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Abstract

Understanding the tissue-specific genetic controls of protein levels is essential to uncover 

mechanisms of post-transcriptional gene regulation. We generated a genomic atlas of protein 
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levels in three tissues relevant to neurological disorders (brain, cerebrospinal fluid (CSF), and 

plasma), by profiling thousands of proteins from participants with and without Alzheimer disease 

(AD). We identified 274, 127, and 32 protein quantitative trait loci (pQTLs) for CSF, plasma, 

and brain, respectively. Cis-pQTLs were more likely to be tissue-shared, but trans-pQTLs tended 

to be tissue-specific. Between 48.0 to 76.6% of pQTLs did not colocalize with expression, 

splicing, DNA-methylation, or histone-acetylation QTLs. Using Mendelian randomization (MR), 

we nominated proteins implicated in neurological diseases, including AD, Parkinson’s disease 

or stroke. This first multi-tissue study will be instrumental to map signals from genome-wide 

association studies (GWAS) onto functional genes, to discover pathways, and to identify drug 

targets for neurological diseases.

Introduction

Genetic studies have been successful in identifying genetic regions associated with complex 

traits, including diabetes, cardiovascular disease, and neurodegenerative diseases among 

others1–4. However, the studies have fallen short in promoting understanding of the 

biological mechanisms underlying those traits. Most GWAS identify multiple disease loci 

rather than functional variants or genes, which makes it difficult to biologically interpret 

association results and to identify novel biomarkers and drug targets. By leveraging gene

expression and genetic data generated by multiple studies5,6, including the Genotype-Tissue 

Expression (GTEx) project, it has been possible to identify the functional variants or genes 

driving some GWAS signals. GTEx and others5,7–9 have shown that there are more tissue

specific expression QTLs (eQTLs) in trans than in cis, and that to identify disease relevant 

functional genes, it is important to interrogate the tissue of interest for the specific trait in 

question.

However, eQTL mapping has not been able to fully identify the functional variants and 

genes driving GWAS signals. One explanation is that many genetic variants alter protein 

levels without affecting transcript levels10. Several published studies analyzed the genetic 

architecture of protein levels, but most are focused on a single tissue, mainly plasma10–13. 

A few studies with smaller sample sizes investigate CSF14,15 or brain tissue16. These studies 

suggest that a sizeable proportion of pQTLs are not eQTLs and that additional GWAS 

signals can be mapped to protein levels. Integration of pQTLs with MR has identified 

pathways and biomarkers for complex traits as well as potential therapeutics that could be 

repurposed10.

In this study, we combined high-throughput proteomics from multiple tissues with genetic 

data to determine the genetic architecture of protein levels in neurologically relevant tissues 

(brain, CSF, and plasma). This integration led to the identification of tissue-shared and 

tissue-specific pQTLs that are critical for the understanding of the biology of complex traits, 

particularly neurological diseases.
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Results

Discovery of multi-tissue pQTLs

We measured the abundance of 1,305 proteins using an aptamer-based platform17 in CSF 

(n=971), plasma (n=636), and brain (n=458) samples (Extended Data Fig.1, Table S1). 

We included multiple technical and biological replicates to confirm the replicability and 

reproducibility of our proteomic measurements (Extended Data Fig.2). We performed 

stringent quality control (QC) steps for the proteomic data (See Methods). After QC, 

835 CSF samples and 713 proteins, 529 plasma samples and 931 proteins, and 380 brain 

samples and 1079 proteins were included in the analyses (Tables 1, S2). The cohort included 

individuals with AD and cognitively normal individuals of European ancestry (Table 1). 

To identify pQTLs within each tissue (Fig. 1a), we performed genome-wide association 

analyses of 14.06 million imputed autosomal common variants (minor allele frequency 

(MAF) ≥ 0.02) against protein levels in each tissue. We defined cis-signals as those where 

the single nucleotide polymorphism (SNP) fell within 1Mb upstream or downstream of 

the gene start site, which may not include all enhancers for the corresponding gene. Trans

signals were defined as those where the SNP fell outside of the 2Mb window. To correct 

for multiple tests, we used a stringent genome-wide threshold of p<5×10−8 for cis-pQTLs 

and 5×10−8/(number-of-independent-proteins) for trans-pQTLs. There were 169, 230, and 

75 independent proteins in CSF, plasma, and brain, respectively (see Methods). Therefore, 

p-value thresholds were set at 2.96×10−10 for CSF, 2.17×10−10 for plasma, and 6.67×10−10 

for brain.

In total, we identified 274 significant independent pQTLs for 184 CSF proteins, 127 

independent pQTLs for 100 plasma proteins, and 32 independent pQTLs for 27 brain 

proteins (Fig. 1b,c, Tables S3, S4, S5). The number of significant pQTLs was proportional 

to the sample size, rather than the number of proteins. Of the 274 significant associations 

in CSF, 82% were cis associations and 18% were trans associations. In plasma, 76% were 

cis associations and 24% were trans associations. Lastly, in brain, 94% were cis associations 

and 6% were trans associations (Fig. 1b,c). We next investigated the distance between 

trans-pQTLs from the transcription start site of their respective genes to discover how many 

trans-pQTLs are inter-chromosomal or intra-chromosomal. We found that 91.5 to 98.9% of 

the trans-pQTLs were inter-chromosomal (Table S6).

Disentangling independent local pQTLs

To identify independent local pQTLs where more than one association exists within 1Mb 

up- or downstream of the region’s top SNP, we performed conditional analyses. After 

the first round of conditional analyses, 55 CSF, 22 plasma, and 5 brain loci still had 

SNPs with independent and genome-wide significance (Fig. 2a). We performed a second 

round of conditional analyses including the top SNPs from the initial and first conditional 

analyses. In the second round, 23 CSF, 6 plasma, and 1 brain loci still showed independent 

and genome-wide significant associations (Fig. 2a). We continued performing conditional 

analyses until no SNPs passed the genome-wide threshold. We found 1 protein with up 

to 5 independent signals, 10 proteins with 4 independent signals, and 30 proteins with 3 
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independent signals. This highlights the complexity of regions with multiple independent 

local pQTLs that regulate protein levels.

As an example of these complex regions, the main signal for CSF ARTS1 (Fig. 2b) was 

primarily associated with the nonsynonymous variant p.R725Q (rs17482078, p-value = 

8.64×10−95). After conditioning on this signal, there was still a genome-wide signal tagged 

by rs467735 (conditional p-value=9.82×10−89) that was associated with gene expression 

(GTEx; multi-tissue p-value=0). We found two additional independent signals for this 

region. Similarly, there are four independent variants for CSF ASAHL (Fig. 2c). Together, 

these results indicate that proteins are highly regulated and include several independent 

mechanisms, even in the same region. These mechanisms may affect not only gene 

expression (eQTLs), but also protein levels by affecting cleavage, cell secretion, receptor 

binding, or clearance in the case of nonsynonymous variants. One example of such 

regulation by nonsynonymous variants is IL6R, which had a strong cis-pQTL that was 

primarily associated with the coding-variant rs2228145 p.D358A (and rs12730935 which 

was in perfect linkage disequilibrium; plasma=1.6×10−105 CSF= 1.3×10−104), as this variant 

leads to increased cleavage by ADAM10 and ADAM17 of membrane bound IL6R18.

Replication and meta-analyses using independent datasets

To replicate our pQTL findings, we analyzed several publicly available datasets (Fig. 3a,b,c, 

Extended Data Fig.3a,b). We also performed meta-analyses and cross-tissue replication. For 

CSF (Fig. 3a), we found 274 independent pQTLs, of which 223 (81.3%) were novel. We 

leveraged two CSF studies in which similar proteomic and genetic data were available. 

Sasayama et al. generated aptamer-based proteomic and array-based genotype data from 

132 samples of Japanese origin14 and the Parkinson’s Progression Markers Initiative19 

(n=131; released December 2019, PPMI19 hereafter) also had proteomics and genotype 

data available. We found that 51 pQTLs (49 cis and 2 trans, 18.6%) identified in our 

study have genome-wide significance with effects in the same direction as one or both 

studies. We also performed a meta-analysis of the Sasayama and PPMI19 studies (Table 

S7) to identify additional genome-wide and nominal associations. We found that 153 

(55.8%) of our significant signals had genome-wide significance in our meta-analysis of 

the PPMI19 and Sasayama studies and 27 (9.9%) additional pQTLs showed at least a 

nominal association (p-value < 0.05) in the same direction. We identified an additional 16 

(5.8%) pQTLs that have been reported as pQTLs in other tissues (plasma studies from 

AddNeuroMed 20, INTERVAL10, KORA11, SCALLOP12, the Phenoscanner database21, a 

brain mass spectrometry-based pQTL study16, and in our plasma or brain pQTL data). We 

were unable to test for replication of 5 (1.8%) pQTLs as protein levels were not available 

in these other studies. In summary, we were able to replicate more than 90.1% of the 

CSF pQTLs, which is higher than in previous studies10. Twenty-two (8.1%) pQTLs are 

still pending replication, as current CSF studies with smaller sample sizes do not provide 

enough statistical power. However, based on our validation with plasma and brain pQTLs, 

we estimate that more than 90% of those pQTLs are real. This is supported by the fact that 

we have been able to replicate 96.8% and 96.9% of plasma and brain pQTLs (see below).
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For plasma (Fig. 3b), we found 127 independent pQTLs, of which 17 were novel. For 

replication of plasma pQTLs, we used the five studies mentioned above. We were able to 

replicate 96.8% of our 127 pQTLs. We were unable to test 2 (1.6%), as they were not 

measured in those studies. For brain (Fig. 3c), we found 32 independent pQTLs, of which 

27 were novel. As there were no published studies using the same aptamer-based proteomic 

method, we matched our proteins with a mass spectrometry-based pQTL dataset16. We 

were able to replicate 5 (15.6%) signals at genome-wide significance, 8 (25%) signals at a 

nominal (p-value < 0.05) association, and 18 (56.3%) pQTLs that showed at least a nominal 

association in brain or CSF. Only 1 (3.1%) pQTL was not replicated.

To increase statistical power and to identify additional genome-wide significant pQTLs, we 

performed meta-analyses that included all CSF cohorts as well as multi-tissue analyses. We 

first performed a CSF meta-analysis including the 596 common proteins shared among our 

study, PPMI19, and the Sasayama study (Extended Data Fig.3c,d). Due to the increased 

sample-size, we identified 425 pQTLs for 310 proteins, compared to 250 pQTLs for 185 

proteins identified in our CSF cohort alone. This represents a nearly twofold increase in 

pQTL signals by increasing the sample size by 25%, suggesting that more pQTLs will be 

identified with larger sample sizes. We observed a similar increase in the number of pQTLs 

when performing a multi-tissue meta-analysis. For these analyses, we included 342 proteins 

that passed QC in all three tissue types as well as the PPMI19 and Sasayama study. We 

found 253 pQTLs compared to the 139 that were found in our CSF cohort alone (Extended 

Data Fig.3c,d).

Because our study includes cognitively normal older individuals and AD cases, we 

performed additional analyses to determine if any of the pQTLs are disease- or age-specific. 

To investigate a disease-specific effect, we first included disease status as a covariate. Next, 

we performed case-only and control-only analyses. Finally, we compared the effect sizes of 

the genome-wide significant pQTLs from the initial analyses with the beta of these analyses. 

We found an extremely high correlation (Pearson’s r>0.98, Extended Data Fig.4, Tables 

S8, S9, S10) indicating that the associations of the genetic variants with protein levels are 

not disease-specific. To investigate an age-specific effect, we performed separate analyses 

in participants younger than or older than the average age of our cohort and compared the 

effect sizes of the genome-wide significant pQTLs from the initial analyses with the beta 

of these analyses. We found an extremely high correlation (Pearson’s r>0.98, Table S11), 

indicating that few pQTLs are age-specific.

Pleiotropic loci

We found that some loci were associated with the levels of more than one protein, and up 

to 13 different proteins in the case of genetic variants in the APOE region. Prior findings 

reported that the APOE locus is a pleiotropic region using plasma, and we found this in 

CSF as well. Genetic variants in the APOE gene region were associated with 13 different 

CSF proteins, including apo E2 and 14-3-3 (Fig. 3d,e, Extended Data Fig.5, Table S12). The 

genes encoding these proteins were located on different chromosomes indicating that this is 

not just cis regulation. Variants in the APOE locus are the strongest genetics risk factors for 

AD. Several studies have found that the 14-3-3 protein is a marker of non-specific neuronal 
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death22,23, and our results indicated that 14-3-3 protein was also regulated by the APOE 
locus. For CSF, we found 59 pleiotropic regions where a single locus was associated with 

2 or more proteins. In plasma, we replicated the known pleiotropy of the ABO locus for 

7 different proteins, including E-Selectin (Fig. 3f, Extended Data Fig.6, Table S13), which 

was implicated in stroke risk by a recent study24. Further studies are needed to establish 

how these genetic variants are associated with multiple proteins. For example, genetic 

variants in the SPCS3-VEGFC region regulated brain levels of 5 different proteins including 

Angiopoietin-1 and Growth hormone receptor (Fig. 3g, Extended Data Fig.7, Table S14). 

We found an additional 32 pleiotropic regions in plasma and 9 in brain.

Several published studies on eQTLs and pQTLs have not identified pleiotropic loci as they 

only analyzed cis-associations16,25–27. Our results indicate that one protein is regulated in 

coordination with other independent proteins, which are likely part of the same signaling 

pathway. To understand the biological processes of health and disease, it is important to 

identify which proteins are regulated by the same genetic factors. This study identifies 

tissue-specific pleiotropic effects highlighting the complex mechanisms that regulate protein 

levels. Identification of additional tissue-specific cis-, trans-, and pleiotropic regions will 

lead to discovery of novel pathways relevant to pathogenesis.

Tissue-specificity investigation

Our unique study design, which included protein measurements in multiple tissues linked 

to genetic data, enables us to investigate the overlap of the genetic architecture of protein 

levels across tissues. To identify tissue specificity, we performed mashr28analyses on our 

multi-tissue pQTL results using a p-value threshold of < 0.05 with proteins (n=411) that 

passed QC in all three tissues (Fig. 4a). Given a local false sign rate (LFSR) < 0.05 

and Z-score of at least a 2-fold difference, we found that 15 to 26% of cis-pQTLs were 

tissue specific (Fig. 4b) while 77 to 91% of trans-pQTLs were tissue specific (Fig. 4c). 

This analysis indicated that cis-pQTLs were more likely to be shared across tissues than 

trans-pQTLs. For example, SIG14 only had a cis-pQTL shared across all three tissues (Fig. 

4d). We performed additional analyses by comparing the proportion of pQTLs shared across 

tissues with different p-value thresholds, reaching the same conclusion (Supplementary 

materials, Extended Data Fig.8,9; Tables S15, S16, S17). CSF and plasma each shared more 

than 70% of brain pQTLs, suggesting that CSF and plasma were informative tissues for 

studying brain-related disorders such as AD.

Functional annotation and biological mechanisms of pQTLs

Previous studies discovered that most eQTLs are non-coding variants leading to the 

hypothesis that most eQTLs modulate transcription factor binding or chromatin structure7. 

However, it remains elusive if this is the case for pQTLs. For this reason, we performed 

bioinformatic functional annotation and statistical analyses to determine if pQTLs are 

enriched in specific regions, such as untranslated regions (UTRs), downstream or 

upstream of genes, introns, exons, splice sites, non-coding RNA (ncRNA) splice sites, 

ncRNA_introns, ncRNA_exons, or intergenic regions. We found that the strength of the 

association (negative log10 p-value) for cis-signals decreased with distance from the 

transcription start site (Extended Data Fig.10a), similar to what has been previously reported 
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for cis-eQTLs7. This effect was found in all three tissues, suggesting that this is a common 

biological event. There was an inverse relationship between absolute value of the effect size 

(beta) and MAF (Extended Data Fig.10b), which is consistent with previous protein-level 

genome-wide association studies10,29.However, both cis- and trans-pQTLs were strongly 

enriched for synonymous and non-synonymous exonic variants (Odds Ratio = 3.71, 5.25, 

4.19 for CSF, plasma, and brain, respectively; Extended Data Fig.10c; Supplementary Fig. 

1). For 42 to 53% of cis-pQTLs (95 out of 226 in CSF, 44 out of 97 in plasma, and 

16 out of 30 in brain), the association can be explained by a coding-variant, whereas for 

cis-eQTLs5 only 2 to 5% of signals are located in coding regions. This indicates that pQTLs 

are significantly enriched for coding-variants. These results suggest a role for additional 

regulatory mechanisms (including post-transcriptional changes), as protein levels may not 

correlate with mRNA levels.

The enrichment of coding-variants for pQTLs in cis and trans (Extended Data 

Fig.10c, Tables S3, S4, S5) suggests that protein levels are likely to be regulated post

transcriptionally rather than by regulating mRNA level30. Cis-pQTLs could lead to changes 

in protein levels by affecting the signal or the cleavage peptide. For trans-pQTLs, these 

variants could alter function of a receptor of the protein, affect the machinery that cleaves 

proteins from the membrane, or regulate the function of a gene encoding a transcription 

factor. This coding-variant enrichment observation may be confounded by aptamer-binding 

effects inherent to the aptamer-based platform. In multiple cases, the most significant signal 

was a coding-variant in a gene that affects protein cleavage or secretion (cis-signal; as in 

the case of IL6R or YKL-40; Extended Data Fig.10c, Table S3), or a coding-variant in 

the receptor of the protein that is likely to modify protein-receptor binding (trans-signal; 

as in the case of variants in the APOC4 gene region associated with the BAFF Receptor; 

Extended Data Fig.10c, Table S3). In line with the hypothesis that coding-variants have a 

greater effect size and that pQTLs are enriched for coding-variants, we found that pQTLs 

explained a large proportion of the variation in protein levels. The median variation in 

protein levels explained by pQTLs (adjusted R-squared calculated using the top variant as 

the only predictor and again using a nested model accounting for the covariates) was 9 

to 14.9% (interquartile range: 13.2 to 15%; Extended Data Fig.10d). However, there were 

some extreme cases in which the top pQTL explained more than half of the variability in 

protein levels. For example, rs2075803 (p.K100E) explained 81% of CSF Siglec-9, rs5498 

(p.K469E) explained 74.4% of plasma sICAM-1, and rs5498 (p.K469E) explained 67.4% of 

brain PPAC (Extended Data Fig.10d, Tables S3, S4, S5). CSF Siglec-9, plasma sICAM-1, 

and brain PPAC have been replicated in other studies16,29,31,32 using a different proteomic 

approach, which indicates that these findings may not be driven by platform.

Colocalization of pQTLs with other molecular QTLs

eQTL mapping and colocalization analyses have been instrumental in identifying the 

functional genes in genetic studies of complex traits5,33. However, it is known that changes 

in transcript level do not necessarily translate to changes in protein level. To identify the 

most likely gene underlying the GWAS signals, it is vital to go beyond eQTL and use other 

types of molecular QTLs. To determine if pQTLs provide additional information to that of 

eQTLs, we performed colocalization analyses on pQTLs with eQTLs.
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Colocalization analyses indicated that only 13.3 to 33.3% of pQTLs had a posterior 

probability of hypothesis-4 (PP.H4)>0.8 for the GTEx cortex eQTLs or 14.2 to 17.5% for 

GTEx whole blood eQTLs (Tables S18, S19). These results were further replicated on the 

much larger study of blood eQTLs from the eQTLgen consortium9 (N=31,684 samples; 

Table S20). In brain, 28% of our pQTLs were colocalized in GTEx, which is within a similar 

scale to the Robins et al. (2019) study16 in which the authors used mass spectrometry-based 

proteomics to measure 7,901 proteins in 144 samples. This may also be explained by the 

fact that there are only 323 brain samples in GTEx compared to 380 in this study, which 

represents the largest brain pQTL analysis performed so far. In plasma, 16% of our pQTLs 

colocalized with eQTLs, similar to previous studies10. No previous studies have analyzed 

the colocalization between pQTLs and eQTLs in CSF.

Although eQTL mapping has been the most common approach to identify the genes driving 

the GWAS signals, there are other types of molecular QTLs (splicing, DNA-methylation, or 

histone-acetylation) that could be useful. We also wanted to determine the overlap of pQTLs 

found in this study with splicing, DNA-methylation, and histone-acetylation QTLs (Fig. 4e). 

Our colocalization analyses indicated that just 3.1 to 16.7% of pQTLs were splicing-QTLs 

(Tables S21, S22). Between 1.03 to 10% of pQTLs colocalized with DNA-methylation 

QTLs, and fewer than 2% colocalized with histone-acetylation QTLs (Tables S23, S24). 

Overall, between 48 (brain) to 76.6% (CSF) of pQTLs identified in this study did not 

colocalize with QTLs for expression, splicing, DNA-methylation, or histone-acetylation, 

suggesting that protein level may help explain some missing heritability of disease when 

integrated with other molecular traits.

Mendelian randomization and drug repositioning

As a large proportion of pQTLs are not eQTLs or other types of QTLs, it is possible that 

the pQTLs identified in this study can help to identify the gene explaining GWAS signals. 

Using the MR framework, it is possible to identify functional genes and to prioritize proteins 

involved with complex traits for further analyses13,34. To identify proteins implicated in AD 

and other neurological traits, we performed MR analysis by using pQTLs as instrumental 

variables and AD risk, progression, and onset; Parkinson’s disease (PD); Frontotemporal 

dementia (FTD); Amyotrophic lateral sclerosis (ALS); and stroke risk (Table S25, S26) 

as outcomes. Only pQTLs with an F-statistic≥10 (Table S25) were included, and all 

pleotropic regions identified in this study were excluded. After multiple testing correction, 

we identified three proteins involved in AD risk in CSF, 13 in plasma, and 7 in brain. Other 

proteins found to be implicated in other traits by MR can be found in Table 2, Fig. 5, and 

Table S27. The Steiger test was used to confirm the direction of inference from protein to 

trait (Table S28). Colocalization provides additional supporting evidence of inference by 

reducing the possibility that linkage disequilibrium (LD) has influenced MR findings35. We 

found that 42.5% of protein-disease associations colocalized with GWAS loci, including 

plasma Siglec-3 (also known as CD33) and AD risk (Tables S29, S30). Integrating MR 

results (using cis- and trans-pQTLs as instrumental variables) with data from drug databases 

can be used to repurpose known drugs for diseases without treatment. In this study, we 

identified 25 drugs (Table S31) that are known to interact with proteins that were identified 

by MR as being associated with AD, PD, ALS, or stroke.
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Some specific examples of how this data can be leveraged to map additional GWAS loci 

and identify drug targets include plasma CD33 for AD risk, plasma IDUA for PD risk, CSF 

Carbonic Anhydrase IV for ALS risk, and CSF/plasma E-Selectin for stroke risk. We found 

that variants in the CD33 locus, associated with plasma CD33 protein levels, are also known 

to be associated with AD risk3. MR analyses indicated that CD33 is implicated in AD 

(Table S29). CD33 is a microglia-specific gene36 and likely affects microglia activity and 

innate immune response. Our analyses also indicated that CD33 is a target of AVE9633, an 

anti-CD33 antibody used to treat acute myeloid leukemia, and therefore this antibody could 

be used in the context of AD. An ongoing clinical trial has been using antibodies targeting 

CD33 as a potential therapy for AD37. In summary, this analysis validated CD33 as a key 

protein to AD; it is also part of the TREM2-MS4A4A pathway.

Another example is plasma IDUA for PD risk. The IDUA locus is the third most significant 

locus in the largest GWAS38 studying PD risk. This locus contains more than one 

independent signal associated with PD38 and it was unclear which gene was functional. 

We found a SNP at this locus that is associated with plasma IDUA protein level and PD 

risk (rs35220088; p= 2.47×10−6 and 3.52×10−9, respectively). The MR and colocalization 

analyses indicated that IDUA, encoded by IDUA, is functional (FDR=9.37×10−6; Table 

S27, PP.H4 = 0.998; Table S30). IDUA degrades glycosaminoglycans in the lysosome. Our 

investigation identified chondroitin sulfate as a drug that could play a role in the IDUA 

pathway.

The third example is CSF Carbonic Anhydrase IV for ALS risk, which is supported by MR 

analysis (FDR = 7.61×10−6; Table S27). We further inferred Acetazolamide as a potential 

drug to treat ALS risk. Acetazolamide, used to treat glaucoma, epilepsy, and altitude 

sickness, is known to inhibit carbonic anhydrases39. Moreover, a recent in vitro study40 

supported this drug as a potential treatment for ALS.

The fourth example is CSF or plasma E-Selectin protein. E-Selectin is a known stroke 

biomarker24, and our MR plus colocalization analyses indicated that this protein is 

genetically associated with the disease (Tables S27, S30). Carvedilol was identified from 

our drug repositioning analysis and has been reported to provide neuroprotection in animal 

models41.

In summary, our study is useful for mapping additional GWAS loci and identifying drug 

targets. We integrated our MR results with drug databases to identify potential drugs that 

could be repurposed for neurological diseases. It is known that compounds targeting proteins 

that are supported by genetic data are more likely to work than those without such support42. 

This study goes beyond AD or PD, and the data generated here can be applied to other traits.

Limitations

Our study has several limitations. An important note is that we used an aptamer-binding 

platform to profile proteomics, which might be confounded by recognition difference 

instead of real protein abundance change, as already addressed by Sun et al10. Mass 

spectrometry can be a complementary platform30 that will not be affected by this problem. 

Our observation of an enrichment of coding-variants in pQTLs could be largely biased by 
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the platform. However, we found 83 to 90% of our non-coding pQTL and 10 to 17% coding 

pQTL, respectively and depending on tissues, were also seen in a mass spectrometry-based 

pQTL study16 (Table S32). The percentages for coding variants were similar (Proportional

test: p-value > 0.05 in all three tissues), indicating that this enrichment was not exclusively 

due to the bias of a single technology.

Our data suggest that pQTLs are located in coding regions more often than are eQTLs, 

and our results could be biased, because coding pQTLs have stronger effects than non

coding pQTLs. Therefore, non-coding pQTLs may remain undetected due to a lack of 

statistical power. However, the sample size of our study is similar to or larger than GTEx 

for brain-relevant tissues, and eQTL studies from GTEx do not see the same amount of 

coding-variant enrichment5. Our data suggest that around half of pQTLs do not colocalize 

with other molecular QTLs, but this data cannot be extrapolated to all coding genes. 

GTEx and eQTLgen include eQTLs for more than 34,000 RNA molecules, but not all 

of those RNA molecules code for proteins or are expressed in all tissues. It is clear that 

we cannot anticipate an eQTL-pQTL colocalization for a large proportion of coding genes. 

Another reason for a potential lack of eQTL-pQTL colocalization in brain is because our 

brain pQTLs are derived from parietal lobe cortex, and the brain eQTLs from GTEx are 

from whole cortex. The gene regulation may be region-specific, and thus complicates the 

overlapping between two QTL types. The small proportion of overlap between eQTL and 

pQTL data can also be caused by measurements of mRNA expression and protein level in 

different cohorts, sample sizes, or other technical details.

A standard limitation of MR analyses is the inability to fully account for horizontal 

pleiotropy; though, confidence in our results may be bolstered by the fact that we performed 

MR after removing all pleotropic regions reported in this study within each tissue. Another 

limitation of MR interpretation is that our observation on associations between proteins 

and neurological diseases may not be disease-specific, as we observed several associations 

(Table 2, S33) between proteins and asthma risk, an example of non-neurological diseases.

Additional studies performed in more tissues and using approaches that include an even 

larger number of proteins are necessary to better understand the genetic architecture of 

protein levels and to replicate these findings. This is the first study to address the single

tissue bias when comparing pQTLs to results of multi-tissue eQTLs.

Discussion

In this study we generated a detailed map of multi-tissue pQTLs that will be crucial for 

understanding the tissue-specific genetic architecture of protein levels. By leveraging this 

data, we have been able to map some additional GWAS loci, identify additional causal 

proteins implicated in disease pathogenesis, identify novel biomarkers, and reposition 

drugs. If we want to fully understand the genetic architecture of complex traits, we need 

to understand the genetic architecture of protein levels. Until now, multi-tissue pQTL 

mapping has been constrained by the limited availability of large-scale proteomic analyses 

in multiple tissues. We present the largest brain and CSF pQTL analyses to date, the 

first neurologically-relevant multi-tissue pQTL study, and a unique resource for leveraging 
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multi-tissue pQTL to understand neurological traits. These data can be further used to 

perform MR analysis on other complex traits with available GWAS. All results can 

be downloaded from https://www.niagads.org/datasets/ng00102 and interactively accessed 

through a PheWeb43-based website, the Online Neurodegenerative Trait Integrative Multi

Omics Explorer (ONTIME; https://ontime.wustl.edu/).

To achieve personalized medicine, these results highlight the need to implement additional 

functional genomic approaches beyond gene expression towards understanding the biology 

of complex traits and to identify potential drug targets for those traits. We predict that this 

and other studies including additional omic layers (e.g. epigenomics, metabolomics) will be 

instrumental in advancing the field.

Methods

Ethics declarations

This project was approved the ethical committee of the Washington University School of 

Medicine in St. Louis

Aptamer-based proteomics data sample collection

This study included 1,537 participants from Washington University School of Medicine in 

St. Louis. All participants provided informed consent to allow their data and biospecimens 

to be included. The study was approved by an Institutional Review Board at Washington 

University School of Medicine in St. Louis.

Samples from participants include three tissue types: CSF, plasma, and brain (parietal 

lobe cortex). CSF samples were collected the morning after an overnight fast, processed, 

and stored at −80°C. Plasma samples were collected the morning after an overnight fast, 

immediately centrifuged, and stored at −80°C. Brain tissues (~500mg) were collected from 

fresh frozen human parietal lobes.

For CSF tissue, there were 971 unique participants (including 249 AD cases, 717 cognitively 

normal controls, and 5 with unknown status) and 1,300 samples (329 participants provided 

one baseline and one longitudinal sample) in total. Age is distributed with a mean of 69.0 

years and standard deviation of 9.3 years. 53% of the samples are from women.

For plasma tissue, there were 636 unique participants (including 230 AD individuals, 401 

cognitively normal controls and 5 with unknown status) and 648 samples in total. Age 

is distributed with a mean of 70.4 years and standard deviation of 9.8 years. 56% of the 

samples are from women.

For brain tissue, there were 458 unique participants (including 297 AD cases, 27 cognitively 

normal controls and 134 with unknown or other status (e.g. FTD, other neurological 

diseases)) and 459 samples in total. Age is distributed with a mean of 82.2 years and 

standard deviation of 12 years. 60% of the samples are from women.

The donor overlap across three tissues are shown as a Venn diagram in Extended Data 

Fig.2b: 9 donors were shared across all three tissues; 481 donors were shared by both 
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CSF and plasma; 29 donors were shared by plasma and brain; 481, 117 and 420 were 

exclusively for CSF, plasma, and brain, respectively. The Venn Diagram was drawn using 

VennDiagram51 R package (v1.6.20).

These recruited participants were evaluated by clinical personnel from Washington 

University. AD severity was determined by the Clinical Dementia Rating (CDR)52 scale 

at the time of lumbar puncture (LP, CSF samples) or blood draw (plasma).

For brain samples, case–control status was determined by postmortem neuropathological 

analysis of study participant brains based on CERAD53 and/or Khachaturian54 criteria. 

All AD cases have a Braak stage of IV or higher and controls are III or lower. The 

neuropathological diagnosis was performed studying several brain regions, not only parietal.

Proteomic data QC process

We used a multiplexed, aptamer-based platform17, to measure the relative concentrations 

(relative fluorescent units, RFU) of proteins from CSF, plasma, and brain tissues, using 

1,305 modified aptamers in total. The assay covers a dynamic range of 108, and measures 

all three major categories: secreted, membrane, and intracellular proteins (Table S34, 

Supplementary Fig 2, 3). The proteins cover a wide range of molecular functions, such as 

protein binding and the MAPK cascade. The coverage of proteins on the platform has taken 

into account proteins known to be relevant to human disease, including neurodegenerative 

diseases55 and cardiovascular diseases56; thus it has been widely used for biomarker 

discovery.

Aliquots of 150 μl of tissue were sent to the Genome Technology Access Center at 

Washington University in St. Louis for protein measurement. Assay details have been 

previously described by Gold et al.17 In brief, modified single-stranded DNA aptamers are 

used to bind specific protein targets that are then quantified by a DNA microarray. Protein 

concentrations are quantified as RFU.

Quality control (QC) was performed at the sample and aptamer levels using control aptamers 

(positive and negative controls) and calibrator samples. At the sample level, hybridization 

controls on each plate were used to correct for systematic variability in hybridization. The 

median signal over all aptamers was used to correct for within-run technical variability. This 

median signal was assigned to different dilution sets within each tissue. For CSF samples, a 

20% dilution rate was used. For plasma samples, three different dilution sets (40%, 1%, and 

0.005%) were used. For brain samples, a 20% dilution rate was used.

To QC the proteomics datasets (Extended Data Fig.1a-d), the protein/analyte outliers were 

first removed by applying four criteria:

1. Minimum detection filtering. Limit of detection (LOD) was defined as the 

summation of average expression level of the new NP-buffer (used as dilution 

buffer of CSF samples since plate-42) and K fold of standard deviation (K = 2). 

If the analyte for a given sample was less than the LOD, this sample was an 

outlier. Collectively, if the number of outliers given an analyte was less than 15% 

of total sample size, the analyte was kept.
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2. Flagging analytes based on the scale factor difference. The scale factor difference 

was calculated as the absolute value of the maximum difference between the 

calibration scale factor per aptamer and the median for each of the plates run. 

If the value for this analyte was less than 0.5, the analyte passed this criterion 

(NOTE: SOMAlogic SQS report used 0.4).

3. CV of calibrators lower than 0.15. The coefficient of variation (CV) for each 

aptamer was calculated by dividing the standard deviation by the mean of each 

calibrator at the raw protein level. If the analyte had a CV of less than 0.15, this 

analyte passed the CV QC.

4. Interquartile range (IQR) strategy. Outliers were identified if the subject was 

located outside of either end of distribution using a 1.5-fold of IQR given 

the log10 transformation of the protein level. Collectively, if the number of 

outliers given an analyte was greater than 15% of total sample size (aka none

outliers given an analyte was fewer than 85% of total sample size) this analyte 

was filtered. Analytes were kept after passing all the criteria above for the 

downstream statistical analysis.

5. An orthogonal approach was used to call subject outliers based on IQR. 

Collectively, if the number of outliers given an analyte was greater than 15% 

of total number of analytes passed QC (aka none-outliers given an analyte was 

fewer than 85% of total number of analytes passed QC), this subject was labeled 

as an outlier. Furthermore, the analytes were removed if shared by most (~80%) 

of the subject outliers. After this second removal of analytes, subject outliers 

were called again. Outlier subjects were again removed.

We processed the proteomics data using SomaDataIO (v1.8.0)17 and Biobase (v2.42.0)57. 

Proteins were mapped to UniProt58 identifiers and Entrez gene symbols. Mapping to 

Ensembl gene IDs and genomic positions (start and end coordinates) was performed using 

gencode v30 liftover to hg19/GRCh37.

Reproducibility investigation via comparisons between biological or technical replicates

To measure the reproducibility of the aptamer-based platform, we compared the replicates 

for the same subject given each tissue.

For plasma samples, we included 11 subjects with two measures, one as fasted and 

the other as non-fasted. After QC, we kept 931 proteins in 633 samples. The overall 

Pearson’s correlation coefficient between fasted and non-fasted samples is 0.907, with a 

95% confidence interval from 0.904 to 0.911 (Extended Data Fig.2a,d).

For plasma samples, we included one subject with two biological replicates: one collected 

in 1997, the other in 2007. Both samples passed QC. The overall Pearson’s correlation 

coefficient between these two biological replicates is 0.938, with a 95% confidence interval 

from 0.9299 to 0.9453 (Extended Data Fig.2a,e).

For brain samples, we included one subject with two technical replicates. After QC, we kept 

1,079 proteins and 435 samples. Out of these 435 samples, only one replicate of the subject 
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remained. Thus, we compared two technical replicates using the values before QC across all 

1,305 proteins. The overall Pearson’s correlation coefficient between these two replicates is 

0.976, with a 95% confidence interval from 0.9762 to 0.9812 (Extended Data Fig.2a,f).

For CSF samples, we designed 329 subjects with two measures, one as baseline (LP date1) 

and the other as longitudinal (LP date 2). After QC, we kept 713 proteins and 1,270 

samples. Out of these 1,270 samples, 321 subjects with two measures remained in the 

analysis (Extended Data Fig.2a,c). The average time difference between the two LP dates 

was 6.14 years, and the standard deviation was 2.98 years. The overall Pearson’s correlation 

coefficient between two LP dates was 0.995, with a 95% confidence interval from 0.99518 

to 0.99526 (Extended Data Fig.2c).

The overall high correlations within each tissue indicated that the aptamer-based technology 

was highly reproducible.

Genomic data QC process

Most of the samples with proteomic profiling were collected with genotyping data 

(Extended Data Fig.1d). For CSF, 965 out of 971 unique subjects have both genotype 

and proteomic data. For plasma, 633 out of 636 unique subjects have both genotype and 

proteomic data. For brain tissue, 450 out of 458 unique subjects have both genotype and 

proteomic data.

Samples were genotyped on multiple genotyping platforms from Illumina. Stringent quality 

thresholds were applied to the genotype data for each platform separately. SNPs were kept if 

they passed all of the following criteria: i) genotyping successful rate ≥ 98% per SNP or per 

individual; ii) MAF ≥0.01; iii) Hardy-Weinberg equilibrium (HWE) (p ≥1 × 10−6).

After removing low quality SNPs and individuals, genotype imputation was performed using 

the Impute2 program59 with haplotypes derived from the 1,000 Genomes Project (released 

June 2012). Genotype imputation was performed separately based on the genotype platform 

used. SNPs with an info-score quality of less than 0.3 reported by Impute2, with a MAF < 

0.02, or out of HWE were removed. After Imputation and QC, the different imputed PLINK 

files were merged. A total of 14,059,245 imputed and directly-genotyped SNPs and 1,530 

individuals were used for final analyses. To adjust for population substructure (Extended 

Data Fig.1d), principal component analysis (PCA) was conducted using the PLINK1.9 

(v1.90b6.4)60 subcommand pca. HapMap samples (CEU: Caucasian Europeans from Utah; 

JPT: Japanese in Tokyo; YRI: Yoruba in Ibadan, Nigeria) were included in the analyses to 

remove outliers and confirm self-reported ethnicity. Samples within the CEU cluster were 

kept. To identify unanticipated duplicates and cryptic relatedness using pair-wise genome

wide estimates of proportion identity by descent (IBD) (Extended Data Fig.1d), we used 

the subcommand IBD from PLINK1.9 (v1.90b6.4)60. When duplicate samples or a pair of 

samples with cryptic relatedness (PI_HAT ≥ 0.5) were identified, we removed one sample 

from the pair. A total of 835 CSF, 529 plasma, and 380 brain samples passed filters on both 

genomic and proteomic QC.
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pQTL identification

To test for the association between genetic variants and protein levels we performed a linear 

regression (additive model), including age, sex, principal component factors from population 

stratification, and genotype platform as covariates:

log10 ProteinLevel β0 + β1*SNPdosage + β2*age + β3*gender + β4*PC1 + β5*PC2 +

∑
j

5 − 8
βj*genotypePlatform + ε

cis-pQTL mapping.—We conducted cis-pQTL mapping within each of the three tissues. 

Only proteins passing QC were included in the analyses. Protein level was 10-based 

logarithm transformed to approximate the normal distribution. For these tests, data 

distribution was assumed to be normal, but this was not formally tested. Within each tissue, 

cis-pQTL were identified by linear regression, as implemented in PLINK2 (v2.00a2LM)60, 

adjusting for sex, age, the first two genotype-based principal components (PCs) [genetically 

very homogeneous], and genotyping platforms (e.g. Omni1, Omini2.5, NeuroX, etc.). We 

restricted our search to variants within 1 Mb upstream and downstream of the gene start 

site by which each protein is coded. Actual p-values for each variant-protein pair were 

estimated using an additive linear regression model. To identify the list of all significant 

variant–protein pairs, variants with an actual p-value below the genome-wide significance 

(5×10−8) level were considered significant and included in the final list.

trans-pQTL mapping.—PLINK2 (v2.00a2LM)60 was used to test all autosomal variants 

(MAF ≥0.02) using the same QC pipelines as cis-pQTL mapping, but was restricted to 

variants and proteins encoded by the genes locating outside the 2Mb window in each 

tissue independently using an additive linear model. For trans-pQTL mapping, we tested 

variants for association with the same protein list as for cis-pQTL mapping. We included 

the covariates of the first two genotype PCs [genetically very homogeneous], age, sex, and 

genotyping platforms when performing association tests. The correlation between variant 

and protein levels was evaluated using an additive linear regression model. For these tests, 

data distribution was assumed to be normal, but this was not formally tested. To identify 

the list of all significant variant-protein pairs, variants with an actual p-value below the 

study-wide significance (5×10−8/number_PCs) were considered significant and included in 

the final list. The number of PCs was derived as the minimum principal component number 

that cumulatively explain 95% of the variance for each tissue after QC. For CSF, plasma, 

and brain, the number of PCs is 169, 230, and 75, respectively. Thus, the p-value thresholds 

are 2.96×10−10, 2.17×10−10, and 6.67×10−10, respectively.

Disease specific analyses: To investigate a disease-specific effect on pQTLs, we 

performed linear regression on the same protein-loci pairs (before conditioning on top 

variants) identified from the above default model using three additional models: 1) joint 

analysis including disease status as another covariate (CO vs non-CO); 2) AD case (CA) 

only using the same covariates as the default model; 3) cognitive unimpaired (CO) only 

using the same covariates as the default model. Using scatterplots, we visualized the 

correlation between each of the additional models and our default model. Using model 1 
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for comparison, we observed a Pearson correlation coefficient of 0.999, 0.999, 0.999 for 

CSF, plasma, and brain, respectively. Using model 2 for comparison, we observed a Pearson 

correlation coefficient of 0.991, 0.989, 0.998 for CSF, plasma, and brain, respectively. 

Using model 3 for comparison, we observed a Pearson correlation coefficient of 0.999, 

0.998, 0.602 (p-value = 0.002) for CSF, plasma, and brain, respectively. The relatively low 

correlation seen when using model 3 for comparison with controls only in brain samples was 

due to a much smaller sample size.

Age-specific analyses: To confirm that none the of findings were age specific, we 

performed separate analyses in participants younger and older than the average age of 

our cohort and compared the β1 of SNP dosage for all significant pQTLs to identify any 

age-specific effect.

Variance explained by the top variant on certain protein: We calculated the 

adjusted R-squared value using the linear regression model with the top variant as the only 

predictor and the log10-based certain protein abundance as the outcome. To account for 

variance explained by covariates, we also calculated the adjusted R-squared value using a 

nested model and the estimates were similar to using the top variant as the only predictor 

(Supplementary Fig. 4).

Conditional analysis on independent local pQTLs

To identify independent significant local pQTLs, we performed a conditional analysis on 

all pQTLs from round_0 using PLINK2 (v2.00a2LM)60 with the --condition or --condition

list option. We used the same significance threshold of p-value = 5×10−8 used for the 

univariable analysis on identifying independent local pQTLs within a window size of 2Mb.

Conditional analyses were performed as follows: Before conditional (row-1), no SNPs 

were used as a covariate given one region. For round_1 (row-2) conditioning, the top 

SNP from the before-conditioning stage given the same region was used as an additional 

covariate in the default model. For round_2 (row-3) conditioning, the top SNP from the 

before-conditioning stage and the top SNP from round_1 stage were used as an additional 

covariate in the default model. Both SNPs were within the same region. This iteration 

was continued for each round by adding one more top SNP from the prior round until no 

variants passed the genome-wide significance threshold given the same region. For CSF 

and plasma samples, in total 4 rounds of conditional analyses were performed. For brain 

samples, 3 rounds of conditional analyses were performed. The results were visualized using 

locusZoom v1.361.

Replication strategy for CSF pQTL

To identify all previously reported pQTLs from large-scale protein-level GWAS (pGWAS), 

we performed CSF replication analyses. We first searched the reprocessed pQTL results 

using Sasayama et al., 2017 (SOMAscan-based, CSF); PPMI19 (SOMAscan-based, CSF); 

and meta-analysis of these two prior studies. Next, we checked summary statistics from 

INTERVAL (SOMAscan-based, plasma). Finally, we queried other plasma pGWAS findings 

from EBI-NHGRI using phenoscannerV221 with proxy SNPs (r2 > 0.5).
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Reprocessing pQTL using Sasayama 2017 CSF SOMAscan individual data: To 

replicate CSF pQTLs, we performed linear regression on all proteins using the individual 

level proteomic and genotype data from Sasayama and colleagues published in 201714. 

We decided to reprocess the pQTL analyses because the original studies used unimputed 

genotype data. We performed imputation in the Sasayama data to have a similar number 

of SNPs across studies. For proteomics QC, only the IQR strategy was used, as neither 

calibrator nor positive/negative control values were provided. (QC Positive is a technical 

sample provided with the SOMAscan platform for use as a positive control. Similarly, QC 

Negative is a technical sample used as a negative control.) Protein outliers were identified 

if the subject was located outside of either end of distribution using 1.5-fold of IQR given 

the log10 transformation of the protein level. Collectively, if the number of outliers given 

an analyte was greater than 85% of total sample size, this analyte was filtered. Next, an 

orthogonal approach was used to call subject outliers based on IQR. Collectively, if the 

number of outliers given an analyte was greater than 85% of total number of analytes 

passed QC, this subject was labeled as an outlier. Overall, 1,128 proteins and 133 subjects 

passed protein data QC. Genotype data QC and imputation was performed as described 

above. A total of over 5 million (5,187,563) imputed and directly-genotyped SNPs and 154 

individuals were used for final analyses. Population substructure analyses was performed 

as described above, except samples kept were within the JPT cluster. A total of 132 

CSF samples from study by Sasayama and colleagues passed filters on both genomics 

and proteomics QC. We performed linear regression (additive model), including first two 

principal component factors from population stratification as covariates.

Reprocessing pQTL using PPMI19 CSF SOMAscan data: To replicate CSF pQTL, 

we performed linear regression on all 709 shared proteins using the proteomic and genotype 

data from PPMI cohort19. We performed protein QC, genotype imputation and QC, and 

analyses using the same protocols as those used for the data generated in this study and 

described above. A total of over 7 million (7,392,620) whole-genome sequenced SNPs and 

132 CSF samples from study by PPMI19 passed filters on both genomics and proteomics 

QC. We performed a linear regression (additive model), including age, sex, and first two 

principal component factors from population stratification as covariates.

Meta-analyses on pQTL using summary statistics from single studies: To 

replicate more pQTLs, we performed fixed effect meta-analyses using METAL62 based 

on inverse-variance weighting. Overall, we performed four different combinations of meta

analyses: 1) meta1_PPMI19_JP17: meta-analysis on both the CSF studies by Sasayama et 

al. 2017 and by PPMI19; 2) meta2_WUcsf_PPMI19_JP17: meta-analysis on all three CSF 

studies by Sasayama et al. 2017, by PPMI19, and by Washington University cohort (this 

study); 3) meta3_WUcsf_WUplasma_WUbrain: meta-analysis on all three-tissue findings 

from CSF, plasma, and brain by Washington University cohort (this study); 4) meta4_ 

WUcsf_WUplasma_WUbrain_ PPMI19_JP17: meta-analysis on both the CSF studies by 

Sasayama et al. 2017 and by PPMI19 plus all three-tissue findings from CSF, plasma, and 

brain by Washington University cohort (this study).
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Replication strategy for plasma pQTL

To identify all previously reported pQTL from large-scale protein-level GWAS, we 

performed plasma replication analyses using the following strategies. We first searched 

the reprocessed pQTL results using AddNeuroMed (SOMAscan-based, plasma). Next, 

we checked summary statistics from INTERVAL (SOMAscan-based, plasma). Finally, we 

queried other plasma pGWAS findings from EBI-NHGRI using phenoscannerV2 with proxy 

SNPs (r2 > 0.5).

Reprocessing pQTL using AddNeuroMed plasma SOMAscan data: To replicate 

plasma pQTL, we performed linear regression on all proteins using the proteomic and 

genotype data from the AddNeuroMed consortium 25. A total of over 7 million (7,313,640) 

imputed and directly-genotyped SNPs and 343 plasma samples from the study by 

AddNeuroMed passed filters on both genomics and proteomics QC. We performed a linear 

regression (additive model), including age, gender, first two principal component factors 

from population stratification, centers, status, visit cohorts, and batch effects as covariates.

Replication strategy for brain pQTL

To identify all previously reported pQTL from large-scale protein-level GWAS, we 

performed the brain replication analyses using the following strategies. We first searched 

the processed pQTL results using results from the published brain findings16. Next, we 

queried all plasma pGWAS findings from EBI-NHGRI using phenoscannerV2 and from our 

CSF findings.

For each locus, we investigated whether the sentinel SNP or a proxy (r2 > 0.5) was 

associated with the same target protein (or aptamer) in our study at different defined 

significance thresholds. For the known category in our primary assessment, we used a 

p-value threshold of 5×10−8. For the replicated category in our primary assessment, we used 

a p-value threshold of 5×10−2.

Identification of tissue-specific/shared pQTLs

We first performed mashr28 analyses on our multi-tissue pQTL results given 411 proteins 

shared by all tissues from the Washington University dataset. We defined the tissue

specificity as LFSR < 0.05 [LFSR is analogous to a false discovery rate] and Z-score to 

be at least 2-fold difference.

Annotation of pQTL

All significant pQTL (hg19) were annotated using ANNOVAR63 version (2018–04-16) 

with the option -geneanno in gene-based annotation mode. Genomic features and variants 

affecting the nearest genes were used for downstream analyses. The bar plots were drawn 

using the ggplot264 R package.

Testing for genomic feature enrichment

We used Fisher’s exact test (two-sided) for testing the enrichment. The null set was set 

using p-value > 5e-8 and permutated with the same amount of variants as the positive-set. 
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The various groupings were determined by ANNOVAR version (2018-04-16). We also 

tested whether our pQTL were enriched for functional and regulatory characteristics using 

GARFIELD v265.GARFIELD is short for GWAS Analysis of Regulatory or Functional 

Information Enrichment with LD correction, and it is a method to test feature enrichment 

by integrating GWAS findings and a large set of regulatory or functional annotations (1005 

features in total) mainly from ENCODE and Roadmap epigenomics consortia. It takes into 

account the LD while annotating and calculating enrichments. The enrichment is quantified 

as odds ratio (OR).

Identification of pleiotropic regions

To identify unique non-overlapping regions associated with a given an aptamer, we first 

defined a 2Mb region 1Mb upstream and 1Mb downstream of each significant variant for 

that aptamer. Within the 2Mb region containing the variant with the smallest p-value any 

overlapping regions were then merged into the same locus. Owing to the complexity of the 

major histocompatibility (MHC) region, we assigned genetic region spanning from 25.5 to 

34.0Mb on chromosome 6 as one region. To identify whether a region was associated with 

multiple aptamers, we next used an LD-based clumping approach (LD block from the 1000 

Genome Project implemented into the RHOGE66 R package (v0.1), as we also used 1000 

Genome Project as our imputation reference panel). Variants were combined into a single 

region per LD (EUR) defined loci. Any loci associated with more than one protein were 

identified as pleiotropic regions. The cytoband ID was also annotated. Circos plots were 

generated using functions from R package circlize67. To measure variance explained by each 

pleiotropic region, we also calculated the adjusted R-squared value (Supplementary Fig 5-8).

Performing MR using TwoSampleMR R package

Mendelian randomization is a method of using measured variation in genes of known 

function to examine the causal effect of a modifiable exposure on disease. This method 

obtains unbiased estimates of the effects of a putative causal variable without conducting a 

traditional randomized trial. We used the R package TwoSampleMR v0.4.2244. For single 

SNP remained after clumping, the most basic method, the Wald ratio, was used. This 

package also implements the harmonization steps before performing MR, and these steps 

are: 1) Correcting the wrong effect/non-effect alleles; 2) Correcting the strand issues; 3) 

Fixing the palindromic SNPs; 4) Removing the SNPs with incompatible alleles. The SNPs 

selected for the analysis were the based on a suggestive threshold of 1×10−5. The beta

coefficients and standard errors (SEs) for the selected variants (pQTL) from this study were 

used as input of instrumental variables. These instrumental variables were also extracted 

from the summary statistics from the latest GWAS for the outcome on neurological disease 

related traits. (Details see Table S26; Briefly, AD-risk GWAS was published in 20193; 

AD-progression GWAS in 201845; AD-age at onset GWAS in 201746; PD-risk GWAS in 

201938; ALS-risk GWAS in 201647; FTD-risk GWAS in 201448; Stroke-risk GWAS in 

201849). To check the specificity of protein-neurological disease associations, we also chose 

asthma-risk GWAS50 as an outcome of non-neurological disease. To test the directionality of 

exposure causing outcome is valid, we used the directionality_test function from the same R 

package. The method confirms whether the exposure (protein) and outcome (trait) directions 

are correct or not.
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Colocalization analyses

We performed Bayesian colocalization analysis using the coloc.abf function from the coloc 

R package68,69 v3.1. We used the default priors with p1= 1×10−4, p2 = 1×10−4, and p12 = 

1×10−5. Evidence for colocalization was assessed using the posterior probability (PP) for 

hypothesis 4 (indicating that there is an association for both protein and disease and that they 

are driven by the same causal variant(s)). We used PP.H4 > 0.8 as a threshold to suggest that 

associations were highly likely to colocalize.

For colocalization of pQTLs with disease status: We downloaded and used the full 

GWAS summary statistics for each disease/trait from their original publications as the same 

for MR analysis.

For colocalization of cis-pQTLs with cis-eQTLs, cis-sQTLs from GTEx v8 
release: We downloaded and used the significant cis-eQTLs and cis-sQTLs summary 

statistics for two single tissues, cortex and whole blood, from GTEx5 (https://gtexportal.org/

home/datasets). For cis-sQTLs we used gene-level sQTL results, rather than exon-level 

sQTLs.

For colocalization analysis of plasma pQTLs with eQTLs from eQTLgen: We 

downloaded and used the significant cis- and trans-eQTL summary statistics for blood, 

from eQTLgen9 (https://www.eqtlgen.org/index.html). In both cases we analyzed cis- and 

trans-QTLs.

For colocalization of cis-pQTLs with cis-DNA-methylation-QTLs, cis-histone
acetylation-QTLs from ROSMAP: We downloaded and used the significant 

cis-DNA-methylation-QTL summary statistics for brain tissue, from ROSMAP70 

(http://mostafavilab.stat.ubc.ca/xQTLServe/). We downloaded the significant cis-histone

acetylation-QTL summary statistics (assigning to up to 10Mb upstream of the transcription 

start site given the same gene) for brain tissue, from ROSMAP70 as well. To ensure 

that DNA-methylation-QTLs affecting pQTLs are mediated by eQTLs, we further subset 

the DNA-methylation-QTLs-pQTLs colocalization result with eQTLs-pQTLs colocalization 

result.

For colocalization of cis-pQTLs with cell-type-specific cis-eQTLs from 
ROSMAP: We identified the neuron-, oligodendrocyte-, microglia-, and astrocyte-eQTL 

data using a pseudo-bulk strategy on snRNA-seq (N=48) from ROSMAP data71. In total, we 

recreated the expression matrices on five cell-types (microglia, excitatory neurons, inhibitory 

neurons, oligodendrocytes, and astrocytes). We next identified cis-eQTLs for each cell type 

using fastqtlv2.072 after integrating with the whole-genome sequencing data from ROSMAP 

(N=39). Using both the nominal and permutation modes, we followed the significant eGene 

calling approach from the GTEx pipeline. We used different priors because the pseudo-bulk 

derived cell-type specific eQTLs were underpowered compared with bulk-level pQTLs with 

p1 as 1×10−4, p2 as 1×10−2, and p12 as 1×10−3. The results can be found in Supplementary 

Fig 9 & Table S35).
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Overlap of proteins with pQTLs and drug targets

To obtain information on drugs that target proteins with pQTLs from this study, we used the 

DrugBank database (as of 1/3/2020)73. This is a manually curated database that maintains 

profiles for >15,000 drugs (including FDA-approved and experimental drugs). For our 

analysis, we focused on the protein target for each drug. For each protein assayed, we 

identified all drugs in the DrugBank with a matching protein target based on UniProt 

ID, annotated via https://www.uniprot.org/database/DB-0019. We further integrated the MR 

results on proteins as drug targets.

Randomization

Data collection for the proteomics was randomized. All samples were randomly assigned to 

a profiling pool prior to proteomics measurement, considering age, sex, and disease status. 

Data collection for the genotype was not randomized or blocked.

Sample sizes

No statistical methods were used to predetermine sample sizes within each tissue type, but 

our sample sizes are much larger or comparable to those in previous publications13,14,16.

Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability Statement

Three tissues from Knight ADRC dataset for discovery: Both summary statistics and 

individual-level data have been uploaded to NIAGADS (The National Institute on Aging 

Genetics of Alzheimer’s Disease Data Storage Site) repository at https://www.niagads.org/

datasets/ng00102. Summary statistics (pQTL) data is freely available, as the data exceeds 

500Gb, so please email niagads@pennmedicine.upenn.edu to set up an FTP transfer of the 

data. Summary association results can also be explored through Online Neurodegenerative 

Trait Integrative Multi-Omics Explorer, ONTIME (https://ontime.wustl.edu/), a PheWeb 

(v1.1.14)-based browser.

CSF-Sasayama2017 dataset for replication:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE83711

Plasma-AddNeuroMed dataset for replication: https://www.synapse.org/#!

Synapse:syn4988768

Drug targets were queried using DrugBank database collected via UniProtKB (as of 

1/3/2020) at https://www.uniprot.org/database/DB-0019.
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Extended Data

Extended Data Fig. 1. QC pipeline.
QC on both proteins (a to c) and samples (d) were described as follows: (a) Flowchart 

of CSF protein level QC, starting from 1305; after step-1, Limit Of Detection VS 2

StDeviation, 807 proteins were kept with a pass-rate >= 85%; after step-2, given Max 

Difference of Scale Factor < 0.5, 749 proteins were kept; after step-3, given Coefficient of 

Variation (of calibrator) < 0.15 & step-4, given IQR, sum(outliers) < 15%, 746 proteins were 

kept. After step-5, 713 proteins that shared by < 30 samples (shared by ~80% of the subject 

outliers) were kept. (b) Flowchart of plasma protein level QC, starting from 1305; after 

step-1, 1301 proteins were kept with a pass-rate >= 85%; after step-2, 956 proteins were 

kept; after step-3 & step-4, 955 proteins were kept. After step-5, 931 proteins that shared 

by < 10 samples were kept. (c) Flowchart of brain protein level QC, starting from 1305; 

after step-1, 1109 proteins were kept with a pass-rate >= 85%; after step-2, 1107 proteins 

were kept; after step-3 & step-4, given IQR, sum(outliers) < 15%, 1106 proteins were kept. 

After step-5, 1079 proteins that shared by < 21 samples were kept. (d) Table of sample 

size after each step of QC in genotype and proteomics. Within each tissue (1st column), 

we profiled proteomics from 1300 CSF, 648 plasma and 459 samples (2nd column). From 

unique donors in proteomics data (3rd column), we first kept donors with genotyping array 

data (4th column). We next kept only the donors with a European ancestry after checking 

principal components (5th column). Moreover, we kept donors that were not close with each 

other (PI_HAT < 0.05) after checking identity by descent (6th column). Finally, the samples 

remained only passing both the genotype and protein data QC (7th column).
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Extended Data Fig. 2. Reproducibility of proteomic data.
(a) Table of total sample size for each tissue before and after QC, including the biological 

and technical replicates. (b) Venn diagram on the designed donor overlap across tissues. (c) 

Scatterplot of 321 subjects with both longitudinal and baseline samples from CSF indicates 

a Pearson correlation coefficient of 0.995 (95% confidence interval from 0.995 to 0.995). (d) 

Scatterplot of 11 subjects with both fasted and nonfasted samples from plasma indicates a 

Pearson correlation coefficient of 0.907 (95% confidence interval from 0.904 to 0.911). (e) 

Scatterplot of one subject with both longitudinal and baseline samples from plasma indicates 

a Pearson correlation coefficient of 0.938 (95% confidence interval from 0.930 to 0.945). 

(f) Scatterplot of one subject with two technical replicates from brain indicates a Pearson 

correlation coefficient of 0.976 (95% confidence interval from 0.976 to 0.981). All statistical 

tests used were two-sided from (c) to (f).
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Extended Data Fig. 3. Overview of the sample size and number of pQTLs from pQTL studies 
mentioned in this paper and the summary statistics from the meta-analyses.
(a) Scatter plot of sample size (log10-scaled) and number of total pQTLs after clumping 

or unique proteins when no clumping was performed (log10-scaled). Dot color represents 

the tissue type; dot size represents total number of proteins profiled. (b) Table of these nine 

datasets listed the exact numbers for drawing the scatter plot. (c) Table of three different 

combinations of meta-analyses: 2) meta2_WUcsf_PPMI19_JP17: meta-analysis on all three 

CSF studies by Sasayama and colleagues published in 2017, by PPMI released in 2019, 

and by Washington University cohort (this study); 3) meta3_WUcsf_WUplasma_WUbrain: 

meta-analysis on all three-tissue findings from CSF, plasma and brain respectively by 

Washington University cohort (this study); 4) meta4_ WUcsf_WUplasma_WUbrain_ 

PPMI19_JP17: meta-analysis on both the CSF studies by Sasayama and colleagues 

published in 2017 and by PPMI released in 2019 plus all three-tissue findings from CSF, 

plasma and brain respectively by Washington University cohort (this study). The columns 

include number of proteins in common, number of protein-level GWAS hits after meta

analysis, number of protein-level GWAS hits before meta-analysis using only the common 

proteins within each tissue for each combination. (d) Stacked Manhattan plots for all three 

different combinations of meta-analyses. The darkred line represents P = 5×10−8.
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Extended Data Fig. 4. Disease stratified analysis on comparing pQTLs effect size.
To investigate of disease status effect on pQTLs, we performed linear regression on the same 

protein-loci pairs (before conditioning on top variants) identified from above default model 

using three additional models: (a) joint analysis but with disease status as another covariate 

(CO vs non-CO). Pearson correlation coefficient was 0.999 (p-value < 2.2×10−16, 95%CI 

= 0.999 to 0.999), 0.999 (p-value = 4.3×10−202, 95%CI =0.999 to 0.999), 0.999 (p-value = 

9.5×10−52, 95%CI = 0.999 to 0.999) for CSF, plasma, and brain respectively. Sample size 

for this joint analysis was 835, 529, and 380 for CSF, plasma, and brain respectively. (b) AD 

case (CA) only using the same covariates as default model. Pearson correlation coefficient of 

0.991 (p-value = 3.9×10−160, 95%CI =0.988 to 0.993), 0.989 (p-value = 1.8×10−83, 95%CI 

=0.983 to 0.992), 0.998 (p-value = 2.4×10−29, 95%CI =0.995 to 0.999) for CSF, plasma, and 

brain respectively. Sample size for this AD case (CA) only analysis was 217, 168, and 248 

for CSF, plasma, and brain respectively. (c) Cognitive unimpaired (CO) only using the same 

covariates as default model. Pearson correlation coefficient of 0.999 (p-value = 5.2×10−234, 

95%CI =0.998 to 0.999), 0.998 (p-value = 1.17×10−122, 95%CI =0.997 to 0.999), 0.602 

(p-value = 0.002, 95%CI =0.262 to 0.809) for CSF, plasma, and brain respectively. Sample 

size for this cognitive unimpaired (CO) only analysis was 614, 357, and 24 for CSF, plasma, 

and brain respectively. The relatively low correlation in default model comparison with 

control only in brain samples was due to much smaller sample size as a control for brain 

samples. All statistical tests used were two-sided from (a) to (c).
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Extended Data Fig. 5. Global view of pleiotropic regions in CSF.
In total, 59 Pleiotropic regions passing genome-wide significance threshold (5×10−8) in CSF 

(sample size = 835). Unique non-overlapping regions associated with a given SOMAmer 

were first defined as 1-Mb region upstream and downstream of each significant variant 

for that SOMAmer. Within the region (2Mb) containing the variant with the smallest P 

value, any overlapping regions were then merged into the same locus. Next, an LD-based 

clumping approach was adapted to identify whether a region was associated with multiple 

SOMAmers. Variants were combined into a single region per LD (EUR) defined loci. Any 

loci associated with more than one protein were identified as pleiotropic regions. Genomic 

locations of pQTLs were visualized by a squared-Manhattan plot. Dark-green represents 

cis-pQTLs; gold represents trans-pQTLs. X-axis indicates the positions of the top variant; 

and Y-axes indicates the gene encoding the protein. All pleiotropic genomic regions are 

annotated at the top of each plot along the X-axis.
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Extended Data Fig. 6. Global view of pleiotropic regions in plasma.
In total, 34 pleiotropic regions passing genome-wide significance threshold (5×10−8) in 

plasma (sample size = 529). Genomic locations of pQTLs were visualized by a squared

Manhattan plot, same as Extended Data Fig.5.
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Extended Data Fig. 7. Global view of pleiotropic regions in brain.
In total, 10 pleiotropic regions passing genome-wide significance threshold (5×10−8) in 

brain (sample size = 380). Genomic locations of pQTLs were visualized by a squared

Manhattan plot, same as Extended Data Fig.5.
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Extended Data Fig. 8. Tissue specificity exploration with permissive thresholds.
To determine whether our tissue-specificity results were biased by statistical power, we 

performed similar analyses with two more permissive p-values on the 411 proteins. (a) Venn 

diagrams of all pQTLs across all three tissues by fixing genome-wide significance threshold 

(5×10−8) for all three tissues. (b) Venn diagrams of all pQTLs across all three tissues by 

fixing genome-wide significance threshold for one tissue and 0.001 for the other two tissues. 

For example, when checking CSF pQTLs shared in plasma or brain, we chose 5×10−8 as 

threshold for CSF and 0.001 for plasma or brain. (c) Venn diagrams of all pQTLs across all 
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three tissues by fixing genome-wide significance threshold for one tissue and 0.05 for the 

other two tissues. For example, when checking CSF pQTLs shared in plasma or brain, we 

chose 5×10−8 as threshold for CSF and 0.05 for plasma or brain.

Extended Data Fig. 9. Tissue specificity exploration with plasma result from INTERVAL study.
To further demonstrate that tissue-specificity findings are not a product of different 

sample size, we performed similar comparisons by analyzing the plasma pQTLs from the 

INTERVAL study on 616 proteins that passed QC in our CSF, brain and plasma INTERVAL. 
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(a) Venn diagrams of proteins passing QC across all three tissues: CSF and brain results 

are from WashU cohort, plasma result is from INTERVAL study. (b) Venn diagrams of all 

pQTLs across all three tissues by fixing genome-wide significance threshold (5×10−8) for all 

three tissues. (c) Venn diagrams of all pQTLs across all three tissues by fixing genome-wide 

significance threshold for one tissue and 0.001 for the other two tissues. For example, when 

checking CSF pQTLs shared in plasma or brain, we chose 5×10−8 as threshold for CSF 

and 0.001 for plasma or brain. (d) Venn diagrams of all pQTLs across all three tissues by 

fixing genome-wide significance threshold for one tissue and 0.05 for the other two tissues. 

For example, when checking CSF pQTLs shared in plasma or brain, we chose 5×10−8 as 

threshold for CSF and 0.05 for plasma or brain.
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Extended Data Fig. 10. Properties of pQTLs.
(a) Dot plots of -log10(P) from all significant associations (via linear regression) against 

the distance of sentinel SNPs from TSS within each tissue. (b) Dot plots of absolute effect 

size associated with MAF within each tissue. (c) Forest plot of enrichment on the predicted 

functional annotation classes of pQTLs versus null sets of variants from permutation within 

each tissue (Data are presented as mean values of Odds Ratio +/− 95% confidence interval 

from Fisher’s Exact Test) and Bar plots of the proportion of variants annotate in each 

class. (Note: Features on exonic_splicing/ncRNA_splicing/splicing/UTR5_UTR3 are not 
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shown due to not all tissues have these features). (d) Histograms of variance explained by 

conditionally independent variants within each tissue. For CSF, the mean = 0.141, standard 

deviation = 0.144, mode = 0.061; For plasma, the mean = 0.157, standard deviation = 0.125, 

mode = 0.188; For brain, the mean = 0.208, standard deviation = 0.151, mode = 0.092.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Study design and overview of the significant pQTLs within each tissue.
(a) Schematic of study design. CSF, plasma, and brain tissues were profiled using a high

throughput aptamer-based proteomics platform. We identified common genetic variants 

associated with each protein within each tissue after integrating both the genotype for each 

variant and protein level. The box-plot of pQTL is just for illustration purpose, showing the 

median (line), quartiles (box) and whiskers extending to ±1.5 times the interquartile range. 

(b) Table of sample size after QC and total number of pQTLs (split by cis, P < 5×10−8, and 

trans P < 5×10−8/number_PCs) for each tissue. For trans-pQTLs, the p-value cutoff for CSF 
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is 3×10−10 (5×10−8/169), for plasma it is 2×10−10 (5×10−8/230), and for brain it is 7×10−10 

(5×10−8/75). Trans* represents replication of trans-pQTLs given genome-wide significance 

(p-value < 5×10−8). (c) Stacked Manhattan plots for all three tissues mapping genomic 

locations of these pQTL within each tissue (cis: dark-green; trans: gold). The X-axis denotes 

the positions of the common variants. The darkred line represents P = 5×10−8.
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Fig. 2. Identification of conditionally independent local pQTLs.
(a) Tables of conditionally independent pQTLs (cis and trans) locally (2 Mb window) 

after each round for each tissue. Before conditional, no SNPs were used as a covariate 

given one region. For round_1 conditioning, the top SNP from before-conditioning stage 

given the same region was used as an additional covariate in the default model. For 

round_2 conditioning, the top SNP from before-conditioning stage and top SNP from 

round_1 stage was used as an additional covariate in the default model. Both SNPs 

were within the same region. For each round we added the previous independent top 

hits from the prior rounds until no variants passed genome-wide significance threshold 

given the same region. (b) Regional association plots of the ERAP1 region associated 

with CSF ARTS1 protein: (round_0) before conditional analyses, centered on rs17482078; 

(round_1) after conditioning on the prior top SNP (rs17482078, centered on rs467735; 

(round_2) after conditioning on the prior top SNPs (rs17482078 and rs467735, centered on 

rs141244362; (round_3) after conditioning on the prior top SNPs (rs17482078 and rs467735 

and rs141244362, centered on rs153541. No genome-wide significant SNPs was observed 

in round_4 after conditioning on all prior top SNPs. (c) Regional association plots of the 

NAAA region associated with CSF ASAHL protein: (round_0) before conditional analyses, 

centered on rs66498356; (round_1) after conditioning on the prior top SNP (rs66498356, 

centered on rs112222416; (round_2) after conditioning on the prior top SNPs (rs66498356 

and rs112222416, centered on rs6823734; (round_3) after conditioning on the prior top 

SNPs (rs66498356 and rs112222416and rs6823734, centered on rs13126007. No genome
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wide significant SNP was observed in round_4 after conditioning on all prior top SNPs. 

The SNPs for each regional plot are denoted as a purple diamond. Each dot represents 

individual SNPs, and dot colors in the regional plots represent linkage disequilibrium with 

the named SNP at the center. Blue vertical lines in the regional plots show recombination 

rate as marked on the right-hand Y-axis.
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Fig. 3. Overview of the replication of the pQTLs and identification of pleiotropic regions within 
each tissue.
(a-c) Tables of replication of these pQTLs within CSF, plasma, and brain, given different 

p-value thresholds for different datasets. Overall, we classified pQTLs into five mutually 

exclusive groups: 1) known pQTLs in the matched-tissue (single-study) with a p-value less 

than 5×10−8; 2) replicated pQTLs in the matched-tissue with a p-value less than 5×10−2 but 

greater than or equal to 5×10−8 [*NOTE: for CSF, we split this group into two sub-groups: 

2a) replicated only in the meta-analysis of two external CSF studies with a p-value less than 

5×10−8; 2b) replicated pQTLs in the matched-tissue with a p-value less than 5×10−2 but 
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greater than or equal to 5×10−8]; 3) replicated pQTLs in the other tissues with a p-value less 

than 5×10−2; 4) pQTLs found in any tissues (matched or not) with a p-value greater than or 

equal to 5×10−2; 5) unknown (either protein or SNP missing). For CSF, we further split the 

2nd group into 2a) replicated pQTLs in the matched-tissue (meta-analysis, Table S6) with 

a p-value less than 5×10−8 and 2b) replicated pQTLs in the matched-tissue (meta-analysis 

and/or single-study) with a p-value less than 5×10−2 but greater than or equal to 5×10−8. 

Trans* represents replication of trans-pQTLs given genome-wide significance (p-value < 

5×10−8) but not necessarily passing study-wide significance. Actual p-values (two-sided) 

without multiple comparison adjustments for each variant–protein pair were estimated using 

an additive linear regression model. (d) Table of all pleiotropic regions within each tissue 

given genome-wide significance threshold for both cis and trans-pQTLs and the name of 

top-1 locus ranked by number of unique proteins. (e) Circos plot of top-1 locus (mapped 

to APOE-TOMM40) associated with 13 unique CSF proteins. (f) Circos plot of top-1 

locus (mapped to ABO or HRG) associated with 7 unique plasma proteins. (g) Circos 

plot of top-1 locus (mapped to SPCS3-VEGFC) associated with 5 unique brain proteins. 

Outermost numbers denote chromosomes. Lines link the genomic location of this locus 

with genes encoding significantly associated proteins. Associations denote genome-wide 

significance. Line thickness is proportional to effect size of linear regression (red, positive; 

blue, negative).
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Fig. 4. Summary of the tissue-specificity analyses and colocalization of pQTLs with other 
molecular QTLs.
(a) Venn diagrams of proteins passing QC across all three tissues. (b) Bar plot of tissue 

specificity percentage inferred from mashr on all cis-pQTLs across all three tissues given 

p-value < 0.05 threshold. (c) Bar plot of tissue specificity percentage inferred from mashr on 

all trans-pQTLs across all three tissues given p-value < 0.05 threshold. (d) Manhattan plots 

of the SIG14-chr19:52158316 within each tissue as an example of three-tissue-shared cis

pQTL. The darkred line represents P = 5×10−8. Actual p-values (two-sided) without multiple 
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comparison adjustments for each variant–protein pair were estimated using an additive linear 

regression model. (e) Upset plots for colocalization investigation on pQTLs vs expression

QTLs vs splicing-QTLs vs DNA-methylation-QTLs vs histone-acetylation-QTLs for each 

tissue in cis and the bottom panel with the percentage of remaining pQTLs not colocalized.
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Fig. 5. Mendelian randomization prioritized proteins in the associated relationship with seven 
neurological traits.
MR results were calculated using the TwoSampleMR R package44, and the effects for each 

protein-disease pair are visualized using Heatmap of MR inference of (a) CSF, (b) plasma, 

and (c) brain protein effect on seven neurological-related traits. The p-value threshold 

for significance is 0.05 after multiple testing correction accounting for both tissues and 

diseases. The color represents whether the effect size is positive (yellow) or negative 

(blue). Alzheimer disease (AD); Parkinson’s disease (PD); Amyotrophic lateral sclerosis 

(ALS); Frontotemporal dementia (FTD). Stroke is the general risk, not a specific subset 

of the stroke. The asterisk sign* represents colocalization with a PP.H4 > 0.8 for the 

protein-disease pair. The summary statistics are curated from published datasets (see Table 

S27 & S28 for details).
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Table 1.

Demographics of the baseline cohort.

CSF Plasma Brain

N 835 529 380

Age [mean+/−sd] 69.4+/−9.3 69.8+/−9.4 83.3+/−10

Female (%) 53% 54% 57%

% CDR=0 74.37% 68.24% 11.57%

APOE e4 (%) 38% 41% 48%

Characteristics of the baseline cohort after QC, including age, gender, Alzheimer disease status (as Clinical Dementia Rating (CDR)) and APOE e4 
allele percentage. For CSF, age denotes age at lumbar puncture; For plasma, age denotes age at plasma draw; For brain, age denotes age at death. 
Values are reported in years (mean ± standard deviation [sd]). For basic demographics of the entire cohort before QC, please see Table S1.
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Table 2.

Number of significant protein-trait associations from Mendelian randomization analyses.

Outcome CSF Plasma Brain

AD risk 3 13 7

AD progression 18 25 6

AD Age at Onset 8 2 20

PD risk 13 15 35

ALS risk 1 4 3

FTD risk 1 8 5

Stroke risk 7 8 24

Asthma-risk (non-neuro) 14 4 2

Within each tissue, the table contains the number of significant proteins (FDR < 0.05/24) and associations with the seven neurological traits: 1) AD 

risk3; 2) AD progression45; 3) AD Age At Onset46; 4) PD risk38; 5) ALS risk47; 6) FTD risk48; 7) Stroke risk49; and a non-neurological trait: 

asthma risk50.

Nat Neurosci. Author manuscript; available in PMC 2022 January 08.


	Abstract
	Introduction
	Results
	Discovery of multi-tissue pQTLs
	Disentangling independent local pQTLs
	Replication and meta-analyses using independent datasets
	Pleiotropic loci
	Tissue-specificity investigation
	Functional annotation and biological mechanisms of pQTLs
	Colocalization of pQTLs with other molecular QTLs
	Mendelian randomization and drug repositioning
	Limitations

	Discussion
	Methods
	Ethics declarations
	Aptamer-based proteomics data sample collection
	Proteomic data QC process
	Reproducibility investigation via comparisons between biological or technical replicates
	Genomic data QC process
	pQTL identification
	cis-pQTL mapping.
	trans-pQTL mapping.
	Disease specific analyses:
	Age-specific analyses:
	Variance explained by the top variant on certain protein:

	Conditional analysis on independent local pQTLs
	Replication strategy for CSF pQTL
	Reprocessing pQTL using Sasayama 2017 CSF SOMAscan individual data:
	Reprocessing pQTL using PPMI19 CSF SOMAscan data:
	Meta-analyses on pQTL using summary statistics from single studies:

	Replication strategy for plasma pQTL
	Reprocessing pQTL using AddNeuroMed plasma SOMAscan data:

	Replication strategy for brain pQTL
	Identification of tissue-specific/shared pQTLs
	Annotation of pQTL
	Testing for genomic feature enrichment
	Identification of pleiotropic regions
	Performing MR using TwoSampleMR R package
	Colocalization analyses
	For colocalization of pQTLs with disease status:
	For colocalization of cis-pQTLs with cis-eQTLs, cis-sQTLs from GTEx v8 release:
	For colocalization analysis of plasma pQTLs with eQTLs from eQTLgen:
	For colocalization of cis-pQTLs with cis-DNA-methylation-QTLs, cis-histone-acetylation-QTLs from ROSMAP:
	For colocalization of cis-pQTLs with cell-type-specific cis-eQTLs from ROSMAP:

	Overlap of proteins with pQTLs and drug targets
	Randomization
	Sample sizes
	Reporting Summary

	Data availability Statement
	Extended Data
	Extended Data Fig. 1
	Extended Data Fig. 2
	Extended Data Fig. 3
	Extended Data Fig. 4
	Extended Data Fig. 5
	Extended Data Fig. 6
	Extended Data Fig. 7
	Extended Data Fig. 8
	Extended Data Fig. 9
	Extended Data Fig. 10
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Table 1.
	Table 2.

