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Emerging evidence indicates that nuclear factor I/B (NFIB), a transcription factor required for proper develop-
ment and regulation of cellular differentiation in several tissues, also plays critical roles in cancer. Despite
being a metastatic driver in small cell lung cancer andmelanoma, it has become apparent that NFIB also exhibits
tumour suppressive functions in many malignancies. The contradictory contributions of NFIB to both the inhibi-
tion and promotion of tumour development and progression, corroborates its diverse and context-dependent
roles inmany tissues and cell types. Considering the frequent involvement of NFIB in cancer, a better understand-
ing of its multifaceted naturemay ultimately benefit the development of novel strategies for themanagement of
a broad spectrum of malignancies. Here we discuss recent findingswhich bring to light NFIB as a crucial and par-
adoxical player in cancer.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 2. NFIB functions in development and physiology. NFIB is required for the
development of the lung, brain and submandibular glands. It is also required for the
maintenance of a range of physiological processes in several tissues, including adipocyte
differentiation, megakaryocyte maturation, regulation of androgen receptor signaling in
the prostate, and epithelial-melanocyte stem cell behaviour in the hair follicle niche.
Note: Experiments assessing the diverse functions of NFIB were performed mainly using
mouse models, and in some cases human cell lines.
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1. NFIB in Development and Cell Physiology

The Nuclear Factor I (NFI) family of site-specific DNA binding pro-
teins functions in adenoviral DNA replication and in the regulation of
transcription of a large variety of cellular and viral genes
(Gronostajski, 2000). This family is comprised of four genes in verte-
brates (NFIA, NFIB, NFIC and NFIX), whose encoded proteins interact
with DNA as homo- or hetero-dimers. They bind to the palindromic se-
quence TTGGC(N5)GCCAA with high affinity, resulting in transcription-
al activation or repression, depending on the cellular context and
regulatory region (Gronostajski, 2000). Binding sites for these factors
have been identified in promoter, enhancer and silencer regions of a
plethora of genes expressed in almost every organ and tissue (Kruse
and Sippel, 1994; Gronostajski, 2000). Reflecting their important roles,
NFIs are essential for the development of a number of organ systems
and show non-redundant functions during murine development
(Chaudhry et al., 1997; das Neves et al., 1999; Steele-Perkins et al.,
2005; Barry et al., 2008).

Transcriptome and proteome analyses reveal that NFIB is commonly
expressed throughout the human body (Fig. 1; GTEx Consortium, 2015,
Uhlen et al., 2015). Consistent with this ubiquitous expression pattern
and the apparent abundance of target genes, data supports that NFIB
plays a fundamental role in a range of biological processes (Fig. 2).
Mice lacking this gene present with a very severe phenotype, marked
by the death of all animals shortly after birth due to lung dysfunction
(Steele-Perkins et al., 2005). Loss of Nfib results in an undifferentiated
primordial respiratory system in addition to major neuroanatomic de-
fects, including corpus callosum dysgenesis and delayed glial and neu-
ronal differentiation (Steele-Perkins et al., 2005; Barry et al., 2008;
Piper et al., 2014). Notably, someNfib heterozygous animals show relat-
ed phenotypes, suggesting haploinsufficiency at the Nfib locus (Steele-
Perkins et al., 2005). Besides being essential to lung and brain develop-
ment, Nfib has also been shown to be required for tubule cell differenti-
ation during development of mouse submandibular glands (Mellas et
al., 2015).

In addition to these roles in development, NFIB has been implicated
in a range of physiological processes, such as, adipocyte differentiation
(Waki et al., 2011), megakaryocyte maturation (Chen et al., 2014), and
in the regulation of androgen receptor signaling in the prostate
(Grabowska et al., 2014). Furthermore, NFIB functions as a gatekeeper,
Fig. 1. NFIB expression overview in human tissues. NFIB is expressed in a range of tissues. RN
(GTEx; https://www.gtexportal.org/) are reported as median RPKM (Reads Per Kilobase of t
consisting of tissues with common functional features (adapted from the Human Protei
v16.1.proteinatlas.org).
governing activity within the quiescent stem cell niche of hair follicles,
where its loss enhances melanocyte stem-cell self-renewal, disturbing
epithelial-melanocyte stem cell synchrony (Chang et al., 2013). Recent-
ly, NFIB has also been shown to regulate hippocampal neural stem cell
fate (Rolando et al., 2016).
A-sequencing data from 31 tissues generated by the Genotype-Tissue Expression Project
ranscript per Million mapped reads). Colour-coding is based on 13 tissue groups, each
n Atlas: http://www.proteinatlas.org/ENSG00000147862-NFIB/tissue, available from

https://www.gtexportal.org
http://www.proteinatlas.org/ENSG00000147862-NFIB/tissue
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Corroborating its functions in regulating a variety of developmental
and physiological processes, NFIB has become increasingly implicated in
a range of malignancies (Table 1), which is the focus of this review
article.

2. NFIB as an Oncogene

2.1. Small Cell Lung Cancer

Using genetically engineered mouse model systems of small cell
lung cancer (SCLC) in combination with analyses of human SCLC speci-
mens, a number of studies have defined NFIB as an oncogene. In 2011,
Dooley et al., identified Nfib amplification/overexpression within mu-
rine tumour tissue, showed that Nfib regulated cell viability and prolif-
eration during transformation of murine SCLC, and reported recurrent
amplification of NFIB in ~15% of primary human SCLC (Dooley et al.,
2011). More recently, a major oncogenic role was assigned to NFIB in
this class of lung tumours. In a series of experiments, Denny et al. impli-
cated NFIB in critical molecular events that drive metastasis in SCLC
(Denny et al., 2016). They showed that Nfib is both necessary and suffi-
cient to promote multiple steps of the metastatic cascade in vivo,
through the reconfiguration of chromatin accessibility in SCLC cells.
Chromatin in metastatic lesions displayed a widespread increase in ac-
cessibility at gene distal regions that were enriched for NFI motifs, re-
sembling regions found in neural tissue. NFIB was associated with the
newly open chromatin sites, maintained the hyper-accessible chroma-
tin state in these regions, and was also proposed to alter a variety of
gene expression programs by influencing the combinatorial binding of
other transcription factors to these open chromatin regions (Denny et
al., 2016). In addition, a different study using another mouse model of
SCLC also showed that NFIB promotes metastatic spread, and that it is
highly overexpressed in human metastatic high-grade neuroendocrine
lung tumours (Semenova et al., 2016). Moreover, an additional report
Table 1
Summary of alterations in NFIB reported in cancer.

Type of aberration Organ/site T

Amplification/overexpression Lung S
c

Overexpression Skin M
Amplification/overexpression Breast T

n
Amplification Esophagus S

c
Amplification Submandibular gland L

n
c

Amplification Bone M
t

Underexpression Lung N
c

Loss of heterozygosity/underexpression Brain G
G

Germline mutation Bone O
Underexpression Skin C

s
c

Gene fusions (MYB-NFIB, MYBL-NFIB, NFIB-AIG1,
NFIB-MAN1A1, NFIB-NKAIN2, NFIB-PTPRD, NFIB-XRCC4)

Salivary, lacrimal &
ceruminal glands; breast;
vulva

A
c

Gene fusions (HMGA2-NFIB) Head & neck P
a

Gene fusions (HMGA2-NFIB) Colon & retroperitoneal
space; intramuscular

L

demonstrated oncogenic properties of Nfib in a related model system
of SCLC, supporting its role as a metastatic driver, and identifying target
gene networks including those related to axon guidance, focal adhesion
and extracellular matrix-receptor interactions (Wu et al., 2016).

2.2. Melanoma

Most recently NFIB has been shown tomediate a highly invasive and
migratoryphenotype inmelanoma,where it directly promotes EZH2 ex-
pression, also leading to changes in the chromatin state of tumour cells
to facilitate this aggressive behaviour (Fane et al., 2017). This study
showed that the direct regulation of NFIB expression by BRN2 in mela-
noma cells, leads to increased cell migration and potentially invasion
through the positive and negative regulation of EZH2 and MITF respec-
tively. In melanoma, heterogeneous expression of the MITF and BRN2
transcription factors has been proposed to constitute a key switching
mechanism between phenotypic states essential to tumour develop-
ment and progression (Goodall et al., 2008; Hoek and Goding, 2010).
While MITF is a driver of a highly proliferative, less invasive cell state,
BRN2 promotes an invasive and less differentiated state crucial to
drive tumour progression towards metastasis. NFIB seems to be a key
mediator of this phenotype switching.

2.3. Other Cancers

Increased copy number and expression of NFIB have also been re-
ported in triple negative breast cancer (Han et al., 2008) consistent
with an oncogenic role in estrogen receptor-negative breast tumours
(Moon et al., 2011). Furthermore, NFIB amplifications within squamous
cell carcinoma of the esophagus (Yang et al., 2001), large cell neuroen-
docrine carcinoma of the submandibular gland (Andreasen et al., 2016),
andmetastatic giant cell tumour of the bone (Quattrini et al., 2015) have
umour type Function/potential role Reference(s)

mall cell lung
ancer

Oncogene Denny et al., 2016
Dooley et al., 2011; Semenova
et al., 2016; Wu et al., 2016

elanoma Oncogene Fane et al., 2017
riple negative; ER
egative

Oncogene Han et al., 2008

quamous cell
arcinoma

Unknown Yang et al., 2001

arge cell
euroendocrine
arcinoma

Unknown Andreasen et al., 2016

etastatic giant cell
umour

Unknown Quattrini et al., 2015

on-small cell lung
ancer

Tumour suppressor Becker-Santos et al., 2016

lioma,
lioblastoma

Tumour suppressor
*Oncogenic behaviour in some
subtypes of glioblastoma

Stringer et al., 2016; Suzuki et
al., 2015

steosarcoma Tumour suppressor Mirabello et al., 2015
utaneous
quamous cell
arcinoma

Tumour suppressor Zhou et al., 2014

denoid cystic
arcinomas

Unknown Marchio et al., 2010
Xing et al., 2016
Persson et al., 2009
Mitani et al., 2010
Brayer et al., 2016
Mitani et al., 2011
Mitani et al., 2016

leomorphic
denoma

Unknown Geurts et al., 1998

ipoma Unknown Italiano et al., 2008 Pierron et
al., 2009
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also been reported, although, the role of NFIB in these cancers is
unknown.

3. NFIB and Tumour Suppressive Characteristics

Despite NFIB's established role as an oncogene in SCLC, andmost re-
cently inmelanoma (andpotentially in othermalignancies aswell), sev-
eral lines of evidence suggest a tumour suppressor function in other
cancer types (Fig. 3).

3.1. Non-small Cell Lung Cancer

Wehave shown thatNFIB is underexpressed in 40–70% of non-small
cell lung cancers (NSCLC), and that higher NFIB expression is associated
with favourable prognosis in lung adenocarcinoma, but not in squa-
mous cell carcinoma patients (Becker-Santos et al., 2016). This line-
age-specific phenotype, likely reflects the role of NFIB in regulating
the differentiation of cell types comprising the terminal respiratory
units of the lung (Steele-Perkins et al., 2005) where lung adenocarci-
nomas, but not squamous cell carcinomas, typically develop. According-
ly, we observed that tumours presenting low levels of NFIB, displayed
less differentiated phenotypes, accompanied by the repression of lung
differentiation markers involved in the development of type II
pneumocytes, which are thought to be the progenitor cells for lung ad-
enocarcinomas (Becker-Santos et al., 2016).

3.2. Glioma and Glioblastoma

NFIB has shown tumour suppressor activity in glioblastoma, where
its expression is inversely correlated with astrocytoma grade, and ec-
topic expression significantly inhibits tumour growth in vivo. Similar
to thefindings inNSCLC versus SCLC, NFIB appears to exert a context-de-
pendent role in glioblastoma, whereby its expression induced differen-
tiation and inhibited proliferation and self-renewal of classical and
mesenchymal glioblastoma subtypes, while enhancing the growth of
neural subtypes (Stringer et al., 2016). Furthermore, a tumour suppres-
sive function for NFIB in brain is also supported by a genome-wide study
of genetic alterations associated with gliomas, which revealed NFIB loss
of heterozygosity with increasing glioma grade (Suzuki et al., 2015).
Oncogene 
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Fig. 3. Paradoxical roles of NFIB in cancer. NFIB has shown both oncogenic an
3.3. Cutaneous Squamous Cell Carcinoma

Contrary to the findings in melanoma, expression of NFIB has been
proposed as a barrier for the development of cutaneous squamous cell
carcinoma. Underexpression of NFIB has been reported as a general fea-
ture in tumours from patients with this type of skin cancer, and its
downregulation in keratinocytes led to carcinogenic transformation.
While suppression of NFIB led to upregulation of CDK6 and Bcl-2, it
also decreased p53 levels, suggesting that NFIB may mediate G1 arrest
and consequently apoptosis in cutaneous squamous cell carcinoma
(Zhou et al., 2014).

3.4. Osteosarcoma

NFIB underexpression has been associated with aggressive osteosar-
coma phenotypes. A multistage genome wide association study
assessing the connection between germline genetic variation and oste-
osarcoma metastasis, identified a common SNP in NFIB (9p24.1), which
is associated with a decrease in NFIB expression and metastasis at diag-
nosis (Mirabello et al., 2015). Decreased NFIB levels led to increased os-
teosarcoma cell line proliferation, migration and colony formation,
supporting its contribution to susceptibility to metastasis.

4. Gene Fusions Involving NFIB

4.1. Adenoid Cystic Carcinomas

NFIB has been linked to other malignancies through gene fusions,
which is frequently the case in adenoid cystic carcinomas (tumours
thatmost commonly arise from salivary and lachrymal glands, although
they can also occur in other tissues containing secretory glands such as
breast, cervix and vulva) (Persson et al., 2009;Mitani et al., 2010; Brayer
et al., 2016; Marchio et al., 2010; Xing et al., 2016). These cancers are
often characterized by a recurrent translocation t(6;9)(q22–23;p23–
24) involving MYB and NFIB, which leads to high expression of a func-
tional MYB and truncation of NFIB – in the majority of cases only exon
9 of NFIB (encoding the last 5 amino acids) is present in the chimeric
mRNA transcripts. The MYB-NFIB gene fusion was reported in 23–86%
of adenoid cystic carcinomas arising from different anatomical sites
(Wysocki et al., 2016). NFIB may have a tumour suppressive role in
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these tumours independent ofMYB, as rearrangements leading to trun-
cation of NFIB, and presumably loss of its function also occur with other
partners (e.g.: NFIB-AIG1, NFIB-MAN1A1, NFIB-NKAIN2, NFIB-PTPRD,
NFIB-XRCC4) (Mitani et al., 2011;Mitani et al., 2016). Further supporting
a tumour suppressor role in adenoid cystic carcinomas, truncating mu-
tations and homozygous deletions affectingNFIB have also been report-
ed in these tumours (Ho et al., 2013).

4.2. Lipomas and Pleomorphic Adenomas

Other chromosomal translocations involving NFIB include HMGA2-
NFIB fusions in lipomas and pleomorphic adenomas, which lead to up-
regulation of HMGA2 and truncation of NFIB (as in the MYB-NFIB rear-
rangement, in many cases only five amino acid residues encoded by
NFIB were shown to replace the carboxyterminal portion of HMGA2)
(Geurts et al., 1998; Italiano et al., 2008; Pierron et al., 2009). Similar
to adenoid cystic carcinomas,NFIBmost likely plays a role independent-
ly of HMGA2, as it is also present in rearrangements with other partners
in these malignancies.

Despite the high frequency of rearrangements involving NFIB in ad-
enoid cystic carcinomas, lipomas and pleomorphic adenomas, apart
from the fact that the relocation of NFIB regulatory elements has been
proposed to contribute to high expression of its fusion partners
(Wysocki et al., 2016), little attention has been focused on a potential
direct role for NFIB in these cancers – this highlights the need for studies
assessing the direct contribution of NFIB to these malignancies, where
disruption resulting in its loss of function might play a key role.

5. NFIB Gene Regulation and Downstream Targets

An understanding of the seemingly paradoxical nature of NFIB to
display both oncogenic properties and tumour suppressor activity, is
hampered by the paucity of information regarding regulation of its ex-
pression in various cancer types/subtypes, and the identification of
downstream effectors. Moreover, the NFIB locus (9p23–9p22.3) is very
complex, where at least 20 spliced variants have been identified
(Ensembl version 88; Yates et al., 2016), although their possible distinct
functions remain to be explored. The presence of a large 3′UTR extend-
ing up to 7.8 kb, suggests that NFIB levels may be commonly regulated
by miRNAs. Indeed, we and others have reported that miRNAs such as
miR-92b-3p, miR-21 and miR-365, which are frequently deregulated
in cancers where NFIB is altered, can bind to the 3′UTR of NFIB, leading
to its downregulation (Becker-Santos et al., 2016; Fujita et al., 2008;
Zhou et al., 2014). Recently, NFIB has also been shown to be directly re-
pressed by Drosha, independent of miRNAs, representing a novel cell-
intrinsic mechanism that regulates the fate of adult hippocampal stem
cells (Rolando et al., 2016). Nevertheless, the context-dependent and
cell type-specific mechanisms by which NFIB levels are regulated re-
main largely unknown, and only a few transcription factors have been
shown to directly regulate its expression. These include ASCL1 and
MYC in a SCLC context (Borromeo et al., 2016; Mollaoglu et al., 2016),
PAX6 in neural progenitor cells (Ninkovic et al., 2013), andBRN2 inmel-
anoma (Fane et al., 2017).

Similarly, for most tissue and cell types where NFIB is expressed,
only a few direct downstream targets have been identified. Examples
include EZH2, which is repressed by NFIB during cortical development
(Piper et al., 2014) but activated by NFIB in melanoma (Fane et al.,
2017), IGFBP5 which is activated by NFIB in osteoblasts (Perez-Casellas
et al., 2009), and SFTPC (Bachurski et al., 2003) and ELN (Hsu et al.,
2011) both of which are activated by NFIB in lung development. NFIB
also regulates EDN2 in a context related to epithelial-melanocyte stem
cell proliferation and differentiation in hair follicles, where it was also
linked to the regulation of expression of 1449 target genes by ChIP
(Chang et al., 2013). Since NFI members encode proteins with highly
homologous DNA-binding domains with similar DNA-binding specific-
ities, it is possible that there are common downstream targets for all
NFI genes. In contrast to the highly conserved N-terminal DNA binding
domain, the C-terminal region of NFIB, which encodes a transactivation
domain, diverges extensively between other NFImembers aswell as be-
tween isoforms, and therefore might promote interactions with differ-
ent nuclear regulatory proteins depending on the cellular context
(Gronostajski, 2000). Adding to this complexity, post-translational
modifications (phosphorylation,O- orN-glycosylation) can significantly
influence the activity of NFI proteins (Sabova et al., 2013). Fig. 4 summa-
rizes the regulation of NFIB activity at multiple levels.

It is also noteworthy that NFIB is located in close proximity to the
fragile site FRA9G at 9p22.2, which is present in a large fraction of the
population (Sawinska et al., 2007), and coincides with recurrent chro-
mosomal breakpoints in cancer cells (Arlt et al., 2006). This location
could explain the high frequency of chromosomal rearrangements in-
volving NFIB described in several cancers (Table 1), although this hy-
pothesis needs to be further explored.

6. Conclusions and Perspectives

A number of transcription factors that induce lineage-specific differ-
entiation during embryonic and fetal development, play crucial, and
sometimes paradoxical roles in the malignant transformation of adult
cells. Although the roles of some of these transcription factors have
been well studied in cancer, which is the case for NKX2-1 and SOX
members (Yamaguchi et al., 2013; Thu et al., 2014), much remains to
be deciphered in terms of understanding the oncogenic and tumour
suppressive functions of the vast majority of such important players.
The first NFI transcription factor was identified over thirty years ago as
a protein required for efficient initiation of adenovirus replication
(Nagata et al., 1982). Since then, this family of transcription factors
has been implicated in the transcriptional regulation of a variety of
viral and cellular genes, and is critically important for the proper devel-
opment of a number of organs (Chaudhry et al., 1997). Thus, as is the
case with other transcription factors involved in developmental pro-
cesses, it is not surprising that NFIB has become increasingly appreciat-
ed as an important player in tumour development and progression.

Recent studies have ascertained a potent oncogenic role for NFIB in
SCLC. By increasing chromatin accessibility similar to open regions
found in neural tissue, NFIB has emerged as a driver of metastasis in
these highly aggressive neuroendocrine lung tumours (Denny et al.,
2016). These findings suggest that this mechanism may be relevant to
other cancers, especially to other neuroendocrine tumours, which sim-
ilar to SCLC, also rely on the activation of neuron-like programs, and
therefore, might depend on NFIB to drive their metastatic behaviour.
In addition to SCLC, a vital role for NFIB in triggering invasive behaviours
that drive metastatic spread in melanoma was recently shown (Fane et
al., 2017). In this type of skin cancer, NFIB is capable of propagating the
acquisition of a more invasive phenotype through broad changes in
chromatin status, in large part by increasing expression and function
of the histone methyl-transferase enzyme EZH2. Taken together, both
studies reveal that NFIB has the ability to promote dynamic changes in
the chromatin state of tumour cells to facilitate migration, invasion,
and ultimately, metastasis. While in melanoma a key conduct of these
effects is the regulation of EZH2 by NFIB, it remains to be determined
if a similar epigenetic mechanism could be involved in other tumour
types to drive metastatic progression.

Despite a clear oncogenic role for NFIB in SCLC and melanoma, tu-
mour suppressive functions have been demonstrated or strongly sug-
gested in other cancers. Although the molecular mechanisms behind
its anti-oncogenic functions are not well understood, the fact that NFIB
is widely expressed in multiple normal tissues and cell types, supports
a potential role in themaintenance of cellular homeostasis, and conceiv-
ably as a barrier to malignant transformation. Accordingly, we and
others have shown that downregulation of NFIB leads to the activation
of less differentiated tumour phenotypes, culminating in increased can-
cer aggressiveness and ultimately poorer patient survival. The concept



Fig. 4. NFIB activity is regulated at multiple levels. A) Cell-type and context-specific transcription of NFIB in various tissues is regulated by multiple transcription factors including ASCL1,
MYC, PAX6 andBRN2. B) At least 20 alternatively-spliced isoforms ofNFIBhave been identified. C &D)Drosha has been shown to destabilizeNFIBnuclear transcripts (C) andmiRNAs, such
as, miR-92b-3p, miR-21 and miR-365 have been shown to affect cytosolic NFIB transcript stability (D). E) NFIB protein products of alternatively-spliced transcripts can form homo- and
hetero-dimers with other NFI gene products. In addition, NFIB activity can also be influenced by its binding to other nuclear regulatory proteins (NRPs), and by post-translational
modifications (not shown). F) NFIB regulates the expression levels of multiple downstream targets in various tissues, including EZH2, SFTPC, IGFBP5, ELN and EDN2.
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that cells undergo a process of dedifferentiation to a more progenitor
like state frequently associated with metastasis, has been documented
in various cancer models (Friedmann-Morvinski and Verma, 2014).
Moreover, NFIB appears to play a critical role in maintaining stem cell
quiescence in some adult tissues (Harris et al., 2015; Chang et al.,
2013; Rolando et al., 2016). Further supporting a link between NFIB
and the modulation of cellular fate, this NFI member has been shown
to be regulated/interact with two key pluripotent transcription factors,
MYC and SOX2, respectively (Mollaoglu et al., 2016; Engelen et al.,
2011).

Although cancer-related studies have focused mostly on cell-intrin-
sic changes caused by NFIB, it is worth noting that tumour microenvi-
ronment changes might also contribute to drive NFIB-induced cancer
aggressiveness. Supporting this hypothesis,NFIBhas been shown to reg-
ulate endothelins – secreted factors with the ability to mediate intercel-
lular crosstalk – which can promote tumour angiogenesis, migration
and invasion (Chang et al., 2013; Rosano et al., 2013). Corroborating a
potential role in the tumour microenvironment, NFIB also appears to
be expressed in the stroma surrounding tumours (Grabowska et al.,
2016; unpublished observations).

Major questions that remain to be answered pertain to the under-
standing of howNFIB's diverse functions –which promote cell differen-
tiation during late stages of development in a range of tissues, and
regulate the maintenance of populations of stem cells in adult tissues
– contribute to its significant and paradoxical roles in tumourigenesis.
Some specific questions that need to be addressed are: 1) What are
the important upstream regulators of NFIB in different cancer-related
contexts? 2) Do themany alternatively-spliced isoforms ofNFIB play co-
operative, or perhaps antagonist, roles during tumourigenesis? 3)What
factors might mediate stabilization or enhanced degradation of NFIB
transcripts in tumours? 4) How does the expression of NFIB binding
partners, including other NFI family members and other transcription
factors, influence its activity in cancer? Lastly, 5) What are the direct
downstream targets of NFIB in different tumour types and stages, and
are they the same or different from those identified during normal
development and maintenance of tissue homeostasis? The develop-
ment of quantitative pull-down assays with NFIB partner proteins and
in vivo FRET measurements of NFI-partner protein interactions, com-
bined with ChIP-seq, ATAC-seq, single cell RNA-seq and the use of con-
ditional knock-out alleles ofNFIB and other NFI familymembers, should
allow us to answer these important questions.

In closing, the paradoxical involvement of NFIB in both the inhibition
and promotion of tumour development and progression in different
malignancies; especially between different tumour subtypes within a
single organ system, such as in lung, brain and skin, corroborates its di-
verse and distinct roles in specific tissues and cell types. This follows
from the fact that NFI-mediated transcriptional activation or repression
of specific gene promoters, varies depending on cell type and upon de-
tails of the cellular context (Chaudhry et al., 1998; Chaudhry et al.,
1999), resulting in themodulation of the expression of a plethora of di-
verse tissue-specific genes (Gronostajski, 2000). Consequently, caution
must be exercised in the development of any future therapies aimed
to manipulate NFIB levels – which may result in unexpected/undesired
effects, with the potential for exacerbation of tumour aggressiveness.
Further insights into the fascinating role of this enigmatic transcription
factor in cancer will certainly open new doors to clinical translation of
these findings.
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