups. Only CTLA4 rs3087243 showed difference in both CAD and UBCa patient group compared to control group. Stratified by smoking status, the impact of smoking was associated to frequencies of 8,3 and 4 SNPs in CAD, UBCa, LCa patients, respectively. None of these 92 SNPs showed a statistically significant difference to more than one type of disease among smoking patients. In non-smoking patients, 7,3 and 6 SNPs were associated to CAD, UBCa, LCa, respectively. Out of these 92 SNPs, CTLA4 rs3087243 was associated to both non-smoking CAD and UBCa. The XRCC1 rs25487 was associated to both non-smoking UBCa and LCa.

study design, data collection, analysis, decision to publish or the preparation of the manuscript.

Competing interests: The autours have declared that no competing interests exist.

Conclusion

SNPs might be important risk factors for CAD, UBCa and LCa. Distribution of the SNPs was specific for each patient group, not a random event. Impact of cigarette smoking on the disease was associated to the specific SNP sequences. Thus, smoking individuals with SNPs associated to risk of these serious diseases is an important target group for smoking cessation programs.

Introduction

Cigarette smoke is a toxic and carcinogenic agent that is suggested to be a major risk factor for serious diseases [1,2]. The smoking associated diseases could among other diseases, be coronary artery disease (CAD), head and neck cancer, urinary bladder cancer (UBCa), obstructive pulmonary diseases or lung cancer (LCa) [3-6].

It is assumed that about 50% of all tobacco smokers will die from smoking and 60% of all deaths caused by cigarette smoke are in cancer or CAD $[7,8]$. The mechanisms that determines which one of the smoking related disease each patient will suffer from are unknown. Smoking related diseases put a major strain on the health care systems and are major cause of early death in the world [8].

However, not all heavy smokers develop tobacco induced diseases. Elevated cancer risk found among first-degree relatives of cancer patients suggests an important role of genetic factors $[9,10]$. Single nucleotide polymorphism (SNP) is the most common source of human genetic variation in DNA sequences [11-13]. SNPs are inborn and lifelong stable. SNPs might influence risk of individual specific disease independents from cigarette smoke toxic agents.

Cigarette smoke induces massive normal cell death in vitro [13]. As a consequence of massive normal cell death, long term cigarette smoking could induce systemic chronic inflammation and immune-suppression in healthy smokers [4]. The possible impact of genetics and cigarette smoking on circulating immune response cells and inflammatory biomarkers was also found in healthy smokers [4, 14]. Overtime, a chronic inflammatory environment might influence tumor suppressor genes, oncogenes and various functional genes [15, 16].

In this pilot study, the SNP distribution in CAD, UBCa, LCa patients were compared with healthy controls, and the impact of cigarette smoking on these diseases were investigated. Ninety-two SNPs in genes associated to cell cycle, cell death, immune response, DNA repair, inflammation, microRNA and oncogenesis were analyzed.

Material and methods

Patients and controls

A total of 512 individuals were investigated. The study patients $(\mathrm{n}=210)$ and controls $(\mathrm{n}=302)$ were from a community-based population of European descent in Jönköping region, Sweden (Table 1). A non-randomized and discretionary group of CAD, UBCa and LCa patients, aged ≥ 19 years were invited to participate. No power calculation was applied since this was a pilot study aimed to be hypothesis generating. The patient inclusion criteria were based on relevant diagnostic procedure or pathological diagnosis of the given diseases.

Healthy controls, aged ≥ 19 years were recruited from the blood bank, the periodontal clinic, and the smoking prevention clinic. Samples from the periodontal clinic donors were drawn at least three months after any treatment and the individuals showed no clinical signs of local inflammation. None of the controls had a history of cardiovascular disease, kidney disorder, malignant or pulmonary disease.

Table 1. Characteristics of coronary artery disease (CAD), urinary bladder cancer (UBCa), lung cancer (LCa) patients and healthy blood donors (controls).

		Mean aged, year (SD)	Sex (n)		Smoking (n)	
	n		Male	Female	Yes	No
Controls	302	$56(11)$	155	147	142	160
Patients						
CAD	98	$68(9)$	83	15	55	43
UBCa	74	$74(9)$	59	15	15	59
LCa	38	$67(8)$	12	26	31	7
Total	512		309	203	243	269

https://doi.org/10.1371/journal.pone.0243084.t001

Thirty ml peripheral blood was collected from the controls and patients using EDTA containing tubes. All blood samples were stored at $-80^{\circ} \mathrm{C}$ in the biobank, at Ryhov hospital, Sweden until analysed.

Ethics statement

This pilot study was conducted in accordance with the Declaration of Helsinki and Regional Research Ethics Review Board of Linköping, Sweden approved our study (Dnr 2011/271-31 and 2015/178-32). Written informed consent was obtained from all participants.

SNP analysis

High molecular weight DNA was extracted from blood samples using QIAGEN Bio Robot M48 with MagAttract DNA Blood M48 kits EZ1 (www.qiagen.com). The quantity and quality of DNA was determined by NanoDrop. According to genetics home reference-NIH (https://ghr.nlm.nih.gov/gene) and previous investigations, 92 SNPs located in genes associated to cell cycle controls, cell death, immune response, DNA repair, inflammation, microRNAs, oncogenes and tumour suppressor genes (Table 2) were selected for this study [4, 1214, 17, 18].

All 92 SNP sequences were tested and passed two-hits in the dbSNP database and were Hap Map-validated with Illumina design ability score [19]. Genotyping of SNP was done at the SNP \& SEQ Technology Platform, Uppsala University, Sweden (www.genotyping.se). Highthroughput genotyping with the Illumina Golden gate assay was used according to the manufacturer's protocol (www.illumina.com).

Statistical analysis

Results are presented as numbers, means and standard deviations. Fishers exact test were used to evaluate possible differences in the frequency distribution of SNPs between the patient and control group. To examine the impact of cigarette smoking and SNPs, comparisons between SNP frequencies among the cigarette smoking (smoking) patients in each group to their corresponding smoking controls were analyzed. For the impact of unknown co-factors, SNP frequencies in patients who never had used any type of tobacco products (non-smoking) in each patient group were compared to non-smoking controls.

In the univariable logistic regression, the results were presented as Wald Chi-square test p values, odds ratios (OR) and corresponding 95% confidence intervals ($95 \% \mathrm{CI}$). The most frequent SNP among controls were used as reference level for OR in regression models. Stratified by disease and smoking status, no other interaction effects were analyzed.

Table 2. Genes and SNPs.

Gene	ID	Gene	ID	Gene	ID
ABCA1	rs2230806	CRP	rs1800947	Ku70	rs2267437
ABCA1	rs2249891	CTLA4	rs3087243	Lig4	rs1805386
ABCB1	rs1128503	CXCR2	rs1126579	MDM2	rs3730536
ABCC1	rs2230671	CYC oxidase	rs4646	miR146A	rs2910164
ABCC1	rs2981579	Сур2A6	rs28399433	miR187	rs334348
ABCC5	rs7636910	Cyp19A1	rs51502844	miR196A2	rs11614913
ATM	rs1801516	CZMB	rs8192917	miR206	rs6920648
ATM	rs664143	DNMT3B	rs2424913	miR34a	rs4938723
BB1/LPAR6	rs2854344	EGFR	rs2293347	MMP2	rs243865
BRCA1	rs1799966	EHBP1	rs721048	MTHFR	rs1801133
BRCA1	rs799916	ESR1	rs2234693	Nos3	rs1799983
BRCA2	rs144848	FAS/CD95	rs2234978	Nos3	rs2070744
Casp8	rs1045485	FGFR4	rs2011077	P21	rs7767246
Casp9	rs1052576	GSTP1	rs1695	PFA1	rs10999426
CCL2	rs1024611	HIFal	rs11549467	PPAP2B	rs1261411
CCL2	rs2530797	HRas	rs12628	PRF1	rs3758562
CCL4	rs1719153	HTR3B	rs3782025	PRKDC	rs1231204
CCL5/Rantes	rs2107538	HTR3B	rs1672717	RaD52	rs11571424
CCL5/Rantes	rs2280789	IFNg	rs2069705	Serpin1	rs1243168
CCND1	rs602652	IFNg	rs2069718	STAT4	rs7574865
CCND3	rs3218086	IFNg RNA	rs2430561	TERT	rs2736100
CD44	rs187115	IGF1R	rs951715	TGFb	rs1800469
CD44	rs7116432	IL10	rs1518111	TNF	rs1800610
CDH13	rs12445758	IL12Rb2	rs3790568	TNF	rs1800629
CDKN2A	rs3088440	IL2	rs6822844	TNFA1P2	rs8126
CHARNA5	rs16969968	IL2/TRPC3	rs11938795	TNFSF1	rs1054016
Check2	rs17879961	IL2B	rs3212227	TP53	rs1042522
CHRNA3	rs1051730	IL2RA	rs12722489	Tyk2	rs12720356
CHRNA3	rs10802789	IL6	rs1800797	XRCC1	rs25487
COMT	rs4680	KDM4C	rs2296067	ZMF830	rs3744355
COMT1	rs165722	KDM4C	rs818912		

https://doi.org/10.1371/journal.pone.0243084.t002

Statistical analyses were done using SAS 9.4 software (SAS Institute, Cary, NC). All comparisons were two-sided and a Fishers exact test p value ≤ 0.05 was considered statistically significant.

Results

Controls and patients

A total of 512 participants were enrolled from one community based population in Jönköping region, Sweden during 2016 to 2019 (Table 1). There were 302 controls (155 males and 147 females). The median age of females was 55 years (range 20-89) and of males was 56 years (range 19-79). Among controls, 150 had a history of cigarette smoking (smoking) and 160 had never use any type of tobacco products (non-smoking).

A total 210 patients (154 males and 56 females) were included. The median age of females was 69 years (range 52-84) and of males was 71 years (range $39-91$). The 98 CAD patients (83 males and 15 females) were 53 smoking and 45 non-smoking. The 74 UBCa patients (59 males
and 15 females) were 15 smoking and 59 non-smoking. The 38 LCa patients (12 males and 26 females) were 31 smoking and 7 non-smoking.

SNP distribution among CAD, UBCa and LCa patient groups and control group

Out of the 92 SNPs tested (Table 2), differences in distribution of 14 SNPs were detected between controls and the CAD, UBCa or LCa patients (Table 3). Differences between controls and CAD patients were detected in six SNPs located in ATM, CTLA4, BRCA1, CCND3, HRas and IL2. Differences between controls and UBCa patients were detected in six SNPs located in ABCC5, CDH13, CRP, CTLA4, p2 and TNFSF1 Differences between controls and LCa patients were detected in three SNPs located in DNMT3B, MTHFR, and Serpin1.

Of the 92 SNPs (Table 2), only CTLA4 rs3087243 showed a statistically significant difference in two groups of the patients, CAD and UBCa, compared to the controls (Table 3).

SNP distribution among smoking CAD, UBCa or LCa patients and smoking controls

Out of these 92 SNPs, differences in the distribution of 15 SNPs were detected between smoking controls and smoking patients (Table 4). Differences in seven SNPs located in CCND3, CTLA4, KDM4C, PFA1, PPAP2B, PRF1 and Rad52, were found to be specific for smoking CAD patients. Differences in three SNPs located in ABCA1, CCND1 and MiR206 were specific for smoking UBCa patients. Differences in four SNPs located in CDH13, HTR3B1, CRP and ZMF830 were specific for smoking LCa patients.

None of these 92 SNPs showed a statistically significant difference in distribution in more than one disease among smoking patients compared to their corresponding smoking controls (Table 4).

SNPs distribution among non-smoking CAD, UBCa, LCa patients and non-smoking controls

Out of these 92 SNPs tested, differences in distribution of 14 SNPs were detected between the non-smoking controls and non-smoking patients (Table 5). They were seven SNPs located in ATM, BRCA1, CTLA4, CYP19A1, FGFR4, MiR34A and PRKDC in non-smoking CAD patients. Three SNPs located in MTHFR, CTLA4, and XRCC1, in non-smoking UBCa patients and four SNPs located in HTRB1, Lig4, Serpin1, TGFb, and XRCC1 in non-smoking LCa patients (Table 5).

Two of these 92 SNPs, CTLA4 rs3087243 and XRCC1 rs25487 showed different distribution in more than one disease among non-smoking patient groups compared to their non-smoking controls (Table 5). The SNP in CTLA4 rs3087243 showed a difference in distribution among non-smoking controls and non-smoking CAD or UBCa patients. The SNP in XRCC1 rs25487 showed a difference in distribution among non-smoking controls and non-smoking UBCa or LCa patients.

Discussion

The genetic and the environment influence human risk of various diseases and clinical outcome. We found that specific genetic variations influenced the risk of diseases that are suggested to associate to cigarette smoking such as CVD, UBCa and LCa. These diseases are heterogeneous groups regarding site location and their pathological parameters.
Table 3. SNP sequences of $\mathbf{3 0 2}$ controls (C), 98 cardiovascular artery disease (CAD), 74 urinary bladder cancer (UBCa) and 38 lung cancer (LCa) patients.

요 $\wedge=$
$\not \pm$

$\stackrel{\circ}{\circ}$

| $\underset{N}{N}$ | |
| :---: | :---: | :---: |
| | |
| | |

みの

in ∞ in in

Table 3. (Continued)

https://doi.org/10.1371/journal.pone.0243084.to03
Table 4. Cigarette smoking and SNPs sequences of 142 controls (C), 55 cardiovascular artery disease (CAD), 15 urinary bladder cancer (UBCa) and 31 lung cancer (LCa) patients.

Table 4. (Continued)
$\infty-$

G/G vs C/C	N/A	N/A	8
C/G vs G/G	N/A	N/A	

Table 4. (Continued)

*N/A not estimable due to zero or few individuals.
https://doi.org/10.1371/journal.pone.0243084.t004
Table 5. Non-smoking and SNP sequences of 160 controls (C), 43 cardiovascular artery disease (CAD), 59 urinary bladder cancer (UBCa) and 7 lung cancer (LCa) patients.

| | | | | | |
| :--- |

Table 5. (Continued)

A/G vs G/G	1.54	$0.81-2.90$
A/A vs A/G	1.44	$0.60-3.45$
A/A vs G/G	2.73	$1.09-6.82$
A/G vs G/G	1.89	$0.96-3.69$

Table 5. (Continued)

https://doi.org/10.1371/journal.pone.0243084.t005

Endothelial malignancies are very rare in the western population and consists mainly of sarcomas. The endothelial cells seems not to be transformed into malignancies from smoking [20]. However, the blockage of the CAD patient artery caused by smoking is a complex mechanism involving inflammation and benign smooth muscle proliferation [21, 22].

Out of these 92 SNPs, only distribution of CTLA4 rs3087243 differed between controls and two patient groups, CAD and UBCa. CTLA4 located on chromosome 2q33.2, encodes for CTLA4 protein that functions as an immune checkpoint and downregulates immune responses [23, 24]. CTLA4 is constitutively expressed in regulatory T cells. Upon activation, conventional T cells in cancer patients could up-regulated CTLA4 [25]. Alteration in CLTA4 expression cells were detected in the inflammatory heart disease [26]. CTLA4 polymorphism and risk of cancer were reported [27,28]. The possible benefits of immunotherapy with focus on CTLA4 protein as target therapy of CAD and UBCa need further investigation [25, 29, 30].

The impact of cigarette smoking on CAD risk was more pronounced among individuals with specific SNPs in genes involving the immune response (CTLA4, PFA and PRF), cell cycle control (CCND3 and p21), DNA repair (BRCA1, ATM) and oncogene (HRas). The impact of cigarette smoking on UBCa risk seem to be accumulated among individuals with SNPs in genes involved in cell cycle control ($A B C C 1, C D H 13$ and $p 21$,) and immune response ($C R P$, CTLA4 and TNFSF1). The impact of cigarette smoking on LCa risk might be increased among individuals with SNPs in genes involving cell cycle control (CDH13 and HTR3B1) and immune response ($C R P$). The variation in SNPs among cigarette smoking CAD, UBCa and LCa patients indicates an impact of general toxic agents from cigarette smoke and specific DNA sequences, not random event on the risk for these diseases.

There are subgroups of the CAD, UBCa and LCa patients that never have used any type of tobacco products, non-smoking patient group. Despite similar type of disease, SNPs that associated to the non-smoking UBCa patients differed from those of the smoking UBCa patients. Unknown risk factors, apart from cigarette smoking, in combination with the specific SNPs could also increase the risk of UBCa in non-smoking individuals.

SNP sequence variation in CTLA4 rs3087243 was associated to risk of CAD in both smoking and non-smoking patients. Thus, the influence of immune response on smooth muscle cell proliferation of CAD patients [26] was independent from cigarette smoking. SNPs in the CTLA4 rs3087243 also associate to risk of non- smoking UBCa patients, not in smoking UBCa patients. This suggests an influence of CTLA4 rs3087243 on risk of CAD and UBCa might be independent from the cigarette smoke.

XRCC1 gene located on chromosome 19q13.2, encoded for XRCC1 protein is an essential for DNA damage repair [31-33]. Genetic variations that influence DNA damage repair efficiency in combination with harm micro-environment might increase risk of UBCa and LCa [34-36].

The differences in XRCC1 rs25487 of non-smoking UBCa and non-smoking LCa patients compared to non-smoking controls, confirms that DNA repair play an important role on UBCa and LCa [34, 35]. If patients with AA or AG sequences in XRCC1 rs25487 are prone to DNA damage from other agents/microenvironments more than cigarette smoke needs further investigation [37-39].

Our pilot study has several limitations. Firstly, this is a single center, non- randomized retrospective study with a relatively low number of included patients [40]. In addition, the lower age among controls compared to patients was based on the blood bank regulation, needs to be considered. Secondly, cigarette smoking history of the patients and controls was self-reported and this could be influenced by recall bias [41]. Thirdly, passive smoking conditions that might have impact on risk of these diseases [8, 42], were not recorded.

In summary, our results indicate an important role of specific genetic variations on risk of CAD, UBCa or LCa. Impact of cigarette smoking was also found in a proportion of these patients in association with individual specific SNPs. The SNPs are lifelong stable genetic variation that could predict the risk to develop specific diseases.

Unable to quit smoking during or after treatment could increase rate of diseases recurrence, progression, development of a second primary tumour and disease-specific mortality. The identification of SNPs that associated to risk or disease progression could increase the cessation rate in smoking patients.

Healthy individual with SNPs associated to a smoking related risk to develop CAD, UBCa or LCa will also get higher motivation for smoking cessation. Unknown environmental factors associated to risk of these diseases in non-smoking group [43] and the possibility to use SNPs as prognostic biomarkers for treatment selection and prediction of clinical outcome needs future investigation.

Acknowledgments

We would like to thank all the patients and controls for blood donation, the blood bank and laboratory personal, Thitiya Leutragoon, nurse and medical doctors at Ryhov hospital for practical work and supported.

Author Contributions

Conceptualization: Nongnit Laytragoon Lewin, David Robinsson, Lars Erik Rutqvist, Freddi Lewin.

Data curation: Jan-Erik Karlsson, Mats Nilsson.
Formal analysis: Mats Nilsson.
Funding acquisition: Nongnit Laytragoon Lewin, Freddi Lewin.
Investigation: Nongnit Laytragoon Lewin, Jan-Erik Karlsson, David Robinsson, Matida Fagerberg, Magnus Kentsson, Shariel Sayardoust, Levar Shamoun, Bengt-Åke Andersson, Lars Erik Rutqvist.

Methodology: Nongnit Laytragoon Lewin, Mats Nilsson, Sture Löfgren.
Project administration: Nongnit Laytragoon Lewin, Jan-Erik Karlsson.
Resources: Freddi Lewin.
Supervision: Lars Erik Rutqvist, Freddi Lewin.
Validation: Nongnit Laytragoon Lewin, Mats Nilsson, Sture Löfgren.
Writing - original draft: Nongnit Laytragoon Lewin.
Writing - review \& editing: Jan-Erik Karlsson, David Robinsson, Matida Fagerberg, Magnus Kentsson, Shariel Sayardoust, Mats Nilsson, Levar Shamoun, Bengt-Åke Andersson, Sture Löfgren, Lars Erik Rutqvist, Freddi Lewin.

References

1. Gao Y, Huang D. The value of the systematic inflammation-based Glasgow Prognostic Score in patients with gastric cancer: a literature review. J Cancer Res Ther. 2014; 10(4):799-804. https://doi.org/10. 4103/0973-1482.146054 PMID: 25579511.
2. Khariwala SS, Ma B, Ruszczak C, Carmella SG, Lindgren B, Hatsukami DK, et al. High Level of Tobacco Carcinogen-Derived DNA Damage in Oral Cells Is an Independent Predictor of Oral/Head and

Neck Cancer Risk in Smokers. Cancer Prev Res (Phila). 2017; 10(9):507-13. Epub 2017/07/07. https:// doi.org/10.1158/1940-6207.CAPR-17-0140 PMID: 28679497.
3. van Osch FH, Jochems SH, van Schooten FJ, Bryan RT, Zeegers MP. Quantified relations between exposure to tobacco smoking and bladder cancer risk: a meta-analysis of 89 observational studies. Int J Epidemiol. 2016; 45(3):857-70. Epub 2016/04/22. https://doi.org/10.1093/jie/dyw044 PMID: 27097748.
4. Andersson BA, Sayardoust S, Lofgren S, Rutqvist LE, Laytragoon-Lewin N. Cigarette smoking affects microRNAs and inflammatory biomarkers in healthy individuals and an association to single nucleotide polymorphisms is indicated. Biomarkers. 2019; 24(2):180-5. Epub 2018/10/31. https://doi.org/10.1080/ 1354750X.2018.1539764 PMID: 30375257.
5. Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene. 2002; 21(48):743551. Epub 2002/10/16. https://doi.org/10.1038/sj.onc. 1205803 PMID: 12379884.
6. Rom O, Avezov K, Aizenbud D, Reznick AZ. Cigarette smoking and inflammation revisited. Respir Physiol Neurobiol. 2013; 187(1):5-10. Epub 2013/02/05. https://doi.org/10.1016/j.resp.2013.01.013 PMID: 23376061.
7. Goodchild M, Nargis N, Tursan d'Espaignet E. Global economic cost of smoking-attributable diseases. Tob Control. 2018; 27(1):58-64. Epub 2017/02/01. https://doi.org/10.1136/tobaccocontrol-2016053305 PMID: 28138063.
8. Oberg M, Jaakkola MS, Woodward A, Peruga A, Pruss-Ustun A. Worldwide burden of disease from exposure to second-hand smoke: a retrospective analysis of data from 192 countries. Lancet. 2011; 377 (9760):139-46. Epub 2010/11/30. https://doi.org/10.1016/S0140-6736(10)61388-8 PMID: 21112082.
9. Haug U, Riedel O, Cholmakow-Bodechtel C, Olsson L. First-degree relatives of cancer patients: a target group for primary prevention? A cross-sectional study. Br. J. Cancer. 2018; 118(9):1255-61. Epub 2018/03/22. https://doi.org/10.1038/s41416-018-0057-2 PMID: 29559731.
10. Bennett WP, Alavanja MC, Blomeke B, Vahakangas KH, Castren K, Welsh JA, et al. Environmental tobacco smoke, genetic susceptibility, and risk of lung cancer in never-smoking women. J Natl Cancer Inst. 1999; 91(23):2009-14. Epub 1999/12/02. https://doi.org/10.1093/jnci/91.23.2009 PMID: 10580025.
11. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001; 29(1):308-11. Epub 2000/01/11. https://doi.org/10.1093/ nar/29.1.308 PMID: 11125122.
12. Andersson BA, Lofgren S, Lewin F, Nilsson M, Laytragoon-Lewin N. Impact of Cigarette Smoking and Head and Neck Squamous Cell Carcinoma on Circulating Inflammatory Biomarkers. Oncology. 2020; 98(1):42-7. Epub 2019/08/23. https://doi.org/10.1159/000502651 PMID: 31437849.
13. Cederblad L, Thunberg U, Engstrom M, Castro J, Rutqvist LE, Laytragoon-Lewin N. The combined effects of single-nucleotide polymorphisms, tobacco products, and ethanol on normal resting blood mononuclear cells. Nicotine Tob Res. 2013; 15(5):890-5. Epub 2012/10/09. https://doi.org/10.1093/ntr/ nts207 PMID: 23042982.
14. Luetragoon T, Rutqvist LE, Tangvarasittichai O, Andersson BA, Lofgren S, Usuwanthim K, et al. Interaction among smoking status, single nucleotide polymorphisms and markers of systemic inflammation in healthy individuals. Immunology. 2018; 154(1):98-103. https://doi.org/10.1111/imm. 12864 PMID: 29140561.
15. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002; 420(6917):860-7. Epub 2002/12/20. https://doi.org/10.1038/nature01322 PMID: 12490959.
16. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008; 454 (7203):436-44. Epub 2008/07/25. https://doi.org/10.1038/nature07205 PMID: 18650914.
17. Laytragoon-Lewin N, Cederblad L, Andersson BA, Olin M, Nilsson M, Rutqvist LE, et al. Single-Nucleotide Polymorphisms and Cancer Risk, Tumor Recurrence, or Survival of Head and Neck Cancer Patients. Oncology. 2017; 92(3):161-9. Epub 2016/12/21. https://doi.org/10.1159/000452278 PMID: 27997918.
18. Canova C, Hashibe M, Simonato L, Nelis M, Metspalu A, Lagiou P, et al. Genetic associations of 115 polymorphisms with cancers of the upper aerodigestive tract across 10 European countries: the ARCAGE project. Cancer Res. 2009; 69(7):2956-65. Epub 2009/04/03. https://doi.org/10.1158/0008-5472. CAN-08-2604 PMID: 19339270.
19. Steemers FJ, Chang W, Lee G, Barker DL, Shen R, Gunderson KL. Whole-genome genotyping with the single-base extension assay. Nature methods. 2006; 3(1):31-3. https://doi.org/10.1038/nmeth842 PMID: 16369550.
20. Wagner MJ, Ravi V, Menter DG, Sood AK. Endothelial cell malignancies: new insights from the laboratory and clinic. NPJ Precis Oncol. 2017; 1(1):11. Epub 2017/04/20. https://doi.org/10.1038/s41698-017-0013-2 PMID: 29872699.
21. Liu L, Cheng Z, Yang J. miR-23 regulates cell proliferation and apoptosis of vascular smooth muscle cells in coronary heart disease. Pathol Res Pract. 2018; 214(11):1873-8. Epub 2018/09/27. https://doi. org/10.1016/j.prp.2018.09.004 PMID: 30249504.
22. Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005; 111(25):3481-8. Epub 2005/06/29. https://doi.org/10.1161/CIRCULATIONAHA.105.537878 PMID: 15983262.
23. Qureshi KM, Oliver RJ, Paget MB, Murray HE, Bailey CJ, Downing R. Human amniotic epithelial cells induce localized cell-mediated immune privilege in vitro: implications for pancreatic islet transplantation. Cell Transplant. 2011; 20(4):523-34. Epub 2010/10/05. https://doi.org/10.3727/096368910X528111 PMID: 20887662.
24. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012; 12 (4):252-64. Epub 2012/03/23. https://doi.org/10.1038/nrc3239 PMID: 22437870.
25. Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017; 18(12):e731-e41. Epub 2017/12/07. https://doi.org/10.1016/S1470-2045(17) 30607-1 PMID: 29208439.
26. Frisancho-Kiss S, Nyland JF, Davis SE, Barrett MA, Gatewood SJ, Njoku DB, et al. Cutting edge: T cell Ig mucin-3 reduces inflammatory heart disease by increasing CTLA-4 during innate immunity. J Immunol. 2006; 176(11):6411-5. Epub 2006/05/20. https://doi.org/10.4049/jimmunol.176.11.6411 PMID: 16709797.
27. Hu S, Pu D, Xia X, Guo B, Zhang C. CTLA-4 rs5742909 polymorphism and cervical cancer risk: A meta-analysis. Medicine (Baltimore). 2020; 99(11):e19433. Epub 2020/03/17. https://doi.org/10.1097/ MD. 0000000000019433 PMID: 32176070.
28. Zou C, Qiu H, Tang W, Wang Y, Lan B, Chen Y. CTLA4 tagging polymorphisms and risk of colorectal cancer: a case-control study involving 2,306 subjects. Onco Targets Ther. 2018; 11:4609-19. Epub 2018/08/21. https://doi.org/10.2147/OTT.S173421 PMID: 30122952.
29. Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med. 2013; 210(9):1695-710. Epub 2013/07/31. https://doi.org/10.1084/jem.20130579 PMID: 23897981.
30. Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front Oncol. 2018; 8:86. Epub 2018/04/13. https://doi.org/10.3389/ fonc.2018.00086 PMID: 29644214.
31. Whitehouse CJ, Taylor RM, Thistlethwaite A, Zhang H, Karimi-Busheri F, Lasko DD, et al. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA singlestrand break repair. Cell. 2001; 104(1):107-17. Epub 2001/02/13. https://doi.org/10.1016/s0092-8674 (01)00195-7 PMID: 11163244.
32. London RE. The structural basis of XRCC1-mediated DNA repair. DNA Repair (Amst). 2015; 30:90103. Epub 2015/03/22. https://doi.org/10.1016/j.dnarep.2015.02.005 PMID: 25795425.
33. Shen MR, Jones IM, Mohrenweiser H. Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res. 1998; 58(4):604-8. Epub 1998/03/04. PMID: 9485007.
34. Mao Y, Xu X, Lin Y, Chen H, Wu J, Hu Z, et al. Quantitative assessment of the associations between XRCC1 polymorphisms and bladder cancer risk. World J Surg Oncol. 2013; 11:58. Epub 2013/03/19. https://doi.org/10.1186/1477-7819-11-58 PMID: 23496911.
35. Ratnasinghe D, Yao SX, Tangrea JA, Qiao YL, Andersen MR, Barrett MJ, et al. Polymorphisms of the DNA repair gene XRCC1 and lung cancer risk. Cancer Epidemiol Biomarkers Prev. 2001; 10(2):11923. Epub 2001/02/24. PMID: 11219768.
36. Gao WM, Romkes M, Siegfried JM, Luketich JD, Keohavong P. Polymorphisms in DNA repair genes XPD and XRCC1 and p53 mutations in lung carcinomas of never-smokers. Mol Carcinog. 2006; 45 (11):828-32. Epub 2006/07/26. https://doi.org/10.1002/mc. 20208 PMID: 16865671.
37. Atramont A, Guida F, Mattei F, Matrat M, Cenee S, Sanchez M, et al. Professional Cleaning Activities and Lung Cancer Risk Among Women: Results From the ICARE Study. J Occup Environ Med. 2016; 58(6):610-6. Epub 2016/05/21. https://doi.org/10.1097/JOM. 0000000000000722 PMID: 27206119.
38. Cummings KJ, Virji MA. The Long-Term Effects of Cleaning on the Lungs. Am J Respir Crit Care Med. 2018; 197(9):1099-101. Epub 2018/02/24. https://doi.org/10.1164/rccm.201801-0138ED PMID: 29474796.
39. Svanes O, Bertelsen RJ, Lygre SHL, Carsin AE, Anto JM, Forsberg B, et al. Cleaning at Home and at Work in Relation to Lung Function Decline and Airway Obstruction. Am J Respir Crit Care Med. 2018; 197(9):1157-63. Epub 2018/02/17. https://doi.org/10.1164/rccm.201706-13110C PMID: 29451393.
40. Bacchetti P, Deeks SG, McCune JM. Breaking free of sample size dogma to perform innovative translational research. Sci Transl Med. 2011; 3(87):87ps24. Epub 2011/06/17. https://doi.org/10.1126/ scitransImed. 3001628 PMID: 21677197.
41. Connor Gorber S, Schofield-Hurwitz S, Hardt J, Levasseur G, Tremblay M. The accuracy of selfreported smoking: a systematic review of the relationship between self-reported and cotinine-assessed smoking status. Nicotine Tob Res. 2009; 11(1):12-24. Epub 2009/02/28. https://doi.org/10.1093/ntr/ ntn010 PMID: 19246437.
42. Sun YQ, Chen Y, Langhammer A, Skorpen F, Wu C, Mai XM. Passive smoking in relation to lung cancer incidence and histologic types in Norwegian adults: the HUNT study. Eur Respir J. 2017; 50(4). Epub 2017/10/14. https://doi.org/10.1183/13993003.00824-2017 PMID: 29025890.
43. Shore RE, Beck HL, Boice JD, Caffrey EA, Davis S, Grogan HA, et al. Implications of recent epidemiologic studies for the linear nonthreshold model and radiation protection. J Radiol Prot. 2018; 38 (3):1217-33. Epub 2018/07/14. https://doi.org/10.1088/1361-6498/aad348 PMID: 30004025.

