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Abstract

Motivation: Adaptive immune receptor (AIR) repertoires (AIRRs) record past immune encounters with exquisite spe-
cificity. Therefore, identifying identical or similar AIR sequences across individuals is a key step in AIRR analysis for
revealing convergent immune response patterns that may be exploited for diagnostics and therapy. Existing meth-
ods for quantifying AIRR overlap scale poorly with increasing dataset numbers and sizes. To address this limitation,
we developed CompAIRR, which enables ultra-fast computation of AIRR overlap, based on either exact or approxi-
mate sequence matching.

Results: CompAIRR improves computational speed 1000-fold relative to the state of the art and uses only one-third
of the memory: on the same machine, the exact pairwise AIRR overlap of 104 AIRRs with 105 sequences is found in
�17 min, while the fastest alternative tool requires 10 days. CompAIRR has been integrated with the machine learn-
ing ecosystem immuneML to speed up commonly used AIRR-based machine learning applications.

Availability and implementation: CompAIRR code and documentation are available at https://github.com/uio-bmi/
compairr. Docker images are available at https://hub.docker.com/r/torognes/compairr. The code to replicate the syn-
thetic datasets, scripts for benchmarking and creating figures, and all raw data underlying the figures are available
at https://github.com/uio-bmi/compairr-benchmarking.

Contact: geirksa@ifi.uio.no

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Adaptive immune receptor (AIR) repertoires (AIRRs) record past
immune encounters. High-throughput sequencing now enables
millions of AIR sequences to be determined at a cost that facili-
tates adaptive immunity-based association studies on large patient
cohorts (Emerson et al., 2017; Liu et al., 2019). It has been previ-
ously shown that shared immune states give rise to identical or
similar AIR sequences across individuals, enabling the use of
AIRR-seq for diagnostics and therapeutic research (Arnaout et al.,
2021; Greiff et al., 2020). Computation of cross-individual AIRR
intersections, i.e. the number of matching AIR sequences across
AIRRs, is thus a foundational computational task performed in
nearly all AIRR analyses. However, since the number of pairwise

AIRR comparisons grows asymptotically quadratically with the
number of AIRRs considered, where each pairwise AIRR com-
parison typically involves millions of individual AIRs, computa-
tional efficiency is crucial for performing AIR sequence matching
at scale.

We here present CompAIRR, a tool that allows to compute
AIRR intersections up to 1000-fold faster than current implementa-
tions (Nazarov et al., 2019; Shugay et al., 2015; Weber et al., 2022).
In contrast to existing tools, CompAIRR supports both exact and
approximate sequence matching between AIRs when determining
AIRR overlap. The CompAIRR implementation is available both as
a stand-alone command-line tool, and as a component integrated
with the machine learning ecosystem immuneML (Pavlovi�c et al.,
2021) (from immuneML version 2.1.0 onward) to accelerate the
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computation of AIRR similarity matrices, and to accelerate an
AIRR-based immune state classifier (Emerson et al., 2017) that is
implemented in the immuneML system (Supplementary Fig. S1).

2 CompAIRR description

CompAIRR is based on a sequence comparison strategy developed
for the nucleotide sequence clustering tool Swarm (Mahé et al.,
2022). A Bloom filter (Putze et al., 2010) and a hash table are used
to quickly look up similar AIR sequences across AIRR sets. For each
AIR sequence (nucleotide or amino acid), a 64-bit hash value is gen-
erated using a Zobrist hash function (Zobrist, 1970), a form of tabu-
lation hashing that can be computed very efficiently and updated
incrementally. When approximate matching is enabled, the hashes
of all possible variants of a query sequence (with 1–2 substitutions
or indels) are also generated. This search strategy identifies all
matching sequences without compromising on accuracy.
CompAIRR version 1.7.0 or later also supports a larger number of
substitutions by using a simpler all-versus-all algorithm. Matches
are optionally restricted by V and J gene. Multi-threading may be
enabled to further speed up comparisons (see Fig. 1d). For the com-
parison of n AIRRs, CompAIRR produces an n�n matrix where
each cell contains the sum of matching AIR frequencies with flexible
summary statistics (product, min, max, mean or ratio of the two
compared AIR frequencies), or the Morisita-Horn or Jaccard index
between AIRRs. Alternatively, CompAIRR can query n AIRRs
against m reference AIRs and produce an n�m sequence presence
table. While AIR matching is only supported at the single chain
level, two n�m sequence presence tables for complementary
(paired) AIR chains (single-cell data) can easily be merged. For the
analysis of a single AIRR, CompAIRR can perform single-linkage
clustering of AIRs. CompAIRR can optionally output the list of (ap-
proximately) matching AIRs as an AIRR-compliant TSV file, and
adheres to the AIRR standard for software tools (Vander Heiden
et al., 2018).

3 CompAIRR performance benchmarking

CompAIRR (1.3.1) was benchmarked against VDJtools (1.2.1)
(Shugay et al., 2015), immunarch (0.6.5) (Nazarov et al., 2019) and
immuneREF (0.5.0) (Weber et al., 2022) by calculating the pairwise
AIRR overlap of datasets ranging from 10 to 104 AIRRs. Each AIRR
consisted of 105 amino acid AIR sequences generated using OLGA
(1.2.2) (Sethna et al., 2019) with the default human IgH CDR3 model.
Figure 1b and c, respectively, shows the running time and maximum
RAM usage of each tool. CompAIRR is consistently faster, particularly
for large datasets: with 104 AIRRs of 105 sequences, CompAIRR ran
in 17 min while immunarch took 10days, immuneREF took 23 days
and VDJtools failed to complete due to memory constraints. The com-
putational complexity appears to have been reduced from approxi-
mately quadratic to almost linear. Furthermore, the maximum RAM
usage of CompAIRR is below one-third of that of competing tools.
The running time and memory usage as a function of the AIRR size
(104–106 sequences) is shown in Supplementary Figure S2.

In addition, Figure 1d shows how the CompAIRR running time
is affected by approximate sequence matching, which is not at all
supported by the existing tools. The benefit of multi-threading
becomes more apparent when the degree of sequence mismatching is
increased, since with exact matching the running time is dominated
by disk access (Supplementary Fig. S3).

4 Conclusion

The identification of shared AIRs across AIRRs from different indi-
viduals is a core computational task in AIRR analysis. We have here
presented CompAIRR, which calculates AIRR overlap up to 1000-
fold faster while its peak memory usage is below one third compared
to currently available tools. We validated that CompAIRR easily
scales to datasets of 104 AIRRs of 105 sequences each, which surpass
the largest available experimental datasets (Liu et al., 2019; Nolan
et al., 2020). Furthermore, a novel feature of CompAIRR is efficient

Fig. 1. Overview of CompAIRR features and performance. (a) CompAIRR has configurable AIR matching criteria and output formats. (b) CompAIRR calculates pairwise

AIRR overlap up to 1000-fold faster than currently available tools. (c) The maximum RAM usage of CompAIRR is below one-third of the most memory-efficient alternative.

(d) The CompAIRR running time increases when allowing more AIR sequence mismatches, but multithreading helps reduce this running time. (b–d) Data shown are mean

with error bars showing min/max values across three replicate runs. For the largest dataset, only CompAIRR was run three times, and VDJtools failed to run due to memory

limitations. Unless otherwise specified, datasets consist of 1000 AIRRs containing 105 OLGA-generated sequences (Sethna et al., 2019) (default human IgH CDR3 model)
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identification of approximately matching AIR sequences across
AIRRs or to reference databases, which may be a biologically mean-
ingful way to increase the number of matches between AIRRs when
the exact overlap is low (Supplementary Fig. S4).

Complementary to sequence-level clustering tools ClusTCR
(Valkiers et al., 2021) and GIANA (Zhang et al., 2021), or compari-
son of AIRR subsets (Yohannes et al., 2021), CompAIRR can be
used for ultrafast similarity-based comparison of complete AIRRs.
Due to flexible specification of summary statistics and output,
CompAIRR is easily integrated with any tool capable of reading in
either (i) a pairwise distance matrix containing cross-AIRR matches,
(ii) a matrix showing individual AIR presence in one or more AIRRs
or (iii) an AIRR-compliant TSV file containing (approximately)
matching AIRs between AIRRs. This allows accelerating a variety of
analyses where AIRR comparison is a core computational compo-
nent, including AIRR similarity (Weber et al., 2022) and clustering
(Rempała and Seweryn, 2013; Shugay et al., 2015), phylogenetic
clustering (Hoehn et al., 2022), graph analysis (Madi et al., 2017;
Miho et al., 2019; Pogorelyy et al., 2019) and immune state classifi-
cation (Emerson et al., 2017).
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