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Among the different types of cancers, lung cancer is one of the widespread diseases which causes the highest number of deaths
every year. The early detection of lung cancer is very essential for increasing the survival rate in patients. Although computed
tomography (CT) is the preferred choice for lungs imaging, sometimes CT images may produce less tumor visibility regions
and unconstructive rates in tumor portions. Hence, the development of an efficient segmentation technique is necessary. In
this paper, water cycle bat algorithm- (WCBA-) based deformable model approach is proposed for lung tumor segmentation.
In the preprocessing stage, a median filter is used to remove the noise from the input image and to segment the lung lobe
regions, and Bayesian fuzzy clustering is applied. In the proposed method, deformable model is modified by the dictionary-
based algorithm to segment the lung tumor accurately. In the dictionary-based algorithm, the update equation is modified by

the proposed WCBA and is designed by integrating water cycle algorithm (WCA) and bat algorithm (BA).

1. Introduction

Lung cancer is considered as the second most common kind
of cancer for both male and females worldwide. As per the
World Health Organization (WHO) statistics, 1.3 million
deaths are happening because of lung cancer. Besides, it is
calculated in the United States (US) that every year, approx-
imately 228,820 people are newly affected by lung cancer in
which 112,520 are women and 116,300 are men. Also, nearly
135,720 deaths are caused by lung cancer disease. The com-
puter vision system has various tools, and these tools are
used in different medical applications, especially for medical
image analysis to diagnose various diseases [1, 2]. Computed
tomography (CT) is a basic imaging modality which effec-
tively helps for the detection of lung cancers. As per the sta-
tistics, lung cancer is the fourth major cause of death
globally. The initial process of lung cancer detection is man-
ual detection of lung regions in CT images by specialists,
which is a more challenging and tedious process for com-
puter vision models. The number of deaths due to lung can-
cer can be considerably decreased, when the lung CT

screening is effective. However, it is a challenging process
for radiologists to make effective and precise detection for
large scale of CT images. Hence, automated segmentation
techniques are introduced to overcome these difficulties. In
addition, end-to-end probabilistic detection model was
developed based on deep three dimensional convolutional
neural networks (CNNs) to overcome uncertainty complex-
ities [3]. Lung cancer is a malignant tumor, which is devel-
oped due to the abnormal development of cells in lung
regions. The early diagnosis of lung cancer can drastically
reduce the death rate, and survival rate of patients can be
improved. Therefore, the early prediction is essential for
enhancing the clinical situations of patients; thereby, it is
more crucial for developing an effective technique for early
prediction of lung cancer. In fact, low dose CT is considered
as a secure and effective tool for preventive detection of high
risk populations [4]. Segmentation of CT images plays a very
significant role in lung cancer detection [5]. However, there
are few issues such as same image densities in scanning pro-
tocols and variations of pulmonary structures due to scan-
ner. Most of the existing semiautomatic segmentation
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techniques depends on human factors, thereby affecting the
segmentation accuracy. Recently, various lung segmentation
techniques have been developed using deep learning archi-
tectures, which are presently applied for clinical applica-
tions. Among these, U-Net architecture offers better
performance in deep neural networks.

Generally, radiologists frequently use computer-aided
design (CAD) system in order to offer secondary consider-
ation for more precise detection. Moreover, this system is
more useful to enhance the efficiency of detection rate. In
the literature, various approaches are available to perform
medical image segmentation. But, they are unable to seg-
ment lung nodules which are connected to the lung walls.
Therefore, deep learning techniques are more effective for
such applications. Deep learning models are capable of iden-
tifying the significant features of medical images; thereby,
major drawbacks of handcrafted features are resolved [6].
Semiautomated segmentation methods are also available
for the lung tumor segmentation and lung cancer classifica-
tion, which includes marker-controlled watershed technique
[7] and single click ensemble model [8]. But automatic seg-
mentation and classification approaches are more effective
and accurate as compared semiautomatic methods [9, 10].
Furthermore, every image classification model needs a suit-
able object segmentation approach. Several researches are
focused for enhancing effective classification of lung cancers
using multiscale Gaussian filter based on active contour and
CNN method [11] and also convolutional transfer neural
network with modified U-Net structures.

The main intention of this research is to design the
development and performance evaluation of lung cancer
segmentation algorithm using WCBA based deformable
model approach. Lung tumor segmentation is a challenging
issue due to in-homogeneities in the lung regions. This rea-
son motivated us to develop a new methodology for the
effective segmentation of lung tumor using CT images.

2. Literature Review

The early detection of lung cancer is a challenging issue
due to complex structure of cancer cells, where most of
the cancer cells are overlapped each other. For early diag-
nosis and treatment are very important to reduce the
death rate. Researchers have been working towards the
development of system which can detect cancer in its early
stage and also tried to improve the accuracy of the system
by incorporating preprocessing, segmentation, feature
extraction, and classification techniques. The significant
contributions of the existing research work and their lim-
itations are presented below.

Hu et al. [12] developed a mask region-based CNN
approach for lung tumor segmentation. In this method,
Region Proposal Network (RPN) was employed for detect-
ing object cases. This approach achieved better classification
accuracy, but still failed to reduce the segmentation time.
Ozdemir et al. [13] designed a deep learning approach for
lung cancer segmentation using CT images. Here, data aug-
mentation process was performed for reducing the overfit-
ting issues. This technique obtained effectual diagnostic
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interventions. However, this model failed to visually evaluate
learned feature representations for better performance. Sha-
keel et al. [14] designed improved profuse clustering tech-
nique (IPCT) and deep learning scheme for lung cancer
detection. In addition, a weighted mean histogram equaliza-
tion model was applied for removing the noises from the
input CT image. In this method, IPCT-based spectral super
pixel clustering was employed for the segmentation process.
This approach has minimum misclassification error,
although computational difficulty is high. Suresh and
Mohan [15] presented CNN architecture for detecting lung
cancer. In this technique, preprocessing was carried out to
eliminate noise and desired nodule region is extracted. In
addition, generative adversarial network (GAN) was applied
for generating similar character images. This model
enhanced the prediction speed, even though it is failed to
explore optimal size of input patch in order to enhance the
performance.

Jiang et al. [16] modeled multiple resolution residually
connected network (MRRN) for lung tumor segmentation
using CT images. This method resulted better segmentation
accuracy independent of tumor location and size, but still
this approach failed to reduce the computational complexity.
Yu et al. [17] devised adaptive hierarchical heuristic mathe-
matical model (AHHMM) for lung cancer detection using
CT images. Here, weighted mean histogram approach was
applied for removing of noise from input and enhancing
the image quality. Then, K-means clustering was applied in
order to obtain segmented tumor regions. Finally, a deep
learning is introduced for predicting lung cancer. Singadkar
et al. [18] developed deep deconvolutional residual network
(DDRN) for lung nodule segmentation using CT images.
Also, summation-based long skip connection from the net-
work was applied for conserving spatial information. This
technique obtained more precise classification of nodules
in lung cancer. However, it is failed to enhance pulmonary
nodule segmentation accuracy for other kinds of nodules.
Jalali et al. [19] introduced deep neural network (DNN) for
lung cancer segmentation. Here, morphological function
was applied for extracting ground truth images. Addition-
ally, bidirectional convolutional long short term memory
(CLSTM) and ResNet-34 network, termed Res BCDU-Net,
were introduced for effective training. The execution time
of this approach was less; however, this model failed to inte-
grate deep learning-based methods for obtaining better seg-
mentation results.

The mask region-based CNN approach was developed
for lung tumor segmentation using CT images. But this
model was failed to provide accurate classification. The deep
learning architecture was devised for the classification of
lung cancer. But, this technique was failed to integrate
decline choice and patient referral during the training pro-
cess for better performance. The CNN architecture was used
for detecting lung cancer, but this approach failed to pro-
duce high-quality realistic fake lung nodule samples to
enhance detection performance in cancer images. The
DNN approach was applied for the lung cancer segmenta-
tion process, but is also failed to perform the testing process
for obtaining effectual segmentation output.
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3. Proposed Methodology

The proposed WCBA-based deformable approach for lung
cancer segmentation model mainly includes three stages;
preprocessing, lung lobe segmentation, and lung cancer seg-
mentation. In the first stage, preprocessing of the input
image is carried out using median filter to remove the noise.
In the second stage, the lung lobe regions are segmented
using Bayesian fuzzy clustering [20]. Finally, segmentation
of lung cancer is performed using deformable model which
was modified by dictionary-based algorithm [21]. Here, the
equation is updated by the proposed WCBA optimization
algorithm. This algorithm is designed by combining BA
[22] and WCA [23]. The block diagram of the WCBA-
based deformable model for lung cancer segmentation is
depicted in Figure 1.

Let us assume a database H with r number of images,
which is expressed as

H={T, Ty Ty T} (1)
where T, denotes n™ image in database, and r is a total
amount of image in dataset. Here, the input image T, is sub-

jected to preprocessing to remove noise. The expression for
the filtered image is as follows.

P(u,v) = median g )cx, {f(Q:} (2)

where u and v are coordinates of pixel positions. The median
filter output is represented as Z,.

3.1. Lung Lobe Segmentation Using Bayesian Fuzzy
Clustering (BFC). The preprocessed output Z, is taken as
input for lung lobe segmentation. The estimation quantity
is effectively increased with less computational complexity
in Bayesian fuzzy clustering (BFC) approach. Thus, the
BEC technique is employed for segmenting lung lobe
regions. This model combines joint likelihood function for
segmenting lone regions. The core and edema tumor sec-
tions are identified by preserving edge and texture. Here,
the BFC technique segments the input by prototype cluster-
ing process. Moreover, BFC uses membership function F
and even symmetric Dirichlet proposal g for finding cluster
prototypes, which is specified as

q', ~ Dirichlet (k=1,), (3)

where ¢ indicates regular symmetric Dirichlet proposal,
and O refers total clusters in segmentation process. In addi-
tion, BFC uses conditional distribution with membership
function F in order to estimate cluster prototype. The condi-
tional distribution employed in BFC is given as

T(X",q,|Y)=T(X"|q, D)T(|q,Y),
O
T(X!'q,|Y) =

T (X:” [ty q;j) g, " Dirichlet(t,|®),
j=1

wj

(4)

where Y indicates membership function, and ¢, is
maximum-a posteriori (MAP) sample. The membership func-
tion utilized for estimating cluster prototypes is varied due to
Gaussian distribution properties, thus, Markov chain state rule
is used to get cluster prototype, which is specified as

T(X{ q,[Y) = T(X|D, q,) T(q,)- (5)

The likelihood value of cluster prototype is identified, and
cluster prototype with enhanced likelihood value is taken as
final segmented output. Hence, BFC technique predicts O seg-
ments for image slice X" is specified as

P={PY", B{", -, P, - P, (6)

where P$™ indicates w' image segment X™. The output of
lung lobe segmentation process is represented as R, and it is
given to lung cancer segmentation.

3.2. Lung Cancer Segmentation Using Water Cycle Bat
Algorithm- (WCBA-) Based Deformable Model. The seg-
mented lung lobe regions R, from preprocessed image are
considered as input for lung cancer segmentation. Here, the
deformable model is developed for segmenting the lung can-
cer. Generally, deformable model is a type of surfaces or curves
defined in image, which can move under the pressure of inter-
nal forces. In addition, the deformable model is a geometric
pattern, and its shape varies depending on time. Thus, in this
technique, deformable approach is introduced by the modifi-
cation dictionary-based image segmentation. Meanwhile, in
dictionary-based image segmentation, the equation is updated
based on the proposed WCBA optimization technique and is
designed by integrating WCA and BA models.

Bat algorithm is devised by the inspiration of echoloca-
tion feature of microbats. This model is very effective to cre-
ate improved features for solving multiobjective
optimization problems. In addition, it has better capacity
for solving high nonlinear problems with complex restric-
tions. On the other hand, WCA is motivated by nature,
and it is devised by water cycle observation, river over sea,
and stream flow in real-time situation. Moreover, WCA
has the ability to solve various engineering design and man-
aged optimization problems. WCA is effective to offer qual-
itative solutions and successful computational effectiveness.
This method is used to address real-time optimization com-
plexities with sufficient accuracy. In addition, it is effective
for controlling dissimilar combinatorial optimization prob-
lems and affords optimal solution with less computational
difficulty. Thus, the BA is integrated with WCA in order to
obtain effective performance for lung cancer segmentation.
The algorithmic steps for the proposed method are as
follows.

Step 1. Initialization.

Initially, populations of raindrops are randomly created,
which is expressed as

L{L;, Ly, -+, Ly Ly} s 1<k<f, (7)
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F1GURrE 1: Block diagram of the proposed WCBA-based lung cancer segmentation model.

where f represents total number of raindrops population,
and L, specifies v'" population.

Step 2. Fitness function estimation.

The fitness measure is estimated in order to predict the
optimum solution for effectual lung cancer segmentation
process. The fitness function with the least value is consid-
ered as the best solution, and it is estimated by equation
(26), which is specified as minimization function.

Step 3. Calculate each raindrop value.
After the computation of fitness value, the cost of all
raindrops is computed by below equation

B, f(L{,Ly,. fvar), = 1,2, f (8)

where B, denotes the cost of raindrop, f,,, is the amount of
raindrops, and f

var 18 the number of design variables.

Step 4. Calculation of flow intensity for sea and rivers.

The flow intensity of river and sea is estimated in order
to allocate raindrops, which is calculated as

i
meB

0=1"1

fH =round S 9)

Xfraindrops si=12, -

where fH, is number of streams, which flow to particular sea
or rivers.

Step 5. Stream flow to river.
After the computation of flow intensity for river and sea,
then streams flow to rivers is estimated by

Lb+l

_7b b
stream L stream L stream ( 1 0)

river

+rand z (Lh

Step 6. River flow to sea.

Here, stream flow to river is estimated in which solution
update is performed by developed WSBA. In this stage, riv-
ers flow to sea is estimated by

b+l b b
Lr:\—/er = aner aner ( 1 1)

sea

+rand z (Lb
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b+l _ 1b
Lriver - Lriver sea

(1 -rand z) + rand zL, ) (12)

Moreover, the standard position update equation of BA
is
=I5+ QG
Ly=Li + Q™+ (Lf - Lk,

(13)

Moreover, it is expressed in terms of WCA,

b b- b— b
Lriver = Lrivér +Q ! + (Lbriver - Lsea) lb’ (14)
b b- b— b
Lriver = Lrivir + Q ! + Lriverlh - Lsealb’ (15)
b- b— b b
L = Lrivér +Q Lt Lriverlh B Lriver (16)
sea lb >
b— b-1 b
L = Lrivér +Q7 + Lriver(lb B 1) (17)
sea lb .

Substituting equation (17) in (12),

Lol QU1+t (1, -1
bl =18 . (1-rand z) + rand Z( sver + Q A rver(y = 1) ,
(18)
dz(l, - 1)L
Lf;’,ir = Lfiver(l -rand z) + %}))m +rand z(Lfi;ir + Qb’1> R

(19)

[ b (1 —rand z + rand zl, — rand z) +randz<Lb’1 N th))

river — river 1 river
b

(20)

1-rand z(2 -1
Lll?i-:/el:r = Lfiver (w) +rand z (Lfl:nler + Qb_l) .
(21)

Thus, the above expression defines the final updated
equation for the developed WSBA.

Where rand specifies uniformly distributed random inte-
ger, which ranges between [0,1], I, =11 + (Lnax = lnin ) o>
Iin=0, 1. =100, and k=0,1], z ranges from 1 to 1, Q
denotes velocity, and L

b o signifies the position of river at

max
b™ iteration.

Step 7. Replace river location.

Here, river position is replaced with stream, and it
affords better solution. Moreover, if a river identifies the best
solution than sea, then, location of river is replaced with sea.

Step 8. Evaporation circumstance.
Evaporation is a most important factor, which avoids
rapid convergence, and evaporation circumstance, which is

given by

b b b b
Lsea - Lsea Lsea - Lriver <B b=1,2,3, fm - L (22)

max >

If above equation is satisfied, then, raining procedure is
executed where B, ., is a small integer, which is near to zero.

Step 9. Raining process.

Once the evaporation condition is satisfied, then, raining
process is done. The new position of newly generated
streams is located by

L% =1B+rand (UB-LB), (23)

stream

where LB and UB indicate lower bound and upper bound.

Moreover, computational performance and convergence
rate are improved by the following equation, and it is only
utilized for stream, which is directly flow to sea.

Lo = Lo + VO rand a(1, f

stream var ) > (24)
where § denotes a coefficient, and it shows the range of
searching area near sea, rand a is randomly distributed
integer.

Step 10. Decrease value of user define parameter.

The large amount of B, ,, decreases a search, but mini-
mum value supports search intensity near a sea. The value
of B, is decreased by

b Bfnax (25)

Bb+1 _
max iteration

max — Pmax

Step 11. Check the feasibility of solution.

The optimal solution is estimated by fitness measure
using equation (26) and if a new solution is better than pre-
vious solution then updates a previous value with new one.

3.3. Optimized Dictionary-Based Algorithm. The optimized
dictionary-based image segmentation process is as follows.

3.3.1. Region-Based Curve Evolution. Let us assume an image
J with background and object, which is characterized by var-
ious two intensities. The curve is initialized in image, and it
is specified by zero level set of function ¢, which directs to
pixel labeling as outside or inside. Moreover, mean label
intensities t,, and ¢, are computed in which outside
includes more backgrounds, whereas inside involves more
objects. Meanwhile, the curve is introduced for segmenting
the image. Furthermore, curves are reduced, while pixel
intensities are near to f,,, and curves are enlarged, when
pixel intensities are near to t;,. The threshold value among
enlargement and reduction is referred as (¢, + f.,)(fi, +
f.u)/2, and this two-stage process is continued. The mean
label intensities are recomputed in order to differentiate
intensities of background and object, since curve is devel-
oped, and at last curve segments out the object. The zero
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Output: Optimal solution
Begin:

Estimate fitness function

Check evaporation condition
If ‘Lb - Lfiverl <B

sea max >

End if

Check feasibility of solution
End.

Input: Rain drop population and initial parameters

Initialize a population from rain drop, sea and river

Estimate a cost of each rain drop based on equation (8)

Establish intensity of flow for rivers and sea based on equation (9)
Stream flow to river is carried out by equation (10)

River flow to sea is done by equation (21)

Replace position of river and sea

b=1,2,3,f) -1
Perform training process using equation (23) and (24)

Replace user defined parameter

ArLcoriTHM 1: Pseudocode of the proposed algorithm.

level set evolution is specified by

% =1(Q)[(tout = tin) 2T = towe — tin +P1),  (26)

where p specified minimizing curve length, and & denotes
curvature of level set curve and term weighted, which is

expressed as
Vo
p:v<_>. (27)
Vel

3.3.2. Texture Dictionary. Here, particular amount of TxT
patches is extracted from image and collects pixels intensi-
ties in patch vector of ¢ = Tlength and cluster are patches

in d™ clusters based on k-means approach and Euclidean
distance for creating dictionary. All image patches are allo-
cated to single dictionary component and all image pixels
related to t = T* dictionary pixels in which the image patches
are overlapping. Moreover, allocation of particular image
patch to certain dictionary component produces ¢ pixels
from image patch relate to t pixels from dictionary part. In
addition, binary relation among dictionary pixels and image
pixels is specified based on sparse binary matrix G with |¢|
rows and dt columns; here, |@| defines the whole amount
of image pixel, and dt refers to the whole quantity of dictio-
nary pixels. Here, matrix G captures texture details of image
by concurrently encoding two things, namely, spatial rela-
tionship among patches and dictionary task of all image
patches.

3.3.3. Label to Probability Transformation. Every patch from
image ] has equivalent label patch from C,. All dictionary
units have the amount of allocated image patches, and it per-
mits to estimate dictionary component label. Moreover, dic-
tionary unit label is estimated as pixel-wise average of label
patch related to image patches, which are allocated to dictio-
nary unit. Dictionary label is effectively estimated by order-

ing label image pixels in binary vector C;, and multiplying
with G, and it is normalized. The resulting vector includes
pixel-wise frequency of dictionary unit belonging to the
inside, which is expressed as

9y, = diag (GI)"Ga,. (28)

The elements of g, is necessary to rearrange depending
on dictionary dimension for obtaining dictionary label.

The labels in g, and g, =1 — g;, are biased, because of
the ratio of inside area |, | and outside area |y, = |y|-|
Y, || Moreover, pixel normalization function works on
every element of g, , which is given by

(29)
gin + gout

|l//in | |V/0ut| '

The next transformation includes the estimation of
pixel-wise image probabilities from dictionary labels, which
is carried out by averaging. Every dictionary label is located
in image space at image patch location, which is allocated to
dictionary unit. In order to estimate pixel probability, ¢
values are required to average, because of patch overlap.
Here, the effective estimated is done by

E,, = diag (G'1)'G"g,,. (30)
Moreover, E,, is different from C;, because image
patches from outside and inside is allocated to similar dictio-

nary unit. The binary values from C,, is diffused depending
on the texture information encoded in G.

3.3.4. Multiple Labels. The layered image label with C, to C,
layers is generated for managing multiple layers. In addition,
every layer is a binary indicator of label, and the layers are
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sum to one in all pixels. The transformation is applied to
every layers; thereby, dictionary labels are g, to g,.. Mean-
while, normalization of area is carried out pixel-wise for
every layer,

S - 1
(992> 9x) = 5

/\

9 9 Ix )
| | |‘/’21| |’/’X|
9_

Jwl

(31)

v
||M><

Once area normalization is completed, then, transforma-
tion is applied to every gy, thus, in X probability images E,
to E,, which is sum to one in every pixel.

3.3.5. Curve Evolution. The closed curve is denoted as zero
level set of function ¢, which defines label image C,, attains
1, while ¢ is negative or else it is zero. The label image is con-
verted to probability image E;, as in equation (30). The
curve point at positions with large E;, should be move out-
wards, whereas curve point with large E .= . should
move 1n51de, and curve must be convergence in band, while

E,, = E,. The curve evolution is specified as
op 1
ot 2 in phl (P| ( )

Every X labels with single level set function is repre-
sented as ¢y, x=1,.---, X for segmenting multiple labels.
The pixel-wise transformation of probabilities for every
labels are expressed as

€ 2] ex
(81,8, +8x) = <e1+max (e,) e +max(e,) ~ ex+max (en)),
n#l n#2 n#X
(33)

Here, the level set evolution for a multilabel segmenta-
tion is expressed by the following equation,

o9,
ot

~E +p|Vo, |;x=1,2,-, X. (34)

N —

Moreover, the curve update is performed by

o9
t+1 _ t
=9 +Atat. (35)

Based on WCBA, curve update is equation (21) of equa-
tion (35),

B (Lb+1 —randz(Lh Ly Q- 1)) b

Lb river river
1-randz(2-1,)

(36)

Substitute equation (36) in equation (35), the solution

becomes

o = (¢! —rand z(¢" + Qb'l)) I ) Ata—(P

1-rand z(2 - ) ot’
1 ot rand zl, (9" + Q") op
= - + At—,
1-rand z(2 - 1) 1-rand z(2 - 1) ot

rand z, (9" + Q")
1 -rand 2(2 -1)

rand zl,, (¢! + Q")

w9 09
1 -rand z(2 - 1) ot
l 0
t+1 _ b _ j
L (1 1 -rand z(2 - lb)) At ot 1-rand z(2 - 1)

+1(1—2rand z +rand zl, - I, dp rand zl, (¢ + Q")
a2
1-rand z(2-1,) ot 1-rand z(2 - 1)

>

1 1-randz(2-1,) A dp randzl, (¢ + Q)
T l-randz(2-1,) -1, | ot 1-rand z(2 - 1,)

(37)

Therefore, the above expression is utilized for updating
the curve; thereby, the proposed WCBA-based deformable
model achieved better performance for lung cancer segmen-
tation with less complexities.

4. Results and Discussion

The implementation of the proposed work is carried out in
Matlab environment. The experiment is conducted using
Lung Image Database Consortium image collection (LIDC-
IDRI) [24]. This dataset was started by the Foundation for
the National Institutes of Health (FNIH). This dataset
includes three modalities; lung cancer screening CT scans
with annotated lesions, computed radiography, and digital
radiography. Moreover, eight medical imaging companies
and seven centers are incorporated to produce this database
including 1018 cases.

4.1. Performance Metrics. The performance metrics which
are used to evaluate the proposed WCBA based deformable
model approach is as follows.

4.1.1. Average Segmentation Accuracy. Segmentation accu-
racy is utilized in order to predict the correctness of segmen-
tation and is defined as

. A+B
SegmentationAccuracy = A+BiKs 1 (38)

where A, B, K, and I denote true positive, true negative, false
positive, and false negative, respectively.

4.1.2. Average Jaccard Coefficient. Jaccard coeflicient is used
to calculate the similarities of two samples. The Jaccard coef-
ficient is expressed as

IMAN]|
M| +|N| - [MAN]|’

JaccardCoefficient =

(39)

where M and N are samples.
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FIGURE 2: Segmentation results of the proposed method: (a) input images, (b) preprocessed images, (c) lung lobes region segmentation, and

(d) lung cancer segmentation.

4.1.3. Average Dice Coefficient. This metric is employed to
compare segmentation of predicted output and target output.

2x(YnZz)

DiceCoefficient = YuZ)

) (40)

where Y is a target output and Z signifies predicted output.

4.2. Segmentation Results. The experiment is conducted on
three sample CT images. Figure 2 illustrates the segmenta-
tion results obtained by the developed WCBA based deform-
able model. Figure 2(a) represents three sample images of

CT, Figure 2(b) shows preprocessed images, Figure 2(c)
depicts the lung lobes regions segmentation, and
Figure 2(d) represents lung cancer segmentation. The per-
formance evaluation and comparative analysis of the pro-
posed method are discussed in the following sections.

4.3. Performance Evaluation. The performance of the pro-
posed method is evaluated using three metrics, namely, aver-
age segmentation accuracy, average dice coefficient, and
average Jaccard coeflicient for the cluster size of 7 with dif-
ferent iteration values as depicted in Figure 3. For the cluster
size of 7, the average segmentation accuracy of the proposed
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FIGURE 3: Performance evaluation of the proposed method for different values of iterations: (a) average segmentation accuracy, (b) average

Dice coefficient, and (c) average Jaccard coefficient.

method is 0.8504, 0.8704, 0.8660, 0.8746, and 0.9205 for the
corresponding iterations of 20, 40, 60, 80, and 100 as shown
in Figure 3(b). Similarly, the average dice coeflicients are
0.7605, 0.7281, 0.7862, 0.7909, and 100 as shown in
Figure 3(b), and the average Jaccard coefficient is 0.7429,
0.7304, 0.7844, 0.7913, and 0.8136 as shown in Figure 3(c).

4.4. Comparative Analysis. The comparative analysis of the
proposed WCBA based deformable model is performed with
the existing techniques, namely, CNN [3], IPCT + NN [14],
and dictionary-based segmentation [21]. Three evaluation
metrics, average segmentation accuracy, average Dice coeffi-
cient, and average Jaccard coefficient, are used for the per-
formance comparison with different cluster size as well as
image size as depicted in Figure 4. For cluster size 4 and
image size 256 x 256, the proposed method achieved an

average segmentation accuracy of 0.9245 and correspond-
ingly the other methods achieved 0.8745, 0.8788, and
0.8823 as shown in Figure 4(a).

Here, the proposed method obtained a better percentage
improvement of 5.40%, 4.94%, and 4.56% with respect to the
existing techniques. Likewise, in Figure 4(b), the average Dice
coefficient obtained by the proposed method is 08208 and for
other techniques 0.7278, 0.7696, and 0.7863. Hence, the per-
centage of improvement of the proposed method is 11.31%,
6.23%, and 4.20%. In Figure 4(c), the average Jaccard coeffi-
cient of the proposed method is 0.8155 and for the other tech-
niques 0.7657, 0.7753, and 0.7953, respectively. In this case,
the percentage of improvement is 6.10%, 4.92%, and 2.47%.

Similarly, the performance comparison o7f the proposed
method with the existing techniques is shown in Figure 5 for
the cluster size 5 and image size 512 x 512. As depicted in
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Figure 5(a), the average segmentation accuracy achieved by
the proposed method is 0.9024, while other methods
achieved 0.8224, 0.8591, and 0.8766, respectively. Here, the
percentage improvement of the proposed model is 8.86%,
4.79%, and 2.85% as against to the existing techniques. Fur-
thermore, the average Dice coefficient obtained by the pro-
posed method is 0.8261 and for other methods 0.7282,
0.7832, and 0.7999, respectively, as shown in Figure 5(b).
In this case, the improvement obtained by the proposed
method is 11.84%, 5.20%, and 3.17%. Likewise, in
Figure 5(c), the average Jaccard coefficient obtained by the

proposed method is 0.8228 and for other methods 0.7437,
0.7702, and 0.7977, respectively. Here, the proposed method
attained the performance improvement of 9.61%, 6.39%, and
3.05%, respectively. Table 1 summarizes the performance of
the proposed method with the existing techniques in terms
of average segmentation accuracy, Dice coefficient, and Jac-
card coefficient for different cluster and image size.

Tables 2 and 3 illustrate the comparison of computa-
tional time and memory utilization of the proposed method
and existing techniques. From Table 2, it is observed that the
processing speed of the proposed method is high and hence
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TaBLE 1: Performance comparison of the proposed method with the existing techniques.

Cluster size Evaluation metrics CNN [3] IPCT + NN [14] Dictionary-based method [21] Proposed method
Average segmentation accuracy 0.8875 0.8909 0.8934 0.9257
4 Average Dice coefficient 0.7667 0.7754 0.7963 0.8213
Average Jaccard coefficient 0.7855 0.7911 0.7997 0.8244
Average segmentation accuracy 0.8424 0.8591 0.8791 0.9257
5 Average Dice coefficient 0.7645 0.7899 0.8085 0.8282
Average Jaccard coeflicient 0.7579 0.7844 0.7991 0.8270

TaBLE 2: Comparison of computational time.

Methods CNN [3] IPCT + NN [14] Dictionary-based method [21] Proposed method

Time in sec. 17.971 16.707 14.077 12.582
TaBLE 3: Comparison of memory requirements.

Methods CNN [3] IPCT + NN [14] Dictionary-based method [21] Proposed method

Memory in GB 3.803 3.8003 3.787 3.728

computationally efficient. Similarly, from Table 3, it is
noticed that the memory requirements of the proposed
method are less as compared to other techniques.

5. Conclusion

In this paper, a WCBA-based deformable model for lung
cancer segmentation is presented. This approach consists
of preprocessing, lung lobe regions segmentation, and lung
cancer segmentation. After preprocessing, accurate lung lobe
regions are extracted using Bayesian fuzzy clustering models.
Once the lung lobe regions are extracted, then, lung cancer
segmentation is performed using the WCBA-based deform-
able model. The proposed WCBA is devised by the incorpo-
ration of BA and WCA. The experiment was carried out
using standard database. Furthermore, the performance is
evaluated using average segmentation accuracy, average Dice
coeflicient, and average Jaccard coeflicient for different clus-
ter sizes. The results obtained by the proposed method are
very encouraging as compared to the existing lung cancer
segmentation techniques. The future dimension of this work
can be extended by developing other novel optimization
algorithms for obtaining better segmentation performance.

Data Availability

The codes along with dataset images are available on github
repository.  Link  https://github.com/mamthashetty234/
Water-Cycle-Bat-Algorithm.git.
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