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ABSTRACT
Introduction To determine if variations in the neonatal 
amygdala mediate the association between maternal 
antenatal glycemia and offspring adiposity in early 
childhood.
Research design and methods 123 non- obese pregnant 
women with no pregnancy complications aside from 
gestational diabetes underwent a 75 g 2- hour oral glucose 
tolerance test at 26–28 weeks’ gestation. Volume and 
fractional anisotropy (FA) of the neonatal amygdala (5–
17 days old) were measured by MRI. The Body Mass Index 
(BMI) z- scores and sum of skinfold thickness (subscapular 
and triceps) of these children were tracked up to 60 
months of age (18, 24, 36, 48, 54 and 60 months).
Results Maternal fasting glucose levels were positively 
associated with the offspring’s sum of skinfold thickness 
at age 48 months (β=3.12, 95% CI 0.18 to 6.06 mm) and 
60 months (β=4.14, 95% CI 0.46 to 7.82 mm) and BMI 
z- scores at 48 months (β=0.94, 95% CI 0.03 to 1.85), 54 
months (β=0.74, 95% CI 0.12 to 1.36) and 60 months 
(β=0.74, 95% CI 0.08 to 1.39). Maternal fasting glucose 
was negatively associated with the offspring’s FA of the 
right amygdala (β=−0.019, 95% CI −0.036 to −0.003). 
Right amygdala FA was negatively associated with the sum 
of skinfold thickness in the offspring at age 48 months 
(β=−56.95, 95% CI −98.43 to −15.47 mm), 54 months 
(β=−46.18, 95% CI −88.57 to −3.78 mm), and 60 months 
(β=−53.69, 95% CI −105.74 to −1.64 mm). The effect 
sizes mediated by right amygdala FA between fasting 
glucose and sum of skinfolds were estimated at β=5.14 
(95% CI 0.74 to 9.53) mm (p=0.022), β=4.40 (95% CI 
0.08 to 8.72) (p=0.049) mm and β=4.56 (95% CI −0.17 to 
9.29) mm (p=0.059) at 48, 54 and 60 months, respectively.
Conclusions In the offspring of non- obese mothers, 
gestational fasting glucose concentration is negatively 
associated with neonatal right amygdala FA and positively 
associated with childhood adiposity. Neonatal right 
amygdala FA may be a potential mediator between 
maternal glycemia and childhood adiposity.

INTRODUCTION
Obesity and gestational diabetes pose major 
public health challenges as their prevalence 

increase rapidly worldwide.1 2 Maternal hyper-
glycemia not only results in excessive fetal 
growth3 but can also predispose the offspring 
to risk of adiposity later in life.4–7 Indeed, 
our study group has previously shown that 
antenatal fasting glucose was significantly 
associated with offspring adiposity8 among 
non- obese women, which was consistent with 
previous findings.9 Metabolic imprinting and 
epigenetic modification have been suggested 
to contribute to childhood obesity.10 11 Some 
studies have used MRI in neonates and 
infants to study offspring adiposity. One study 
observed that the volume of brain region like 
the insula is inversely related to percentage 
body fat in babies from birth to 6 months post-
partum,12 while another reported negative 

Significance of this study

What is already known about this subject?
 ► Maternal hyperglycemia increases risk of offspring 
adiposity later in life.

What are the new findings?
 ► Maternal fasting glucose was negatively associated 
with the offspring’s fractional anisotropy (FA) of the 
right amygdala, a brain region that regulates appe-
tite and feeding behavior.

 ► Right amygdala FA was negatively associated with 
sum of skinfold thickness in the offspring at age 48, 
54 and 60 months.

 ► Mediation analyses suggest neonatal right amygdala 
FA may be a potential mediator between maternal 
glycemia and childhood adiposity.

How might these results change the focus of 
research or clinical practice?

 ► This is a novel pathway by which maternal hypergly-
cemia can potentially contribute to subsequent risk 
of offspring adiposity.
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association between maternal adiposity (a risk factor of 
offspring adiposity) and global as well regional fractional 
anisotropy (FA) in neonates.13 However, little research 
has examined if the brain regions which regulate appe-
tite and feeding behavior may play a role in offspring 
adiposity associated with maternal glycemia.

Food intake is regulated by hormones14 and neural 
signals, with most studies focusing on the hypothal-
amus.15 16 Animal studies have shown that amygdala 
lesions can affect appetite, food intake (ie, hyperphagia) 
and weight gain.17–20 Many human studies support that 
the amygdala may be an important site for food intake 
regulation21 and may be linked to obesity.22–24 Children 
who exhibited greater brain response in anticipation 
of food relative to money, within the appetite- related 
regions such as the amygdala, also ended up having 
more food intake.25 Graham et al26 demonstrated that 
greater neonatal right amygdala volume and connectivity 
were associated with lower impulse control for a snack 
delay task at 2 years of age. Indeed, the amygdala volume 
has been previously linked to preference for fat intake 
in young adults27 as well as Body Mass Index (BMI) in 
young adults28 and children.23 24 Functional MRI (fMRI) 
of obese children demonstrated hyper- responsiveness to 
food rewards in their amygdala compared with normal- 
weight children.29 Schur et al30 showed that obese children 
(9–11 years old) with greater reduction in brain activity 
in the appetite- processing brain regions (including the 
amygdala), when shown visual cues of high calorie foods, 
had greater BMI z- score reduction. Others have observed 
increased amygdala connectivity with the ventromedial 
prefrontal cortex in lean individuals compared with 
obese adult participants.31 The amygdala is susceptible 
to maternal environment during early development.32–35

However, to date, most studies have emphasized on 
peripheral metabolism, with little focus on the possi-
bility that in utero maternal effects may be associated 
with neural mechanisms that regulate energy imbalances 
associated adiposity. Maternal hyperglycemia has been 
shown to have long- term effects in the offspring neuro-
development,36 37 with a lot of focus on memory function 
in infants38–40 due to the pathophysiology of maternal 
hyperglycemia (fetal hyperglycemia, fetal hypoxemia 
and iron deficiency).41 Gestational diabetes has been 
linked to increased fetal hypothalamic activation towards 
glucose42 and slower fetal postprandial brain responses.43 
Maternal insulin sensitivity, in the absence of gestational 
diabetes, was also associated with slower fetal brain 
responses.44 Animal studies showed that regions of the 
brain, such as the striatum and hippocampus, are vulner-
able to prenatal iron deficiency.45 46 However, to the best 
of our knowledge, little is known about maternal glycemia 
and how it affects neonatal amygdala. In this study, we 
examined if variations in the neonatal amygdala, in terms 
of its volume and FA, mediate the association between 
maternal glycemia and offspring adiposity. The amygdala 
volume is a measurement of amygdala size, while FA is 
used to characterize the microstructure organization 

of the amygdala.47 We will focus on offspring of non- 
obese women, as we have previously shown that maternal 
fasting glucose and offspring adiposity are significantly 
associated in these women.8 It has been suggested that 
the effect of maternal glycemia on offspring adiposity is 
pronounced in non- obese women as maternal obesity 
shares common biological pathways with hyperglycemia, 
and presence of maternal obesity may attenuate the 
association between maternal glycemia and offspring 
adiposity.48 49 We hypothesize that higher antenatal 
fasting blood glucose levels may be associated with 
decrease in volume and FA of the neonatal amygdala, 
which mediate the positive association between maternal 
glycemia and offspring adiposity in non- obese mothers. 
We did not hypothesize that there will be any association 
between 2- hour postoral glucose tolerance test (OGTT) 
glucose levels and offspring adiposity measures, in view of 
earlier null findings in the first 3 years of life, by our study 
group.8 This study benefited from the unique oppor-
tunity to assess neonatal brain structure at birth and a 
prospective, longitudinal follow- up of growth.

RESEACH DESIGN AND METHODS
Participants
Pregnant women were recruited in their first trimester 
from the KK Women’s and Children’s Hospital and 
National University Hospital in Singapore between June 
2009 and September 2010 to participate in the Growing 
Up in Singapore Towards Healthy Outcomes birth cohort 
study.50 The children were born either at KK Women’s 
and Children’s Hospital or National University Hospital 
between November 2009 and May 2011.

Recruitment of neonates for MRI was previously 
described.51 Neonatal brain MRI was done between 5 and 
17 days after birth in 189 singleton, naturally conceived 
neonates,52 who all went through the T2- weighted MRI 
scans. A subset of 124 neonates had diffusor tensor 
imaging (DTI) scans. Participants with poor image quality 
were excluded due to large head motion that caused 
misalignment across slices in T2- weighed MRI and signal 
loss in DTI (T2- weighted scans: n=7, DTI: n=2). Twen-
ty- one neonates were excluded because they were part of 
multiple birth and/or had a gestational age of <37 weeks, 
birth weight of <2500 g, a 5 min Apgar score of <9, born to 
mothers with pregnancy complications other than gesta-
tional diabetes (eg, pre- eclampsia, intrauterine growth 
retardation and type II diabetes). Eight were excluded 
because they did not have antenatal maternal blood 
glucose data, and another 30 neonates were excluded 
as their mothers had a first trimester BMI of ≥30 kg/m2. 
A total of 123 mother–child dyads (T2- weighted: n=123, 
DTI: n=89) were included in this analysis. All this infor-
mation is summarized in online supplemental figure 1.

Oral glucose tolerance test
At 26–28 weeks’ gestation, all the women who came for 
the clinic visit were offered the 75 g OGTT, after overnight 
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fasting. Blood glucose levels were measured at fasting 
and 2- hour postglucose test. The 1999 WHO diagnostic 
criteria53 were used to diagnose gestational diabetes 
mellitus (GDM): ≥7.0 mmol/L for fasting glucose and/
or≥7.8 mmol/L for 2 hour post- glucose. Women diag-
nosed with GDM were treated as per standard hospital 
protocol.

MRI acquisition and analysis
MRI acquisition in neonates was previously detailed in 
Qiu et al.52 In brief, neonates underwent fast spin- echo 
T2- weighted MRI and single- shot echo- plan DTI scans 
using a 1.5- Tesla GE scanner (GE Healthcare) at the 
KK Women’s and Children’s Hospital between 5 and 
17 days after birth. The neonates were scanned while 
they were asleep and immobilized using an immobiliza-
tion bag, without any sedation. The imaging protocols 
were (1) fast spin- echo T2- weighted MRI (repetition 
time (TR)=3500 ms, echo time (TE)=110 ms, field of 
view (FOV)=256×256 mm, matrix size=256×256, 50 axial 
slices with 2 mm thickness) and (2) single- shot echo- 
planar DTI (TR=7000 ms, TE=56 ms, flip angle=90°, 
FOV=200×200 mm, matrix size=200×200, 40–50 axial 
slices with 3 mm thickness, 19 diffusion- weighted images 
(DWIs) with b=600 s/mm2; one baseline image with 
b=0 s/mm2). For T2- weighted MRI, 50 axial slices with 
2 mm thickness were acquired parallel to the anterior–
posterior commissure line. Two T2- weighted images were 
acquired per subject. For DTI, 40–50 axial slices with 
3 mm thickness were acquired parallel to the anterior–
posterior commissure line. Nineteen DWIs with b=600 s/
mm2 and 1 baseline with b=0 s/mm2 were obtained.

The delineation of the amygdala was done automatically 
using Markov random field (MRF).54 We also randomly 
selected 20 T2- weighted MRI datasets for manual delin-
eation, and the intraclass correlation was 0.77. The leave- 
one- out validation approach was also used to confirm the 
MRF accuracy of the amygdala segmentation, and the 
accuracy was found to be 0.75. The volume of the amyg-
dala was calculated by multiplying the number of voxels 
in the structural mask and the image resolution.

The DTI analysis was described in detail previously.35 
Briefly, geometric distortion of the DTI due to B0- sus-
ceptibility differences across the brain was corrected as 
per Huang et al.55 The diffusion tensor was derived by 
multivariate least- squares fitting. FA was computed based 
on the three eigenvalues of the tensor. The mean FA 
was calculated within the amygdala mask for individual 
participants when the amygdala mask in the T2- weighted 
images was applied.

Child anthropometric measurements
All child anthropometric measurements were obtained 
as previously described.56 The child’s weight and height 
were measured at ages 18, 24, 36, 48, 54 and 60 months 
(online supplemental figure 1). Sex- specific and age- 
specific BMI z- scores were derived using weight measure-
ments and either length at 18 and 24 months or height 

measurements from 36 months onwards, with the WHO 
Anthro macro V.3.2.2.57 Skinfold thicknesses (triceps 
and subscapular) were measured at birth and at 18, 24, 
36, 48, 54 and 60 months using Holtain skinfold cali-
pers (Holtain, Crymych, UK). The sum of skinfold is the 
summation of triceps and subscapular skinfold thickness.

Additional data
Demographic data such as ethnicity, maternal age and 
education, as well as breastfeeding duration informa-
tion, were collected with interviewer- administered ques-
tionnaires. At 26–28 weeks’ gestation, participants came 
for a clinic visit where their height and weight were 
measured and BMI was derived. They were also given a 
self- administered Edinburgh Postnatal Depression Scale 
(EPDS) questionnaire to fill in to assess their mood. Birth 
outcomes (eg, birth weight, sex of child and Apgar score) 
were recorded by midwives at delivery. BMI at the first 
trimester and GDM treatment were obtained from the 
medical records.

Statistical analysis
Independent t- test and χ2 test were used to compare 
the neonatal and maternal characteristics of partici-
pants. Linear regression models were run to assess 
the associations between (1) maternal blood glucose 
levels (predictor: fasting or 2- hour post- OGTT) and 
child anthropometric measurements (outcome: 
BMI z- scores or sum of skinfold thickness), and (2) 
maternal blood glucose level(s) (predictor: blood 
glucose level(s) significantly associated with child 
anthropometric measurement in (1) and amygdala 
measurements (outcome: volume or FA), amygdala 
measurements (predictor: amygdala measurement 
significantly associated with maternal blood glucose 
levels in (2) and child anthropometric measurements 
(outcome: BMI z- scores or sum of skinfold thickness). 
All regression models were adjusted for ethnicity, 
maternal age, maternal education, EPDS score and 
maternal BMI at 26–28 weeks’ gestation. Household 
income was not included in the model due to the 
high correlation with maternal education. Our group 
has shown previously58 that maternal glycemia was 
positively associated with offspring birth weight. At 
the same time, other studies have shown that birth 
weight is an important marker associated with struc-
tural differences throughout the brain,59 as well as 
childhood adiposity and obesity.60 Thus, birth weight 
may potentially lie on the causal pathway between 
maternal glycemia and child adiposity, as well as 
between maternal glycemia and neonatal amygdala. 
Conditioning on birth weight in these analyses could 
potentially introduce collider- stratification bias61; 
hence, birth weight is not included in the model. For 
all models involving child anthropometric measure-
ments, only one anthropometric measurement (BMI 
z- scores or sum of skinfold thickness) was included 
each time. Likewise, for all models involving maternal 
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blood glucose level, only one blood glucose concentra-
tion (fasting or 2- hour post- OGTT) was included each 
time. For models with skinfold thickness as outcomes, 
sex of the child and age at anthropometric measure-
ment were added as additional covariates. This was 
not done for models with BMI z- scores as outcomes 
since the z- scores were already derived based on sex 
and age at measurement. For models involving amyg-
dala measurements, postconceptual age at MRI visit 
(gestational age+age at MRI visit) and total brain 
volume were included as additional covariates. These 
covariates were chosen because they are known to 
affect maternal metabolism, amygdala microstructure 
and/or offspring adiposity. For example, we adjusted 
for antenatal EPDS as it was previously found by our 
group to affect the amygdala microstructure.35 Before 
testing for mediation, potential interactions between 
fasting blood glucose and amygdala measurements on 
offspring adiposity were checked using the general 
linear model. Mediation effect by the amygdala was 
estimated by regression- based mediation62 using the 
PARAMED macro63 in STATA version 14, which uses 
a counterfactual- based approach to mediation. Data 
were missing on maternal education in 0.8% (n=1), 
antenatal EPDS score in 5.7% (n=7) and 26 weeks’ 
BMI in 1.6% (n=2) of the participants included in this 
analysis. Listwise deletion was used to handle missing 
data. Missing variables were found to be missing 
completely at random by Little’s Missing Completely 
At Random (MCAR) test. In view of our relatively 
small sample size, no multiple comparison correction 
was applied for all analyses to minimize type II error,64 
to avoid missing out potential important findings.

Sensitivity analyses were done with additional adjust-
ment for GDM treatment and breastfeeding duration, on 
top of the covariates listed previously. The results were 
similar and therefore were not presented. All analyses 
were carried out by using SPSS V.24.0 unless otherwise 
stated.

Data and resource availability
The datasets generated during and/or analyzed during 
the current study are available from the corresponding 
author on reasonable request.

RESULTS
Participant characteristics
One hundred and twenty- three mother–child dyads were 
included in this analysis; these participants were compa-
rable with those who did no undergo MRI, in terms of sex 
distribution of offspring and fasting blood glucose levels 
(table 1). However, neonates included in this study had 
greater gestational age, higher birth weight and more 
likely to be of Malay ethnicity. The mothers were younger, 
less likely to have university or higher education, and had 
higher EPDS scores. They also had lower first trimester 
and late second trimester BMI, lower 2- hour post- OGTT 

blood glucose levels and were less likely to be diagnosed 
with GDM. Of the 123 women included in this analysis, 
14 were diagnosed with GDM, of which 3 (21.4%) did not 
undergo any treatment; 10 (71.4%) had dietary counsel-
ling; and 1 (7.1%) received insulin treatment.

Maternal blood glucose levels and childhood adiposity
We observed that maternal antenatal fasting glucose 
was positively associated with the offspring’s sum of 
skinfold thickness at age 48 months (β=3.12, 95% CI 
0.18 to 6.06 mm) and 60 months (β=4.14, 95% CI 0.46 
to 7.82 mm) (figure 1A) and BMI z- scores at 48 months 
(β=0.94, 95% CI 0.27 to 1.61), 54 months (β=0.74, 95% 
CI 0.12 to 1.36) and 60 months (β=0.74, 95% CI 0.08 
to 1.39) (figure 1B) in offspring of non- obese mothers. 
A similar positive trend was observed with sum of skin-
fold thickness at 54 months (β=2.85, 95% CI −0.04 to 
5.74 mm). No obvious trends were observed between 
fasting glucose and childhood adiposity measurements 
in the earlier time points between 18 and 36 months of 
age. No significant associations were observed between 
maternal 2- hour post- OGTT glucose levels and offspring 
adiposity measures (online supplemental table 1).

Maternal fasting glucose levels and neonatal amygdala 
microstructure
The mean and SD of the amygdala volume and FA 
of the left and right hemispheres are 214±32 mm3, 
0.15±0.02, and 187±32 mm3, 0.16±0.03, respectively. A 
higher maternal fasting glucose level was associated 
with a significantly lower FA of the right amygdala in the 
offspring (table 2) of non- obese women. A similar trend 
was observed in the left amygdala FA but did not reach 
statistical significance (table 2). Maternal fasting glucose 
was not significantly associated with the amygdala volume 
(table 2).

Neonatal amygdala FA and childhood adiposity
Figure 2 shows the association of the right amygdala 
FA and adiposity measures, including the sum of skin-
fold thickness (figure 2A) and BMI z- scores (figure 2B) 
up to 60 months. The neonatal right amygdala FA was 
negatively associated with the sum of skinfold thickness 
at 48 months (β=−56.95, 95% CI −98.43 to −15.47 mm), 
54 months (β=−46.18, 95% CI −88.57 to −3.78 mm) and 
60 months (β=−53.69, 95% CI −105.74 to −1.64 mm) 
(figure 2A). For BMI z- scores, although there was no 
significant association, the same negative pattern was 
observed (figure 2B).

Mediation by the right amygdala FA on maternal fasting 
glucose-linked childhood adiposity
Significant interaction was observed between maternal 
fasting glucose and the right amygdala FA on sum of 
skinfolds (48 months: p=0.005, 54 months: p<0.001, and 
60 months: p=0.027). This exposure–mediator interac-
tion was taken into consideration in the regression- based 
mediation. The effect sizes mediated by the right amyg-
dala FA between fasting glucose and sum of skinfolds 
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were estimated at β=5.14, 95% CI 0.74 to 9.53 mm 
(p=0.022); β=4.40, 95% CI 0.08 to 8.72 mm (p=0.049); 
and β=4.56, 95% CI −0.17 to 9.29 mm (p=0.059) at 48, 54 
and 60 months, respectively (table 3). In other words, the 
effects of 1 mmol/L change in maternal fasting glucose 

on offspring skinfolds that are attributed to variations in 
neonatal amygdala FA are 5.14, 4.40 and 4.56 mm at ages 
48, 54 and 60 months, respectively.

The proportions of total effect contributed by the 
mediator were estimated to be 0.65, 0.68 and 0.52 at 48, 

Table 1 Maternal and child characteristics of participants

Participants included (n=123) Participants excluded (n=972) P value

Infant variables

Gestational age (weeks) 39.0±1.0 38.7±1.6 0.003

Sex of child (male), n (%) 68 (55.3) 504 (51.9) 0.473

Birth weight (g) 3149±367 3071±476 0.035

Ethnicity, n (%)

  Chinese 60 (48.8) 538 (55.3) 0.001

  Malay 49 (39.8) 242 (24.9)

  Indian 14 (11.4) 192 (19.8)

Maternal variables

Maternal education, n (%)

  Primary/no education 4 (3.3) 41 (4.2) 0.014

  Secondary 45 (36.6) 251 (25.8)

  Diploma/technical education 50 (40.7) 336 (34.6)

  University and above 23 (18.7) 331 (34.0)

  Missing data 1 (0.8) 15 (1.5)

Maternal age (years) 29.4±5.5 30.6±5.1 0.013

Antenatal EPDS score 8.46±4.27 7.36±4.54 0.013

Maternal first trimester BMI (kg/m2) 22.2±3.5 23.8±4.9 <0.001

Maternal 26–28 weeks’ BMI (kg/m2) 25.0±3.4 26.4±4.6 <0.001

Antenatal fasting glucose (mmol/L) 4.34±0.39 4.35±0.46 0.947

Antenatal 2- hour glucose (mmol/L) 6.09±1.43 6.57±1.45 0.001

Diagnosed with GDM, n (%) 14 (11.4) 185 (19.0) 0.033

Data presented as mean±SD.
BMI, Body Mass Index; EPDS, Edinburgh Postnatal Depression Scale; GDM, gestational diabetes mellitus.

Figure 1 Adjusted regression coefficient (with 95% CI) of maternal antenatal fasting blood glucose levels (per 1 mmol/L) on 
child adiposity measures in the first 60 months of life for offspring of non- obese mothers. (A) Sum of skinfolds (triceps and 
subscapular) (mm) and (B) Body Mass Index z- scores. aP<0.05, bP<0.10.
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54 and 60 months, respectively (table 3). No significant 
mediation by the right amygdala FA was found between 
fasting glucose and BMI z- scores score up to 60 months 
of age, although a marginal trend was observed at 54 
months with β=0.47 (95% CI −0.09 to 1.03) (p=0.097) 
(table 3).

DISCUSSION
We found that higher maternal antenatal fasting glucose 
concentrations were associated with increased sum of 
skinfolds in the offspring of non- obese Asian women, at 
48 and 60 months, as well as higher offspring BMI z- scores 
at 48, 54 and 60 months. Increased maternal antenatal 
fasting glucose concentrations were also correlated with 
lower FA in the right amygdala. The right amygdala FA 
was, in turn, negatively associated with offspring skinfold 
thicknesses from 48 months onwards. Mediation analyses 
suggest that right amygdala FA may be a potential medi-
ator in the pathway between maternal antenatal fasting 
glucose and offspring adiposity as measured by the sum 
of skinfold thicknesses.

The amygdala is linked to food intake and obesity.21 22 65 
The human amygdala is known to respond to food cues,66 67 

and amygdala responses have been associated with subse-
quent consumption of high- fat food.68 Amygdala volume 
has also been associated with fat intake27 in adolescents 
and BMI in young adults28 and children,23 24 while 
increased amygdala connectivity with ventromedial 
prefrontal cortex has been observed in lean individ-
uals compared with obese adult participants.31 Greater 
neonatal right amygdala volume and connectivity have 
also been associated with lower impulse control for a 
snack delay task at 2 years of age.26 fMRI of obese chil-
dren showed hyper- responsiveness to food rewards in 
their amygdala compared with normal- weight children.29 
Lower FA has been previously reported in many brain 
regions of obese individuals (elderly, adults and chil-
dren),69 70 including brain regions involved in appetite, 
inhibitory control and reward such as amygdala.71 While 
a couple of studies have observed a positive association 
between both right and left amygdala volume and BMI 
or obesity,24 72 we found a correlation only with the right 
side of the amygdala, similar to Orsi et al,28 who reported 
a correlation between the right amygdala volume and 
BMI. Another study also showed right amygdala volume 
and connectivity to be linked to poorer impulse control 

Table 2 Associations of maternal antenatal fasting blood glucose concentrations with volume and FA of the neonatal 
amygdala in offspring born to non- obese women

All participants N Unadjusted β (95% CI) Adjusted β* (95% CI)

Left amygdala FA 89 −0.007 (−0.016 to 0.003) −0.005 (−0.018 to 0.007)

Right amygdala FA 89 −0.023 (−0.037 to −0.009) −0.019 (−0.036 to −0.003)

Left amygdala volume (mm3) 123 9.68 (−4.93 to 24.29) 5.48 (−12.69 to 23.64)

Right amygdala volume (mm3) 123 3.59 (−11.24 to 18.42) 3.36 (−14.96 to 21.70)

Data presented as unstandardized β (95% CI).
*Adjusted for postconceptual age at MRI, ethnicity, sex of child, maternal age, maternal education, 26 weeks Edinburgh Postnatal 
Depression Scale score, total brain volume and maternal Body Mass Index at 26 weeks.
FA, fractional anisotropy.

Figure 2 Adjusted regression coefficient (with 95% CI) of neonatal right amygdala fractional anisotropy on child adiposity 
measures in the first 60 months of life for offspring of non- obese mothers. (A) Sum of skinfolds (triceps and subscapular) (mm) 
and (B) Body Mass Index z- scores. aP<0.05, bP<0.10.
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for a food task in 2- year- old toddlers.26 Although we do 
not have a full explanation of the lateralization differ-
ences, differences in hemispheric processing between 
left and right amygdalae have been previously suggested 
in humans73 and animals.74 van der Laan et al75 found 
that hunger modifies the activation of the right amygdala 
towards images of food.

Overall, while we observed a similar trend with both 
measurements of adiposity, we had more consistent find-
ings with the sum of skinfolds, which is a surrogate for 
total adiposity. BMI has been regarded as a more crude 
measurement of adiposity as it can be influenced by fat 
free mass, especially in children.76 It is noteworthy that 
previous studies showed associations between the amyg-
dala and BMI in adolescents or older adults.27 28 31

Our group8 and others7 77 previously reported higher 
antenatal fasting glucose to be associated with greater 
adiposity in children, particularly those born to non- obese 
mothers. In fact, our group has also examined longitu-
dinal effect of antenatal fasting glucose on weight and BMI 
trajectory in the offspring and has shown that higher ante-
natal fasting glucose is positively associated with weight 
and BMI trajectory in the first 36 months among offspring 
of non- obese mothers.8 We did not observe a significant 
association between 2- hour post OGTT glucose and 
offspring adiposity, possibly because of the large variation 
in 2- hour OGTT glucose; hence, there was a likelihood 
of larger errors. Moreover, 2- hour OGTT blood glucose 
may be attenuated through exaggerated glucose steal due 
to fetal hyperinsulinemia,78 a condition in the offspring 
of mothers with hyperglycemia, which is also a driver of 
fetal fat accretion. As a result, some mothers may have 
‘normal’ glucose tolerance even though their offspring 
may exhibit diabetic fetopathy.78 Maternal obesity and 
hyperglycemia share common biological pathways such 
as state of inflammation, impairment in regulation of 
energy and excess of fuel substrates.48 49 Hence, maternal 
obesity may reduce the independent association observed 
between maternal glycemia and offspring adiposity. Our 
results also showed that significant differences in maternal 
glycemia associated offspring become apparent from 48 
months of age onwards. This is consistent with earlier 
reports of null findings at 2 years of age79 and a study 
of women with overt diabetes during pregnancy, where 

the maternal hyperglycemia- related obesity resolved 
within first 1–2 years of life.80 Many studies showed that 
the association between maternal diabetes and offspring 
obesity recurs at a later part of childhood.5 81–83 This is not 
surprising if food intake and response to food cues are 
involved. During infancy and toddlerhood, food choices 
and portion size are largely determined by parents and 
caregivers, while older children have more autonomy in 
food choices and portion sizes when they start attending 
preschool.

The prospective nature of our study is a strength as we 
examined the association of in utero glucose exposure on 
the microstructure of the neonatal amygdala and subse-
quent adiposity in toddlerhood and early childhood. We 
are also, to the best of our knowledge, among the first to 
study the mediating role of differences in the amygdala, 
in the pathway between maternal glycemia and offspring 
adiposity. Another strength of our study is the large number 
of covariates considered, including maternal mental well- 
being. A limitation of our study is the small number of 
participants, which limited our statistical power. Replica-
tion of this study with a larger sample size is necessary. We 
also recognize that the blood glucose levels were measured 
once during pregnancy and may not be representative of 
the in utero exposure throughout pregnancy, especially 
post- GDM diagnosis and treatment. Insulin levels were also 
not measured during the OGTT; as such, we were unable 
to study maternal insulin sensitivity in relation to neonatal 
amygdala or child adiposity. We acknowledge that a large 
number of outcomes were investigated and we did not 
adjust for multiple comparisons; hence, we cannot rule 
out the possibility of chance findings. However, the find-
ings were in the same direction for both BMI z- scores and 
sum of skinfolds and consistently at similar time points. We 
acknowledge that there could be potential selection bias 
in the participants who agreed to undergo the MRI and 
were included in this study. For example, they were more 
likely to be older, have lower education, more depressed 
and of lower BMI. However, these factors were adjusted, 
where appropriate, in our analysis.

CONCLUSIONS
Our study shows that maternal blood glucose level during 
pregnancy is associated with early childhood adiposity, 

Table 3 Estimated effect mediated by neonatal right amygdala FA in the association between antenatal fasting blood glucose 
and offspring adiposity

Age (months)

Sum of skinfolds BMI z- scores

β (95% CI) P value
Proportion of total 
effect* β (95% CI) P value

Proportion of 
total effect*

48 5.14 (0.74 to 9.53) 0.022 0.65 0.39 (−0.17 to 0.95) 0.171 0.42

54 4.40 (0.08 to 8.72) 0.049 0.68 0.47 (−0.09 to 0.57) 0.097 0.57

60 4.56 (-0.17 to 9.29) 0.059 0.52 0.46 (−0.12 to 1.03) 0.123 0.52

Data presented as unstandardized β (95% CI).
*Proportion of effect mediated by neonatal right amygdala FA compared with total effects of antenatal fasting glucose on offspring adiposity.
BMI, body mass index; FA, fractional anisotropy.
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and this may be mediated by differences in the micro-
structure of the amygdala, a brain structure implicated 
in feeding behaviors. These findings provide a novel 
pathway by which antenatal maternal blood glucose 
might influence the later risk of adiposity in the offspring.
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