
Original Paper

A Platform to Develop and Apply Digital Methods for Empirical
Bioethics Research: Mixed Methods Design and Development
Study

Manuel Schneider, MSc, PhD
Health Ethics and Policy Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland

Corresponding Author:
Manuel Schneider, MSc, PhD
Health Ethics and Policy Lab
Department of Health Sciences and Technology
ETH Zurich
Hottingerstrasse 10
Zurich, 8092
Switzerland
Phone: 41 44 632 26 16
Email: manuel.schneider@digitalmethods.ch

Abstract

Background: The rise of digital methods and computational tools has opened up the possibility of collecting and analyzing
data from novel sources, such as discussions on social media. At the same time, these methods and tools introduce a dependence
on technology, often resulting in a need for technical skills and expertise. Researchers from various disciplines engage in empirical
bioethics research, and software development and similar skills are not usually part of their background. Therefore, researchers
often depend on technical experts to develop and apply digital methods, which can create a bottleneck and hinder the broad use
of digital methods in empirical bioethics research.

Objective: This study aimed to develop a research platform that would offer researchers the means to better leverage implemented
digital methods, and that would simplify the process of developing new methods.

Methods: This study used a mixed methods approach to design and develop a research platform prototype. I combined established
methods from user-centered design, rapid prototyping, and agile software development to iteratively develop the platform prototype.
In collaboration with two other researchers, I tested and extended the platform prototype in situ by carrying out a study using the
prototype.

Results: The resulting research platform prototype provides three digital methods, which are composed of functional components.
This modular concept allows researchers to use existing methods for their own experiments and combine implemented components
into new methods.

Conclusions: The platform prototype illustrates the potential of the modular concept and empowers researchers without advanced
technical skills to carry out experiments using digital methods and develop new methods. However, more work is needed to bring
the prototype to a production-ready state.

(JMIR Form Res 2022;6(5):e28558) doi: 10.2196/28558

KEYWORDS

digital bioethics; digital humanities; digital methods; computational methods; empirical bioethics; research platform; digital
health; bioethics; digital platform

Introduction

Empirical bioethics is an interdisciplinary research field
attracting researchers with various backgrounds [1]. Software
development skills and similar know-how are often not part of
their expertise. However, inquiries in the field of empirical

bioethics can rely heavily on computational tools (the textual
analysis of millions of tweets, for example). From the 1990s,
social scientists have recognized the internet as a valuable
research subject and data source, and have adapted their methods
and tools to novel digital phenomena [2,3]. This recognition
has resulted in novel digital methods, which Snee et al [4] define

JMIR Form Res 2022 | vol. 6 | iss. 5 | e28558 | p. 1https://formative.jmir.org/2022/5/e28558
(page number not for citation purposes)

SchneiderJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

mailto:manuel.schneider@digitalmethods.ch
http://dx.doi.org/10.2196/28558
http://www.w3.org/Style/XSL
http://www.renderx.com/

as “the use of online and digital technologies to collect and
analyse research data.” Novel disciplines emerged, such as
computational social science, which leverages computational
capabilities to collect and analyze big data, to study social
behavior [5].

The development of these methods has spawned a variety of
digital tools. One example is the network visualization software
Gephi [6]. Gephi imports different data formats and provides
functionality to researchers through a graphical user interface.
Researchers can use this software to compute basic network
statistics, such as network density and average shortest path
length. Network visualization features build the core of Gephi,
allowing researchers to explore and manipulate large networks.
Gephi is open source, and can integrate plugins, enabling
software developers to extend the functionality.

Alongside the maturation of digital methods, advances in
computer science, especially machine learning, have resulted
in an abundance of software libraries. One example is Hugging
Face, a Python library that provides state-of-the-art natural
language processing (NLP) resources [7]. Hugging Face allows
researchers to program their own NLP pipelines; for example,
to enable analysis of the sentiment of tweets. In contrast to
Gephi, Hugging Face is a collection of resources used by
developers to write software programs. It does not offer a
graphical user interface or out-of-the-box workflows for
researchers without programming experience. One advantage
of such a library is that developers have a great deal of control
over how to use the resources, which can also be easily
combined with resources from other libraries.

In light of these new developments and tools, and in
collaboration with other researchers, I conducted several
empirical bioethics experiments using digital methods,
hereinafter referred to as “digital bioethics.” My collaborators

and I encountered two major issues over the course of these
experiments: (1) the need for technical expertise to set up tools
and adapt them to each experiment, and (2) the need for
technical expertise to develop new methods. In my observation,
finding ad hoc expertise can delay projects and make it more
difficult for researchers to conduct digital bioethics experiments.
If researchers could easily access tools and seamlessly integrate
them into their research projects without the assistance of
software developers, they might be more inclined to practice
digital bioethics.

Researchers would still rely on software development skills to
develop new tools when fundamentally new functionality is
required. However, existing tools might be repurposed,
modified, and recombined, if they were built with that objective
in mind. Therefore, I aimed to develop a research platform
which addresses the two identified issues. In the following, I
describe the development process, the resulting research
platform prototype, and the learnings from this process.

Methods

Overview
Using a combination of user-centered design [8], rapid
prototyping [9], and agile software development [10], I
developed a platform prototype that addresses issues (1) and
(2) introduced in the Introduction. Rather than regarding these
issues only as challenges, I translated them into goals, which
express an ideal scenario: (A) researchers can easily configure
and employ methods provided by the platform for new
experiments, and (B) researchers can modify methods and
develop new methods, by recombining components of already
implemented digital methods. These high-level goals guided
the development process, which I describe in the following
paragraphs (see Figure 1 for an overview of the approach).

Figure 1. Overview of the methods. The circles represent the start and end points of the development process, and the colored boxes represent the work
steps. The three boxes on the right form a prototyping cycle, which I carried out multiple times during the development process. The text in between
the steps describes the main inputs and outputs of a step.

Understanding the Prospective Users
The first step of the development process was to create personas;
that is, abstract individuals who represent typical target users
[11,12]. In total, I created four personas (two for each goal [A]
and [B]). I defined their attributes such as name, age, gender,
and professional background, as well as their personal goals,
challenges, and motivations with respect to digital bioethics. I
based the personas on my own experience, as well as anecdotal
data from colleagues and the empirical bioethics literature
[1,13,14], which is common practice when no empirical data

are available. I then derived so-called epics, that is high-level
narratives of what each persona as a user would want to do on
the research platform, and why [15]. The epics incorporated the
platform goals (A) and (B) from the perspective of the persona.
Finally, I broke down the epics into specific tasks a user might
want to accomplish, together with the user’s corresponding
motivation [8]. These user stories took the form “as a <user> I
want to <action> so that <value>,” commonly referred to as the
role-feature-reason format [16]. The user stories formed the
initial functional requirements for the platform and described

JMIR Form Res 2022 | vol. 6 | iss. 5 | e28558 | p. 2https://formative.jmir.org/2022/5/e28558
(page number not for citation purposes)

SchneiderJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

the user-centered features (see Multimedia Appendices 1 and
2 for the personas, epics, and user stories).

Designing the Platform Concept
While the user stories described the intended functionality of
the platform, they also had nonfunctional implications for the
platform design. For example, if two researchers were working
on a project at the same time, the actions of one researcher
should not unintentionally override data resulting from actions
of the other researcher. I also defined nonfunctional
requirements from my past experience with digital bioethics.
As an example, training a machine learning model requires
significant computational power and is time-consuming. I
therefore defined requirements about the performance of the
platform and its ability to run such a time-consuming process
without blocking other processes. I then designed the high-level
platform architecture based on these requirements, using a micro
service and micro frontend approach [17-19].

Implementing the Base Prototype
In the final phase of the development process, I used rapid
prototyping [9,20] to implement a first functional prototype,
and then to iteratively improve the prototype through
evolutionary prototyping (ie, continuously improving the same
prototype). Initially, I implemented the overall platform without
incorporating any specific digital method, focusing on general
platform functionality such as data handling and the graphical
user interface (GUI). Next, I implemented two digital methods:
one from a study examining the web-based data sharing policy
landscape [21], and another from a study analyzing themes in
tweets about CRISPR [22]. To adhere to goal (B) and the
corresponding user stories, I did not implement the methods as
one monolithic process, but rather split into functional
components. For example, I implemented a data filtering step
as an individual component, and not as part of a multi-stage
data processing pipeline. The implementation of these methods
allowed me to test the platform’s conceptual choices and added
functionality to the platform prototype at the same time.

Testing and Improving the Prototype in a Real-life
Scenario
To test the prototype in a real-life scenario, I collaborated with
two researchers (Julia Amann, Joanna Sleigh) from the same
lab to investigate visual risk communication about COVID-19
on Twitter [23]. I completed multiple prototyping iterations
with one researcher (JS) to implement functionality that was
necessary for the research, but not yet implemented in the
platform. Over the course of the study, I continuously gathered
feedback from the researchers about their user experience,
defined improvements based on this feedback, and implemented
the improvements, forming multiple prototyping cycles (see
Figure 1). The researchers also requested additional features
based on their experiences with the platform. I implemented,
tested, and improved the requested features in-situ; the
researchers used the new features over the course of the study
and provided direct feedback, until the features fit their needs
precisely. At the conclusion of the visual communication study,
the platform prototype contained all components of the study
methods.

Results

Overview
The main result of this study is the research platform prototype.
It is important to note that the goal of this study was to develop
a platform that affords more flexibility to a researcher working
with digital methods. Therefore, the main focus of this section
is to describe how the platform provides this flexibility, and not
how a specific digital method is implemented. In the following,
I report the major technical and functional design choices, and
describe the main features of the platform (see Multimedia
Appendix 3 for screenshots of the platform prototype and
descriptions thereof).

Platform Architecture
The platform is implemented as a client-server model, allowing
multiple users to work on the same project with all data centrally
stored. This model eliminates the peer-to-peer sharing of data
sets but imposes security features on the platform. Client-server
communication implements the standard HTTPS protocol with
Transport Layer Security encryption. Users are authenticated
through the Authentication and Authorization Infrastructure
[24] provided by most Swiss universities, and can share projects
with other authenticated users.

The frontend was realized as a web application using the web
application framework Angular [25] to be independent of the
user’s operating system, and supports browsers compliant with
the World Wide Web Consortium’s web standards [26]. The
backend was built with the Python framework Flask [27] and
employs the Python library pandas [28] for data management
and core data operations, such as extending data sets with data
sent from the frontend and providing dataset previews to the
frontend. Packages are managed through a Python virtual
environment. An overview of the platform architecture is shown
in Figure 2.

The GUI defines the web application’s layout and style, such
as colors and fonts. A router enables the user to navigate to the
different core views that provide the general functionality of
the platform. When prompted by the user, the router provides
the custom digital method specific views (micro frontends) to
the GUI. Two core frontend services facilitate communication
with the backend, and are both available to the core view and
micro frontends.

The backend’s application programming interface (API) allows
the frontend to interact with the backend functionality. Through
the API, the frontend can load and store information about
research projects, handled by the project manager. The actions
carried out and the data processed when running a project are
coordinated by the service manager, which starts and stops
micro services, and reads and writes data. The micro services
can store resources (such as images) and results (such as tables
or figures resulting from the analysis) as files which can be
requested from the frontend through the API. To download a
data set from the web application, a user can request the specific
data set from the database through the API.

The micro services and micro frontends form the heart of the
platform. When a digital method is implemented on the platform,

JMIR Form Res 2022 | vol. 6 | iss. 5 | e28558 | p. 3https://formative.jmir.org/2022/5/e28558
(page number not for citation purposes)

SchneiderJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

the method is broken down into smaller units, each fulfilling
one specific function. These units are implemented as either an
interactive task or a fully automated process, which can be
chained together in a pipeline. The tasks and processes both
process data, receive different kinds of input, and produce
results; for example, a chart illustrating the outcome of a
statistical analysis carried out as part of the process. An abstract
micro service class and an abstract micro frontend class provide
all of the technical functionality necessary to seamlessly
integrate new tasks and processes implemented by a developer.

A task consists of a micro service, which carries out operations
requested by the user, and a micro frontend, which provides the
user with a custom user interface for the task. This interface
allows the user to trigger operations of the micro service and
to exchange data with it. The user starts a task through the
frontend, performs actions through the task-specific interface,

and stops the task once it is completed, all in a synchronous
way. In contrast, a process is started by the user, and runs
asynchronously until completion. In this context, asynchronous
means that the user can perform other actions while the process
is running, and can even close the web application. This
mechanism is intended for time-intensive operations that can
continue for multiple hours or days, such as analyzing a large
amount of data or training a machine learning model.

All tasks and processes have a specification file, which defines
what input data they take, what data they output, what results
they produce, and what parameters the user can configure.
Thanks to this shared core concept, a user can easily connect
and configure tasks and processes. I will explain how this is
done, together with the other main features of the platform, in
the next subsection.

Figure 2. High-level overview of the platform architecture. The platform is separated into the frontend, with which the user interacts (left), and the
backend, which is concerned with data storage and processing (right). The two communicate through HTTPS (dashed line). The micro frontends and
micro services provide the functionality of the individual components, which together represent the digital methods. The arrows indicate the direction
of communication flow between the elements of the platform.

Main Features of the Web Application
On the starting page of the platform, a user can choose to create
a new project by specifying a project name and description, or
to open an existing project. A project consists of the project
pipeline, data set inspector, and results inspector (see Figure
3A).

The project pipeline is the control center for the project. It
displays all processes and tasks carried out during the course
of the project, and lets the user start them individually (see
Figure 3B). When a new project is created, the user can choose
an existing digital method from a collection of implemented
methods. The pipeline is then populated with all components
(ie, tasks and processes) of that method. The user can configure
each task and process to match the context of the current project.
The user can also specify which datasets provide the input data
for each component, and whether the output data forms a new
data set or is appended to an existing one (see Figure 4A).

Alternatively, the user can develop a new method or adapt an
existing method by adding individual processes and tasks to the
pipeline. These processes and tasks are then connected to
components through their input and output data sets (see Figure
4B). If a new method is created or an existing method changed,
the user can export the pipeline to the method collection and
provide a rationale for the methodological choices in a text field.

The user can ultimately run a project by starting processes and
tasks in the pipeline through a click on the respective button.

Two distinct features help a researcher to keep track of the
ongoing project. The data set inspector shows all existing data
sets for a project, and a preview of the data. This enables
researcher oversight, to see that the processes and tasks are
functioning as intended. The data set inspector also allows the
user to download full datasets for further inspection. Similarly,
the results inspector shows all results (such as charts) produced
as part of the tasks and processes. The results can also be
downloaded from the results inspector.

The last feature I discuss here is the knowledge base. A detailed
understanding of how the methods and components work is of
great importance for the development and application of digital
methods. To address this challenge, each component and method
has a detailed description. The description is adapted
automatically on the basis of the user’s configuration of the
component, to reflect the actual pipeline as accurately as
possible. These descriptions serve to educate users about
available components and methods and help users assess their
suitability for a new study design. The descriptions also allow
users to verify that the composed pipeline does what they
intended it to do and to accurately describe the method; for
example, in a scientific publication about a study conducted on
the platform.

JMIR Form Res 2022 | vol. 6 | iss. 5 | e28558 | p. 4https://formative.jmir.org/2022/5/e28558
(page number not for citation purposes)

SchneiderJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 3. Main features of the web application. Experiments are organized into projects which offer three main functionalities: the project pipeline
where the experiment is run, the data inspector that provides insight into the data sets of the experiments, and the results inspector displaying the results
produced by the components (A). The user can populate the pipeline with existing methods, tasks, and processes by adding them from collections (B).

Figure 4. Integration of the components into the pipeline. Components (processes and tasks) are configured by the user. Besides functionality-specific
parameters, the user also specifies which data sets provide the input data to each component, and what output data is written to which data set (A). The
components’ relations to the input and output data sets define the execution sequences, and are reflected in the pipeline (B).

Visual Communication Study
The communication study [23] conducted on the platform
prototype during the last phase of the development process
exemplifies how researchers can use the platform for their
research. Hence, I characterize the project pipeline of the study
and describe the procedure the researchers followed on the
platform (see Figure 5 for a schematic overview of the pipeline).

The communication study’s pipeline consisted of 2 tasks and
23 processes. Some of the process components performed the
same function. For example, the statistical analysis at the end
of the pipeline employed the same process component type
multiple times. However, the components’ individual
configurations resulted in distinct statistics describing different
aspects of the data. The pipeline view (the control center of the
project) allowed the researchers to start tasks and processes.
When researchers started a task, the platform prompted a custom
task interface, which allowed them to carry out each task’s
specific work. Researchers ran the processes one after another
by clicking on the respective button in the pipeline view. It was
in this way that data was processed throughout the pipeline.
Altogether, the tasks and components formed 7 functional steps
(see Figure 5).

The researchers started their work on the platform by importing
the tweet identifiers from a data set they obtained from
Crowdbreaks [29], which collects tweets concerning various
public health topics. They then ran a process component that

fetched the entire tweet object (eg, tweet text, hashtags, and
retweet count) for each tweet identifier from the Twitter API.
The subsequent processes filtered the data set to include only
tweets that contained visuals and selected the 500 most
retweeted tweets per month.

The process that followed fetched tweet embeddings (formatted
text snippets) from the Twitter API, which the subsequent task
utilized to display the tweets within its custom interface. The
task interface offered two views to carry out the qualitative
coding, a form of qualitative content analysis [30], representing
the researchers’ main activity during the study. One view
presented the individual tweets and allowed the researchers to
select items matching the tweets’ characteristics from a
predefined codebook specified in the task’s configuration (see
Multimedia Appendix 3 for a screenshot). A second view
displayed a list of all the tweets providing a preview for each
tweet, the initials of the coders that coded it, and whether or not
it was included in the analysis.

Following the coding task, multiple process components
extracted subsets from the coding data set, one subset for each
of the 6 coding themes. Finally, 12 process components provided
statistical results for all the themes, which created the basis for
the researchers’ manual inspection and interpretation of the
results. The statistical processes also produced basic figures
from the statistical results to assist interpretation (see
Multimedia Appendix 3 for a screenshot).

JMIR Form Res 2022 | vol. 6 | iss. 5 | e28558 | p. 5https://formative.jmir.org/2022/5/e28558
(page number not for citation purposes)

SchneiderJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 5. Overview of the visual communication study pipeline. The researchers carried out the tasks (in green) while the other elements represent the
process components, which automatically carried out functions. Process components with the same or similar functionality are grouped for simplicity
(overlapping elements). API: application programming interface.

Discussion

Principal Findings
The study using the prototype to examine visual communication
on Twitter [23] demonstrates the potential of the platform
design. In accordance with the platform’s modular design, I
implemented the study method as individual components. For
example, the platform provides a component to carry out a
qualitative coding of tweets. Now that the study components
are available on the platform, the visual communication study
pipeline can be used as a template for similar studies. As the
functionality of the qualitative coding component is not limited
to tweets, it can be used to analyze other content (for example
news articles) as well.

The platform prototype offers greater flexibility to researchers
without programming skills, when compared with Gephi or
Hugging Face. Once a new digital method is implemented on
the platform, a researcher can easily configure the method to
fit a specific experiment, or adapt an existing method by
removing and adding components. Further, a researcher can
develop a new method by combining individual components of
existing methods. If new functionality is needed, software
developers can readily integrate a new component, thanks to
the platform’s modular architecture.

Enabling researchers to function with greater independence
from technical experts might seem counterintuitive for an
interdisciplinary endeavor such as digital bioethics. I do not
suggest excluding technical experts; my aim is rather to
minimize purely implementation-related technical work.

The knowledge feature only emerged during the rapid
prototyping phase and illustrates the importance of training and
educating researchers new to digital methods. Such a research
platform should not only be a tool to develop methods and carry
out research projects, but also a means for researchers to acquire
skills and expertise necessary for digital methods research.

Limitations
The development of new components can still cause delay for
research projects and needs resources from both researchers
and software developers. However, the platform can reduce
software development work, as researchers can configure and
reuse components outside of the specific circumstances for
which they were originally developed. Furthermore, if multiple
researchers work with the platform and develop methods with
this modular paradigm, the methodological flexibility increases,
and established computational means can be combined in new
ways. Although maintenance and extension of the platform must
be performed by technical experts, the application of digital
methods in digital bioethics research can scale.

The prototype illustrates the potential of the implemented
concept. However, more work is required to obtain to a fully
operational research platform that can support a broad
community of researchers. Further, I could not test the platform
exhaustively owing to the limited number and availability of
researchers working with digital methods in bioethics. For the
same reason, I could not carry out comprehensive user research
during the design phase. In such cases, the use of fictional
personas based on limited assumptions, as applied in the
platform development, is common practice. In addition, I was
able to validate my assumptions and improve the design choices
during the rapid prototyping phase at the end.

Conclusions
The platform prototype is a proof of concept, demonstrating
how this approach might facilitate digital bioethics research by
offering researchers easier access to digital tools and
opportunities to expand their methods toolbox. Further research
is needed to quantify this effect and to further improve the
platform. In addition, substantial investment will be required
to build, run, and maintain a production-ready open research
platform, for which this prototype serves as a blueprint. While
I built this platform to address issues encountered in digital
bioethics research, it does support digital methods in general,
which are not restricted to bioethics research. Digital methods

JMIR Form Res 2022 | vol. 6 | iss. 5 | e28558 | p. 6https://formative.jmir.org/2022/5/e28558
(page number not for citation purposes)

SchneiderJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

find applications in various research fields and, therefore, this platform and its concept are useful beyond empirical bioethics.

Acknowledgments
I thank Julia Amann and Joanna Sleigh for their collaboration and feedback on the platform prototype during the risk communication
study, Alessandro Blasimme and Effy Vayena for the collaboration and discussions on earlier digital bioethics projects, and Effy
Vayena for her input on this project and manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Personas and Epics.
[PDF File (Adobe PDF File), 67 KB-Multimedia Appendix 1]

Multimedia Appendix 2
User Stories.
[PDF File (Adobe PDF File), 52 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Screenshots of Platform User Interface.
[PDF File (Adobe PDF File), 910 KB-Multimedia Appendix 3]

References

1. Ives J, Dunn M, Cribb A, editors. Empirical Bioethics: Theoretical and Practical Perspectives. Cambridge: Cambridge
University Press; 2017.

2. Hine C. Internet Research and the Sociology of Cyber-Social-Scientific Knowledge. Inf Soc 2005 Sep;21(4):239-248. [doi:
10.1080/01972240591007553]

3. Jones S. Virtual Culture: Identity and Communication in Cybersociety. Thousand Oaks, CA: Sage Publications; 2002.
4. Snee H, Hine C, Morey Y, Roberts S, Watson H, editors. Digital Methods for Social Science: An Interdisciplinary Guide

to Research Innovation. London: Palgrave Macmillan; 2016.
5. Lazer D, Pentland A, Adamic L, Aral S, Barabasi A, Brewer D, et al. Social science. Computational social science. Science

2009 Feb 06;323(5915):721-723 [FREE Full text] [doi: 10.1126/science.1167742] [Medline: 19197046]
6. Bastian M, Heymann S, Jacomy M. Gephi: An Open Source Software for Exploring and Manipulating Networks. 2009

Presented at: The Third International AAAI Conference on Weblogs and Social Media (ICWSM-09); May 17-20, 2009;
San Jose, CA p. 361-362.

7. Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, et al. HuggingFace's Transformers: State-of-the-art Natural
Language Processing. arXiv. Preprint posted online July 14, 2020. [FREE Full text] [doi: 10.18653/v1/2020.emnlp-demos.6]

8. Abras C, Maloney-Krichmar D, Preece J. User-Centered Design. In: Encyclopedia of Human-Computer Interaction.
Thousand Oaks: Sage Publications; 2004:445-456.

9. Gordon V, Bieman J. Rapid prototyping: lessons learned. IEEE Softw 1995 Jan;12(1):85-95. [doi: 10.1109/52.363162]
10. Cohn M. User Stories Applied: For Agile Software Development. Boston, MA: Addison-Wesley Professional; 2004.
11. Cooper A, Reimann R, Cronin D, Noessel C. About Face: The Essentials of Interaction Design (4th edition). Indianapolis,

IN: John Wiley and Sons; 2014.
12. Pruitt J, Grudin J. Personas: practice and theory. In: Proceedings of the 2003 conference on Designing for user experiences.

New York: Association for Computing Machinery; 2003 Presented at: DUX03: Designing the User Experience; June 6-7,
2003; San Francisco, CA p. 1-15. [doi: 10.1145/997078.997089]

13. Borry P, Schotsmans P, Dierickx K. The birth of the empirical turn in bioethics. Bioethics 2005 Feb;19(1):49-71. [doi:
10.1111/j.1467-8519.2005.00424.x] [Medline: 15812972]

14. Davies R, Ives J, Dunn M. A systematic review of empirical bioethics methodologies. BMC Med Ethics 2015 Mar 07;16:15
[FREE Full text] [doi: 10.1186/s12910-015-0010-3] [Medline: 25885575]

15. Miaskiewicz T, Kozar KA. Personas and user-centered design: How can personas benefit product design processes? Design
Studies 2011 Sep;32(5):417-430. [doi: 10.1016/j.destud.2011.03.003]

16. User Story Template. Agile Alliance. URL: https://www.agilealliance.org/glossary/user-story-template/ [accessed 2021-01-30]
17. Schäffer E, Mayr A, Fuchs J, Sjarov M, Vorndran J, Franke J. Microservice-based architecture for engineering tools enabling

a collaborative multi-user configuration of robot-based automation solutions. Procedia CIRP 2019;86:86-91. [doi:
10.1016/j.procir.2020.01.017]

JMIR Form Res 2022 | vol. 6 | iss. 5 | e28558 | p. 7https://formative.jmir.org/2022/5/e28558
(page number not for citation purposes)

SchneiderJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=formative_v6i5e28558_app1.pdf&filename=b0d9cf168e68e88485cc05563cb58df1.pdf
https://jmir.org/api/download?alt_name=formative_v6i5e28558_app1.pdf&filename=b0d9cf168e68e88485cc05563cb58df1.pdf
https://jmir.org/api/download?alt_name=formative_v6i5e28558_app2.pdf&filename=16697cbc0bf1162a1f2eabd2bde622d5.pdf
https://jmir.org/api/download?alt_name=formative_v6i5e28558_app2.pdf&filename=16697cbc0bf1162a1f2eabd2bde622d5.pdf
https://jmir.org/api/download?alt_name=formative_v6i5e28558_app3.pdf&filename=fe9a0d76136cfd79a7c9b680d29185ac.pdf
https://jmir.org/api/download?alt_name=formative_v6i5e28558_app3.pdf&filename=fe9a0d76136cfd79a7c9b680d29185ac.pdf
http://dx.doi.org/10.1080/01972240591007553
http://europepmc.org/abstract/MED/19197046
http://dx.doi.org/10.1126/science.1167742
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19197046&dopt=Abstract
http://arxiv.org/abs/1910.03771
http://dx.doi.org/10.18653/v1/2020.emnlp-demos.6
http://dx.doi.org/10.1109/52.363162
http://dx.doi.org/10.1145/997078.997089
http://dx.doi.org/10.1111/j.1467-8519.2005.00424.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15812972&dopt=Abstract
https://bmcmedethics.biomedcentral.com/articles/10.1186/s12910-015-0010-3
http://dx.doi.org/10.1186/s12910-015-0010-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25885575&dopt=Abstract
http://dx.doi.org/10.1016/j.destud.2011.03.003
https://www.agilealliance.org/glossary/user-story-template/
http://dx.doi.org/10.1016/j.procir.2020.01.017
http://www.w3.org/Style/XSL
http://www.renderx.com/

18. Villamizar M, Garces O, Castro H, Verano M, Salamanca L, Casallas R, et al. Evaluating the monolithic and the microservice
architecture pattern to deploy web applications in the cloud. 2015 Presented at: 10th Computing Colombian Conference
(10CCC); September 21-25, 2015; Bogota p. 583-590. [doi: 10.1109/columbiancc.2015.7333476]

19. Yang C, Liu C, Su Z. Research and Application of Micro Frontends. IOP Conf Ser Mater Sci Eng 2019 Apr 12;490:062082.
[doi: 10.1088/1757-899x/490/6/062082]

20. Carr M, Verner J. Prototyping and Software Development Approaches. Dep Inf Syst City Univ Hong Kong 1997:319-338
[FREE Full text]

21. Blasimme A, Fadda M, Schneider M, Vayena E. Data Sharing For Precision Medicine: Policy Lessons And Future Directions.
Health Aff (Millwood) 2018 May;37(5):702-709. [doi: 10.1377/hlthaff.2017.1558] [Medline: 29733719]

22. Müller M, Schneider M, Salathé M, Vayena E. Assessing Public Opinion on CRISPR-Cas9: Combining Crowdsourcing
and Deep Learning. J Med Internet Res 2020 Aug 31;22(8):e17830 [FREE Full text] [doi: 10.2196/17830] [Medline:
32865499]

23. Sleigh J, Amann J, Schneider M, Vayena E. Qualitative analysis of visual risk communication on twitter during the Covid-19
pandemic. BMC Public Health 2021 Apr 28;21(1):810 [FREE Full text] [doi: 10.1186/s12889-021-10851-4] [Medline:
33906626]

24. About the Authentication and Authorization Infrastructure (AAI). Switch. URL: https://www.switch.ch/aai/about/ [accessed
2021-03-06]

25. Jain N, Bhansali A, Mehta D. AngularJS: A modern MVC framework in JavaScript. J Glob Res Comput Sci 2014;5(12):17-23.
26. Standards. W3C. URL: https://www.w3.org/standards/ [accessed 2021-03-06]
27. Grinberg M. Flask Web Development: Developing Web Applications with Python. Newton, MA: O'Reilly Media, Inc;

2018.
28. McKinney W. Data Structures for Statistical Computing in Python. In: Proceedings of the 9th Python in Science Conference.

2010 Presented at: 9th Python in Science Conference (SciPy 2010); June 28 to July 3, 2010; Austin, TX p. 56-61. [doi:
10.25080/majora-92bf1922-00a]

29. Müller MM, Salathé M. Crowdbreaks: Tracking Health Trends Using Public Social Media Data and Crowdsourcing. Front
Public Health 2019;7:81 [FREE Full text] [doi: 10.3389/fpubh.2019.00081] [Medline: 31037238]

30. Forman J, Damschroder L. Qualitative Content Analysis. In: Jacoby L, Siminoff LA, editors. Empirical Methods for
Bioethics: A Primer (Advances in Bioethics, Vol. 11). Bingley: Emerald Group Publishing Limited; 2007:39-62.

Abbreviations
API: application programming interface
GUI: graphical user interface
NLP: natural language processing

Edited by G Eysenbach; submitted 07.03.21; peer-reviewed by A Barwise, À Salvador Verges; comments to author 16.03.21; revised
version received 23.03.21; accepted 05.11.21; published 05.05.22

Please cite as:
Schneider M
A Platform to Develop and Apply Digital Methods for Empirical Bioethics Research: Mixed Methods Design and Development Study
JMIR Form Res 2022;6(5):e28558
URL: https://formative.jmir.org/2022/5/e28558
doi: 10.2196/28558
PMID:

©Manuel Schneider. Originally published in JMIR Formative Research (https://formative.jmir.org), 05.05.2022. This is an
open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information,
a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.

JMIR Form Res 2022 | vol. 6 | iss. 5 | e28558 | p. 8https://formative.jmir.org/2022/5/e28558
(page number not for citation purposes)

SchneiderJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1109/columbiancc.2015.7333476
http://dx.doi.org/10.1088/1757-899x/490/6/062082
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.1166&rep=rep1&type=pdf
http://dx.doi.org/10.1377/hlthaff.2017.1558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29733719&dopt=Abstract
https://www.jmir.org/2020/8/e17830/
http://dx.doi.org/10.2196/17830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32865499&dopt=Abstract
https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-021-10851-4
http://dx.doi.org/10.1186/s12889-021-10851-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33906626&dopt=Abstract
https://www.switch.ch/aai/about/
https://www.w3.org/standards/
http://dx.doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.3389/fpubh.2019.00081
http://dx.doi.org/10.3389/fpubh.2019.00081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31037238&dopt=Abstract
https://formative.jmir.org/2022/5/e28558
http://dx.doi.org/10.2196/28558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

