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Abstract: The aerial part of Biebersteinia heterostemon Maxim. (Geraniaceae Biebersteiniaceae) known
as ming jian na bao in Chinese, has been traditionally used in Tibetan folk medicine for treatment of
diabetes and hypertension. The aim of the present study was to evaluate the effects of galegine ob-
tained from an ethanol extract of the entire Biebersteinia heterostemon plant on the rat’s cardiovascular
system in order to characterize its contributions as an antihypertensive agent. The antihypertensive
effect of galegine was investigated in pentobarbital-anesthetized hypertensive rats at three dose
levels based on the LD50 of galegine. Meanwhile a positive control group received dimaprit with the
same procedure. Dimaprit infusion induced a significant hypotension which declined by an average
margin of 20%. Simultaneously, single administration of galegine at the doses of 2.5, 5, and 10 mg/kg
by intraperitoneal injection induced an immediate and dose-dependent decrease in mean arterial
blood pressure (MABP) by an average margin of 40% with a rapid increase in heart rate (HR). We
demonstrated that galegine is effective in reducing blood pressure in anesthetized hypertensive rats
with rapid onset and a dose-related duration of the effects. The results indicate that galegine was the
bioactive compound which can be used as a pharmacophore to design new hypertensive agents.
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1. Introduction

Hypertension is a major risk factor for stroke, myocardial infarction, heart failure,
and kidney failure. Worldwide, hypertension is estimated to cause 9.4 million premature
deaths and counts for 4.5% of disease [1,2]. Treatment of hypertension is associated with
a reduction in the risk of stroke of approximately 40% and a reduction in the risk of
myocardial infarction of approximately 15% [3]. Consequently, guidelines on clinical
practice have identified lowering of blood pressure (BP) as a priority in hypertension
treatment [4]. However, hypertension can be managed in a suboptimal manner in many
countries.

Natural products have made many unique and vital contributions to drug discovery.
Several hypertensive agents have been derived from pharmacophores (i.e., a part of a
molecular structure responsible for a particular biologic/pharmacologic interaction that it
undergoes) from natural products. The treatment of hypertension with plant-derived prod-
ucts is well known, such as (+)-Dicentrine, Rhynchophylline, Stevioside, ACE inhibitory
peptides and so on [5]. The potential value of herbal medicines for hypertension treatment
has been rediscovered [6]. Therefore, pharmacologic validation of medicinal plants or
ethnomedical treatment methods could benefit development of new drugs.
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The aerial part of Biebersteinia heterostemon Maxim. (Geraniaceae), known as ming
jian na bao in Chinese, has been used in Tibetan folk medicine for treatment of diarrhea,
edema, apoplexy, stomach pain, anthrax, erysipelas, and malaria. In Qinghai (Tibet,
China), the entire plant is used by traditional healers for treatment of diabetes mellitus and
hypertension [7,8]. However, preparation of B. heterostemon as an antihypertensive agent
has not been described in detail. Only phytochemical studies carried out with the entire
B. heterostemon plant, which have led to the isolation of guanidine alkaloids comprising
mainly galegine and 4-hydroxygalegine [9], have been mentioned. Galegine has been
reported to cause hyperglycemia if isolated as an alkaloid from Verbesina encelioides and
Galega officinalis (which contains 0.1–0.3% galegine). Study of the hypoglycemic properties
of galegine led to the discovery of metformin [10,11]. Studies have also shown that galegine
can reduce weight indirectly by inhibiting the synthesis and stimulating the oxidation
of fatty acids [12]. However, B. heterostemon has not been studied specifically for its
cardiovascular effects or mechanism of action of its antihypertensive effects. Therefore, the
aim of the present study was to evaluate the effects of galegine obtained from an ethanol
extract of the entire B. heterostemon plant on the cardiovascular system of rats so that its
contributions as an antihypertensive agent could be characterized.

2. Materials and Methods
2.1. Isolation of Plant Material

The aerial parts of B. heterostemon in the blooming phase were collected in Tongren
County (Qinghai province, Tibet, China) in August 2014. These aerial parts were identified
by Professor Xuefeng Lu (Department of Botany, Northwest Institute of Plateau Biology,
Chinese Academy of Sciences, Qinghai Sheng, China). A voucher specimen (number
98,018) was deposited at the Herbarium of Tibetan Medicinal Plants (0028, holotypus) at
the Northwest Institute of Plateau Biology.

Air-dried and finely ground aerial parts (20 kg) of B. heterostemon were extracted three
times, once every 5 days, with 20 L 90% EtOH at room temperature. The concentrated syrup
was suspended in H2O then partitioned successively with petroleum ether, AcOEt, and
n-BuOH, with a residue yield of 5 g, 138 g, and 460 g, respectively, after solvent removal. As
part of a search for antihypertensive principles by bioassay-directed separation, the AcOEt
extract was named GAP, which was selected for study because previous phytochemical
studies have revealed that GAP contains galegine.

Half of the GAP (50 g) was chromatographed over a normal silica-gel column (40–63 µm,
5 × 120 cm) eluted with solvents of increasing polarity in the order petrol-AcOEt (10:1–2:1),
petrol-acetone (10:1–10:3), CHCl3-acetone (10:1–1:1), and acetone. Chromatography was
monitored by thin-layer chromatography (petrol-AcOEt, 1:1; CHCl3-acetone, 4:1). Fractions
eluted with CHCl3-acetone 10:3 (following elution with 3 L of this solvent, and fractions
of 250 mL were collected, and were collectively named PCF according to the elution
order) gave compound 4 (990 mg), which was purified by column chromatography and
recrystallization.
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The content of galegine in the GAP extract is 1.98% and the participation of galegine
is a pure compound in the pharmacological effect.

2.2. Animals

The experimental protocol for animal studies was approved by local Animal Ethics
Committees in accordance with the guidelines for the care and use of laboratory animals
set by the Faculty of Medicine of Qinghai University (Xining, China), and incompliance
with national (GB/T 35892-2018) and international rules on care and use of laboratory
animals (NIH Publication No. 85-23, rewised by 1985). All tests were performed during
the light phase.

Male Sprague Dawley rats (4 weeks, 90 ± 6 g) and Kunming rats of both sexes (10–
12 weeks, 25–30 g) were purchased from the Institute of Local Disease (Xining, China).
Rats were kept in a room under automatically controlled conditions of 22 ± 1 ◦C and a
12-h light–dark cycle. Rats were fed standard laboratory diet provided by the Institute of
Local Disease and were allowed to acclimatize to their surroundings for ≥1 week before
experimentation.

2.3. Acute Toxicity

Kunming rats of both sexes (10–12 weeks, 25–30 g) were used for acute toxicity studies.
Rats were divided into five groups with graded randomization to make the mean weight
and sex distribution as equal as possible. Each group comprised 5 males and 5 females.
An acute study for calculation of the median lethal dose (LD50) was carried out using
Karber’s method as modified by Sun and colleagues [13]. In this method, the galegine dose
was determined through pre-testing. Rats were fasted overnight before conducting the
experiment but had free access to water. The diluted drug was injected by intraperitoneal
injection (i.p.) taking 1.25 as the geometric proportion between groups to administrate the
dosage volume of galegine by base dosage (80 mg/kg. body weight) in each group.

Detailed clinical observations were made for all rats throughout the study. Body
weights were recorded on the day of treatment and on test days 4, 7, 10, 13, and 16. Every
24 h, the dose for each group and the number of dead rats were recorded. Necropsies were
carried out as soon as possible after death on all rats that died during the study. At the end
of the study, all surviving rats were sacrificed.

For acute toxicity, we used death rates in the group with a minimum dose of 0% and
the group with a maximum dose of 100%. LD50 values and 95% confidence limits (A) were
calculated as follows:

LD50 = lg−1[Xm − i
(
∑ p − 0.5

)]
(1)

A = lg−1

(
lgLD50 ± 1.96 × i ×

√
∑ p(1 − p)

n

)
(2)

where Xm is the logarithm of maximum dose; i represents the logarithm difference between
two adjacent doses; Σp is the sum of the mortality of animals; n is number of rats per group.

Galegine was administered to five groups in doses of 32.8, 40.96, 51.5, 64, and
80 mg/kg body weight, and the death rate in each group was 0, 10%, 40%, 70%, and
100%, respectively.

2.4. Feeding of a Refined-Sugar Preparation to Rats

Studies were carried out in male Sprague Dawley (4 weeks, 90 ± 6 g). Rats were
separated into two groups: I (control rats given tap water) and II (rats given 30% of com-
mercially refined sugar in drinking water). These rats were given the respective drinks for
16 weeks. Sugar treatment ended immediately after the mean BP of group-II rats increased
significantly from 90–110 mmHg to 120–150 mmHg. This model is characterized by hy-
perinsulinemia, loss of tissue sensitivity towards insulin, hypertriglyceridemia, arterial
hypertension, and an increase in oxidative stress [14]. Systolic arterial pressure (SAP)
measurements were taken every month. Rats were maintained at 32 ◦C in a LE 5650/6
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heater and scanner heating unit (Letica, Rochester Hills, MI, USA). A pulse transducer and
pressure cuff (LE 5160/R, pulse transducer and pressure cuff for rats, Harvard Appratus,
Holliston, MA, USA) were placed around the tail of each rat and connected to an automatic
blood-pressure system (LE 5007, RCA connector, Ningbo Hysound Electronic Co., Ltd.,
Ningbo, China). After 16 weeks, we selected rats whose SAP had increased ≤30% to be the
hypertensive rats from group II.

2.5. Experimental Protocol

Six male hypertensive Sprague Dawley rats (20 weeks, 280–320 g) were anesthetized
successively (pentobarbital sodium, 40 mg/kg body weight, i.p.). The common carotid
artery was cannulated and BP monitored using a pressure transducer (BL-410 biologi-
cal experimental system; Sichuan Tai Meng Technology, Chengdu, China), which was
triggered by the pressure pulse and recorded on a separate polygraph channel. Various
concentrations of galegine were injected (i.p.) into rats, and the effects on arterial blood
pressure (ABP) and heart rate (HR) recorded. Each rat was tested with only one concen-
tration. ABP was expressed as the mean arterial blood pressure (MABP) according to the
following equation:

MABP =Pd +
1
3
(Ps − Pd) mmHg (3)

where Ps denote systolic BP and Pd denotes diastolic BP.
The common carotid artery was excised rapidly. Then, the distal part of the heart

was ligated with thread tightly. The proximal part of the heart was clamped by artery
forceps. A V-shaped incision was made near the ligation point. An arterial cannula
filled with 0.1% heparinized saline was inserted. The arterial cannula was connected
to the force–displacement transducer linked to the physiologic-pressure detector. After
the pressure detector had been adjusted, the artery forceps were opened and normal BP
recorded. After a stabilization period of 15 min, single administration of galegine (2.5, 5 or
10 mg/kg) or saline solution (0.2 mL/100 g) was injected (i.p.) in six experimental rats. An
additional positive control group received dimaprit (5 mg/kg body weight, 99% purity,
Sigma–Aldrich, St. Louis, MO, USA) under the same procedure. In this series, recordings
of MABP and HR were taken immediately over 60 min and their values were registered
every 5 min. In sum, each group contained 6 rats and their MABP and HR were recorded
12 times over 60 min (before and every 5 min). We obtained six values for each of those
12 recordings, from which we present a median. The male Sprague Dawley rats were
sacrificed after the experiment.

2.6. Statistical Analyses

Data are the mean ± SEM. Student’s t-test, one-way analysis of variance (ANOVA),
and post hoc least-significant difference tests were used to determine significant differences
between groups. p < 0.05 was considered significant.

3. Results

The structure was demonstrated to be galegine (compound 4, Figure 1) by two-
dimensional nuclear magnetic resonance (NMR) and high-resolution mass spectrometry.

GAP was subjected to reversed-phase column chromatography (C18, 5 µm, 250 mm
× 4.6 mm i.d.; Thermo Fisher Scientific, Waltham, MA, USA) to high-performance liq-
uid chromatography with diode-array detection (HPLC–DAD) analyses. Spectrometric
analyses were carried out with a HPLC system (Waters, Milford, MA, USA) comprising a
1525 binary pump and 2996 photodiode array detector.
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Figure 1. Scheme of the structure of galegine.

PCF (20 mg) was dissolved in 1 mL of H2O–MeOH (80:20) and injected into the
C18 cartridge. Then, 2 mL of H2O–MeOH 80:20 (v/v) was applied to the cartridge for
rinsing. The achieved retained sample was eluted with a mixture of 2 mL H2O–MeOH
50:50 (v/v). This mixture displaced GAP and showed an intense narrow ring proceeding
downwards, which was monitored by the naked eye. Parameters for this process were: flow
rate = 1 mL/min; injection volume = 20 µL; concentration of galegine sample = 10 mg/mL
in H2O–MeOH 50:50 (v/v); DAD conditions = 205 nm. The HPLC profile of GAP and
galegine (peak 1) is shown in Figure 2.

Figure 2. HPLC profile recorded at 255 nm. Biebersteinia heterostemon bark antihypertensive fraction (GAP).

Compound 4 was obtained as colorless, needle-like crystals. m.p. 104~105 ◦C. A
positive Sakaguchi reaction suggested that this compound could be a guanidine alkaloid.
High-resolution electrospray ionization mass spectrometry exhibited a molecular ion peak
[M + H]+ at m/z 128, which corresponded to the molecular formula C6H13N3. Infrared
absorption bands at 3405, 3201, and 1676 cm−1 suggested the presence of primary amines
and secondary amines. According to 1H and 13C NMR data (Table 1), the structure
of compound 4 was determined to be galegine. These data were identical to those of
galegine [9].

The galegine (purity = 99.2%; 990 mg) used in the experiments was prepared fresh by
dissolving in distilled water.



Molecules 2021, 26, 4830 6 of 9

Table 1. 1H and 13C NMR spectral data of galegine.

δH a δC b

1(-CH2) 3.69 (d, 6.4) 40.1
2(-CH) 5.17 (br t, 6.0) 118.9

3 136.3
4(-CH3) 1.69 br s 25.2
3(-CH3) 1.63 br s 17.7
C=NH 7.50 br s 156.5

Measured in DMSO-d6. a 400 MHZ. b 150 MHZ. Data are expressed as mean ± S.E.M. (n = 6). Significantly
different between before and after treatment.

3.1. Lethality and Clinical Signs

Galegine was administered by intraperitoneal injection (IP) to five groups of fifty mice
at the doses of 32.8, 40.96, 51.5, 64, and 80 mg kg−1, and we recorded the clinical signs and
calculated the toxin median lethal dose (LD50), based on 24 h lethality data.

At the dose of 41 mg kg−1 and above, galegine administration provoked an onset
of clinical signs (prostration, tremors, followed by abdominal breathing, paralysis of the
hindlimbs, and cyanosis), which led to the death of mice within less than 18 h. In particular,
the lowest lethal dose (41 mg kg−1) provoked the death of 1/10 mice, while 80 mg kg−1

was lethal for 10/10 mice (Table 2). These results are presented in Figure 3 as percentage of
mice mortality versus the administered toxin doses. Based on lethality data, the oral LD50
of galegine was calculated at 54.75 mg kg−1 (95% confidence limits: 49.15–61.51 mg kg−1).

Table 2. Lethality and signs of toxicity of mice after intraperitoneal injection administration of galegine.

Group of
Treatment

Dose
(mg·kg−1) Lethality Survival Times (hour) Signs of Toxicity

Controls - 0/10 -

Galgine

32.8 0/10 - -

41 1/10 18 Debility, abdominal breathing, paralysis of the
hindlimbs, cyanosis

51.2 4/10 9.5–10–10.5–10.5 Prostration, tremors, abdominal breathing,
paralysis of the hindlimbs, cyanosis

64 7/10 9–9–9.5–9.5–9.6–9.7–9.7 Prostration, tremors, abdominal breathing,
paralysis of the hindlimbs, cyanosis

80 10/10 6–6–7-7–7–7.5–7.6–7.6–8–8 Prostration, tremors, abdominal breathing,
jumping, paralysis of the hindlimbs, cyanosis

Figure 3. Dose-response mortality curve of galegine after i.p. injections administration in mice.
Percentage lethality is plotted against the administered doses of galegine.



Molecules 2021, 26, 4830 7 of 9

3.2. Effect of Galegine on Arterial BP

To evaluate the acute hypotensive effects of dimaprit and galegine in vivo, arterial
blood pressure (ABP) was continuously measured through a pressure transducer inserted
in the carotid artery of anesthetized rats. Intraperitoneal injection (i.p.) of dimaprit and
galegine significantly decreased ABP and MABP, as expected (Figure 4A,B). To assess the
intoxication protocol, we designed a negative control experiment (control group) where
rats received an injection of distilled water: no significant change in ABP was observed
(Figure 5, Table 3). Intraperitoneal injection (i.p.) of dimaprit was designed as THE positive
control group.

Figure 4. Influence of dimaprit and galegine on pentobarbital-anesthetized hypertensive rats MABP. (A) Representative raw
traces of rat arterial blood pressure (ABP) following dimaprit or galegine infusion (blue arrow with doses used) compared to
the control group. As expected, protocol assessment molecules dimaprit (5 mg·kg−1) and galegine (2.5 mg·kg−1, 5 mg·kg−1,
10 mg·kg−1) induced ABP, respectively. (B) Box and whisker plots of ∆MABP data in the control, dimaprit and galegine
group following i.p. injections, 5 mg·kg−1 for dimaprit and 2.5 mg·kg−1, 5 mg·kg−1, 10 mg·kg−1 for galegine, respectively.

Figure 5. Effect of galegine on blood pressure of pentobarbital-anesthetized hypertensive rats. n = 6.
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Table 3. Effect of galegine on mean arterial blood pressure (MABP) of pentobarbital-anesthetized hypertensive rats.

Group MABP (mmHg) Decrease of
MABP (%)

Heart Rate
(beats/min)

Duration of
Hypotension
Period (min)

Before Treatment After Treatment

Control 98.25 ± 3.22 100.65 ± 4.32 0.66 ± 0.07 427 ± 20 0.15 ± 0.16
Dimaprit 5 mg/kg 153.29 ± 5.21 122.62 ± 9.65 19.99 ± 0.02 457 ± 11 15.60 ± 0.20

Galegine 2.5 mg/kg 152.83 ± 7.03 96.83 ± 10.38 36.64 ± 0.05 602 ± 15 28.30 ± 0.20
Galegine 5 mg/kg 159.07 ± 4.92 93.08 ± 13.91 40.42 ± 0.08 850 ± 12 32.20 ± 0.16

Galegine 10 mg/kg 153.58 ± 9.13 86.60 ± 4.40 43.56 ± 0.02 1150 ± 20 45.50 ± 0.15

A dose of 5 mg of dimaprit infusion induced significant hypotension (MABP declined
by an average of 20%) and was associated with the slight increase of HR. The blood pressure
decreased and was maintained for 15 min. Simultaneously, injection of galegine (2.5, 5,
and 10 mg·kg−1, i.p.) induced an immediate and dose-dependent decrease in MABP by
an average of 36%, 40%, and 43% respectively (Figure 4, Table 3) with a rapid increase in
HR (Table 3). The blood pressure decreased and was maintained for 28, 32, and 45 min,
respectively. In contrast, at the same dose, the hypotensive effect of galegine was better and
lasted longer. However, after this peak in hypotension, the MABP increased progressively
and reached the initial basal value in approximately 10–15 min depending on galegine dose.

4. Discussions

The guanidine functional group has been reported to possess hypotensive properties.
However, few investigations have been done on the hypotensive effects of galegine, an
archetypal guanidine alkaloid. Here, we demonstrated that galegine is effective in reducing
ABP in anesthetized hypertensive rats with a rapid onset and dose-related duration of
effects using a pressure transducer to record ABP. The safe dose of galegine was determined
to be one-tenth of the LD50 value after acute toxicity experiments. Galegine showed physi-
ological effects such as vasodilatation and hypotension [15]. A dose of 2.5 mg of galegine
appears to be effective in managing hypertensivity, and the hypotensive effect of galegine
was better and lasted longer. This indicated that galegine could be effective in managing
hypertensive urgency and controlling blood pressure [5]. Although the antihyperten-
sive mechanisms were not clear, it has been reported that the hypotensive mechanism of
galegine is related to the H2-receptor agonist [16]. Thus, a highly selective agonist of the
histamine H2 receptor, dimaprit, could mimic the excitatory effect of histamine on rubral
cells, and the histaminergic nervous system may have a modulatory role in motor control
through its excitatory effects on almost all subcortical motor structures [17–19]. Several
ionic channels and intracellular signaling pathways have also been suggested to mediate
the excitatory response of central neurons to histamine stimulation [20]. Thus, further
studies, such as drug receptor-specific interaction tests or chronic toxicity tests, should be
carried out to confirm the long-term safety of galegine for BP control.
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