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Abstract
Study Objectives: Gains in cognitive test performance that occur during adolescence are associated with brain maturation. Cortical thinning 
and reduced sleep slow wave activity (SWA) are markers of such developmental changes. Here we investigate whether they mediate age-
related improvements in cognition.

Methods: 109 adolescents aged 15–19 years (49 males) underwent magnetic resonance imaging, polysomnography (PSG), and a battery of 
cognitive tasks within a 2-month time window. Cognitive tasks assessed nonverbal intelligence, sustained attention, speed of processing and 
working memory and executive function. To minimize the effect of sleep history on SWA and cognitive performance, PSG and test batteries 
were administered only after at least 8 nights of 9-h time-in-bed (TIB) sleep opportunity.

Results: Age-related improvements in speed of processing (r = 0.33, p = 0.001) and nonverbal intelligence (r = 0.24, p = 0.01) domains were 
observed. These cognitive changes were associated with reduced cortical thickness, particularly in bilateral temporoparietal regions 
(rs = −0.21 to −0.45, ps < 0.05), as well as SWA (r = −0.35, p < 0.001). Serial mediation models found that ROIs in the middle/superior temporal 
cortices, together with SWA mediated the age-related improvement observed on cognition.

Conclusions: During adolescence, age-related improvements in cognition are mediated by reductions in cortical thickness and sleep SWA.
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Statement of Significance

During adolescence, age-related improvements to cognition have been documented, alongside decreases in cortical gray matter and sleep 
slow wave activity (SWA). We investigated the links between these outward manifestations of neural refinement in a moderately large 
sample of 109 mid-late adolescents. We found that speed of processing and nonverbal intelligence significantly improved with age. These 
age-related improvements were mediated by reductions in cortical thickness in the middle/superior temporal cortices, as well as sleep 
SWA. These findings provide support for inter-relationships between sleep and brain structure/function during adolescence.
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Introduction

Adolescence is a period of rapid development where a myriad 
of biological, cognitive, psychological, and social changes occur, 
in preparation for adulthood [1–3]. Compared to a child, an older 
adolescent possesses superior executive functioning, cognitive 
flexibility, and logical reasoning abilities [4–6]. These gains in 
cognitive ability are associated with strikingly similar matur-
ational trajectories of three brain measures—synaptic density, 
cerebral metabolism, and slow wave activity (SWA) during sleep 
[7]. In this work, we seek to clarify and extend links between ad-
vancement in cognition, SWA, and magnetic resonance imaging 
(MRI) measures of cortical thickness in a larger cohort, focusing 
on mid-late adolescence.

Cortical synaptic density increases rapidly after birth, 
peaking at 1–2  years of age to approximately 150% of  adult 
levels, before dropping sharply during adolescence and 
stabilizing in adulthood [8]. This could reflect a process of 
refinement for overall efficiency of brain networks—either 
through synaptic pruning by eliminating/weakening less ac-
tive connections to strengthen active ones [9], or through 
synaptic remodeling by the reorganization of synapses and 
connections without change to their number or strength [10]. 
Paralleling these synaptic changes, are changes in MRI de-
rived cortical gray matter volume and thickness [11, 12] that 
begin at the age of 5–7 years in primary motor and somato-
sensory regions, progressing to parietal, frontal, and temporal 
heteromodal association areas before culminating in the pre-
frontal cortex in the late twenties [12–15].

Alongside these brain structural changes, sleep architecture 
and physiology also undergo significant transformation in ado-
lescence [16–19]. Of particular note, trajectories of SWA (0.5–
4Hz), important for learning and memory consolidation reach a 
maximum before puberty and then decrease during adolescence 
and adulthood [20–23]. The developmental arc of cerebral glu-
cose consumption reflects the waxing and waning of the ener-
getically demanding nature of synaptic activity from childhood 
to adolescence [24]. Accompanying synaptic refinement and re-
duced daytime neural activity is reduced synaptic homeostasis 
during sleep and this is reflected in reduced SWA in adolescents 
compared to younger children [25, 26]. The decrease in SWA [27] 
was shown to be associated with gray matter reduction, with 
the strongest correlations occurring where maturational de-
creases are most prominent. These findings were subsequently 
extended by the finding of partial mediation of the direct age 
effect on SWA by frontal and parietal cortical thinning [28].

Cognitive development during adolescence is postulated 
to be mediated by these changes in brain structure and sleep 
physiology [20]. In adolescents aged 12–14 years, cortical thin-
ning has been shown to be associated with better neuropsycho-
logical performance, particularly in the parietal association 
cortices [29].

In the present work, we extend prior findings by clarifying 
whether age-related SWA and cerebral gray matter changes in 
mid-late adolescence mediate adolescent cognitive develop-
ment. To ensure our present effort yielded robust findings, we 
collected behavioral, polysomnography (PSG), and structural 
brain MR data from a relatively large group of 109 healthy ado-
lescents aged 15–19 years. Baseline sleep history was controlled 
for a week prior to PSG so that the intensity of SWA measured 
was not tainted by prior sleep restriction [30]. Finally, we meas-
ured cognition three times in each participant using a cognitive 

test battery that evaluates cognitive domains known to improve 
with brain maturation.

Methods
One hundred twenty-nine participants from the series of 
Need for Sleep (NFS) studies [31–34] who agreed to undergo 
MRI scans were considered for this sub-study. Of this, 10 par-
ticipants’ MRI scans were assessed to be of poor quality, while 
another 10 polysomnographic recordings were unusable due 
to device failures or electrode dropouts. The final sample con-
sisted of 109 participants (49 males, mean age ± SD: 16.8  ± 
1.07 years; Table 1). Participants reported no history of sleep 
disorders, neurological, or psychological illness, were not ha-
bitual short sleepers (< 6 h of actigraphically assessed average 
sleep with no sign of > 1 h extension on weekends) and had 
a BMI of ≤30. A detailed description of the inclusion criteria 
and experimental procedures used have been reported else-
where [33]. All participants gave informed consent in accord-
ance with protocols approved by the National University of 
Singapore’s Institutional Review Board.

During the screening period for this protocol, participants 
also completed a set of questionnaires: the Epworth Sleepiness 
Scale [35] (ESS) to assess levels of daytime sleepiness, the 
Pittsburgh Sleep Quality Index [36] (PSQI) to measure habitual 
sleep duration and quality, the Morningness-Eveningness 
questionnaire to examine chronotype [37], the Beck Depression 
Inventory [38] (BDI), and the Beck Anxiety Inventory [39] (BAI) 
which were used to assess levels of depression and anxiety 
respectively.

Table 1. Characteristics of study sample (N = 109) 

Mean SD

Age (years) 16.77 1.07
Sex (% male) 45.00 —
BMI (kg/m2) 20.62 2.65
Epworth Sleepiness Scale score 7.72 3.38
Pittsburgh Sleep Quality Index   
 Bedtime on weekdays (hh:mm) 23:37 01:02
 Bedtime on weekends (hh:mm) 00:06 01:03
 Waketime on weekdays (hh:mm) 06:12 00:38
 Waketime on weekends (hh:mm) 09:09 01:29
 TIB on weekdays, h 6.59 1.06
 TIB on weekends, h 9.03 1.16
 Global PSQI score 4.87 2.16
 Morningness-Eveningness score 49.83 7.47
Beck-Depression Inventory score 9.58 6.08
Beck-Anxiety Inventory score 9.92 7.00
Cognitive Tasks   
 Raven’s Progressive Matrices score (# correct) 9.17 1.90
 10-min Psychomotor Vigilance Task median 

reaction time (ms)*
268 28

 2-min Symbol Digit Modalities Task score (# 
correct)*

82.90 8.63

 4-min Mental Arithmetic Task score (# cor-
rect)*

63.49 16.85

 3-Back Working Memory Task score (A')* 0.94 0.05

*Mean of three test batteries (morning, afternoon, evening) conducted the day 

following the polysomnographic recording.

TIB, time in bed.
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Brain imaging

High-resolution brain images were acquired on a 3T Siemens 
Prisma system (Siemens, Erlangen, Germany) using a 
T1-weighted MPRAGE sequence (TR  =  2,300  ms, TI  =  900  ms, 
flip angle = 8°, FOV 256 × 256 mm, isotropic voxel dimensions 
of 1.0  mm). 192 sagittal slices were acquired. Cortical thick-
ness measures presumed to be sensitive to changes in synaptic 
density [8, 27], were obtained from the FreeSurfer 5.3.0 pipeline 
(http://surfer.nmr.mgh.harvard.edu/). Segmentation errors and 
tissue misclassifications during the cortical reconstruction pro-
cess were visualized and manually corrected. Thickness meas-
ures represented the closest distance between the gray/white 
boundary to the pial surface at each vertex of the tessellated 
surface [40] and were calculated for each hemisphere (left: 
LH; right: RH) and lobe (frontal, parietal, temporal, occipital). 
Following significant lobar relationships, follow-up statistical 
analyses were performed on the regions-of-interest (ROIs) 
within each lobe following the Desikan-Killiany atlas [41].

Polysomnography

A 9-h time-in-bed (TIB) baseline sleep assessment was per-
formed within 2 months of the brain scan, following a prescribed 
sleep schedule of 9-h TIB for at least 8 actigraphically monitored 
nights at home and one PSG adaptation night. During these 
nights, bedtimes and wake times were set at 23:00 and 08:00, 
respectively. Electroencephalography (EEG) was recorded using 
a SOMNOtouch recorder (SOMNOmedics GmbH, Randersacker, 
Germany) on two channels (C3 and C4) in the international 
10–20 system, referenced to contralateral mastoids. Cz and Fpz 
were used as common reference and ground electrodes, respect-
ively. All EEG electrodes were kept to an impedance of below 5 
kΩ. Electrooculography (EOG) and submental electromyography 
were also performed with impedances kept below 10 kΩ. Pulse 
oximetry was measured on the first night to screen for undiag-
nosed sleep apnea.

Signals were sampled at 256 Hz and band-pass filtered be-
tween 0.2 and 35 Hz for EEG, and between 0.2 and 10 Hz for 
EOG. The Z3Score algorithm [42] (https://z3score.com) in con-
junction with the FASST EEG toolbox [43], was used to automate 
sleep and artifact staging before they were visually checked by 
trained research staff following standards set by the American 
Academy of Sleep Medicine Manual for the Scoring of Sleep and 
Associated Events [44].

SWA in the 0.6–4 Hz band was computed across all artifact-
free NREM epochs on electrode C3/A2 following our prior work 
[45]. Power spectral density estimates were computed using 
Welch’s modified periodogram method [46] (Hamming window; 
0.2 Hz bin resolution) on nonoverlapping 5 s epochs and inte-
grated from 0.6 to 4 Hz using the trapezoidal rule for integral 
approximation to obtain SWA measures per epoch, which were 
then averaged across the whole night of sleep.

Assessment of cognition

Cognitive function across four main domains was assessed. 
Nonverbal intelligence was assessed during the screening period 
for study inclusion, while the latter three domains—sustained 
attention, speed of processing (SOP), and working memory were 
assessed using an average of three test battery assessments 

(morning, afternoon, evening) conducted the day following the 
polysomnographic recording when the participants were well-
rested after at least nine nights of 9-h TIB. Subjective sleepi-
ness was also measured with the Karolinska Sleepiness Scale 
[47] (KSS) prior to the test battery assessments to ensure effects 
were not driven by sleepiness levels.

Nonverbal intelligence. This was assessed using Raven’s Advanced 
Progressive Matrices [48] (APM) which is a test of observation 
and clear thinking ability, and is used as a nonverbal estimate 
of abstract reasoning or fluid intelligence. The number of correct 
responses out of a total of 12 questions was used as a measure 
of performance.

Sustained attention. The 10-min Psychomotor Vigilance Task [49] 
(PVT) was used to measure sustained attention. Between inter-
vals of 2–10 s, a counter on the computer screen would randomly 
start, and participants were instructed to respond as quickly as 
possible by pressing a key. An alarm would sound if no response 
was detected 10  s after stimulus onset. Median reaction time 
(ms) across all trials was used as the primary measure of sus-
tained attention, while exploratory associations with mean re-
action time, average lapses, fastest 10%, slowest 10%, and speed 
are provided in the Supplementary Material.

Speed of processing. This domain was assessed using two tasks. 
In the Symbol Digit Modalities Task [50] (SDMT), a key com-
prising nine pairs of symbols and digits (1–9) was presented. 
Participants were required to input the corresponding digit pair 
to each symbol that was presented as quickly as possible. An 
alarm was sounded if no response was detected after 15 s. The 
total number of trials correctly responded to within 2 min was 
used as a measure of performance. In the Mental Arithmetic 
Task [51] (MAT), participants were instructed to sum pairs of 
two-digit numbers as quickly as possible within 4 min. An alarm 
was presented if no response was detected after 15 s. The total 
number of correct trials was used as a measure of performance. 
The scores of these two tasks underwent T-score conversion 
[T-score = (z-score × 10) + 50] separately and were then averaged 
to obtain a domain-specific T-score.

Working memory and executive functions. Working memory and 
executive functioning was assessed using the verbal 3-Back 
[52] task. Letters were presented for 1 s each with a 3 s inter-
stimulus interval. Participants had to indicate with “Y” or “N” on 
the keyboard whether or not the current letter matched the one 
shown three items ago. The match to mismatch ratio was 8:24. 
The A' measure of discriminability was used as a performance 
measure.

Statistical analyses

Statistical analyses were performed with SPSS 26.0 (IBM, 
Chicago, USA) to examine associations among age, brain, 
sleep, and cognitive measures. Partial correlations, controlled 
for sex, were employed to investigate age-related associations 
on brain, sleep, and cognitive measures. To investigate poten-
tial mediating effects of age on cognition by cortical thickness 
and SWA measures, Freesurfer’s mri_glmfit was first used to 
identify brain regions that were separately associated with 

http://surfer.nmr.mgh.harvard.edu/
https://z3score.com
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab206#supplementary-data
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age, SWA, and cognitive domains of SOP and nonverbal intel-
ligence (i.e. those that showed significant age-associations). 
General Linear Models (GLMs) were conducted on all vertices 
of the cortical morphometric data, controlling for the effects 
of sex. Intersecting regions that were greater than 50 mm [2] 
from the conjunction of these three separate significance 
maps were then extracted. ROIs that were no longer signifi-
cant in regression models predicting cognition from age, brain 
ROIs and SWA measures were excluded, and the remaining 
ROIs were then considered in further serial mediation ana-
lyses [53].

SWA measures were log-transformed prior to analyses 
to improve normality (p > 0.05 on Kolmogorov-Smirnov and 
Shapiro-Wilk tests after log-transformation), while serial me-
diation analyses were conducted using the PROCESS func-
tion in SPSS (v3.5, Hayes Model 6 [54]). The indirect effect was 
tested using 5,000 bootstrap samples and a 95% confidence 
interval (bias-corrected). Sex was included as a covariate in all 
models, but as it did not interact with any of the other vari-
ables inspected, interaction terms were not included in the 
final models.

Results
Characteristics of participants included in the final sample, 
along with scores on the cognitive tasks performed are provided 
in Table 1.

Cognitive abilities increase with age

Speed of processing and non-verbal intelligence showed 
age-related improvements (r = 0.33, p = 0.001 and r = 0.24, p = 0.01 
respectively; Figure 1, A and B). There were no significant asso-
ciations between age and sustained attention/working memory 
and executive function (rs < 0.04; ps > 0.72). There was also no 
association between levels of sleepiness assessed prior to the 
cognitive test batteries and performance that would suggest an 
impact of alertness levels on cognitive function (ps > 0.10).

Cortical thickness and EEG SWA decline with age

Accompanying age-related increases observed in cognition, was 
cortical thinning of both cerebral hemispheres with age (Figure 
2, A and B). Partial correlations controlled for sex showed signifi-
cant negative associations between age and cortical thickness 
(left hemisphere r = −0.32, p = 0.001; right hemisphere r = −0.32, 
p = 0.001). Further inspection of the four lobes revealed that this 
association was steepest in the temporoparietal regions (LH par-
ietal: r = −0.34, p < 0.001, RH parietal: r = −0.36, p < 0.001; LH tem-
poral: r = −0.46, p < 0.001, RH temporal: r = −0.43, p < 0.001), and 
to a lesser extent in the occipital regions (LH occipital: r = −0.20, 
p  =  0.04). Follow-up analyses in these lobes identified specific 
ROIs within each lobe that exhibited these negative correlations 
with age (Table 2). In addition, there was also a negative correl-
ation between EEG SWA (0.6–4 Hz) and age (r = −0.35, p < 0.001; 
Figure 2C), and a positive correlation between SWA and cor-
tical thickness (Table 2), suggesting inter-relationships between 
these measures.

Cortical thinning and SWA reductions mediate age-
related improvements in cognition

Given the significant associations of age with cortical thick-
ness, SWA, and two cognitive domains, we next sought to de-
termine whether age-related improvements in cognition were 
statistically mediated by reduction in cortical thickness and 
SWA in a serial mediation model. To identify ROIs that were 
simultaneously associated with all three variables of interest—
age (Figure 3A), SWA (Figure 3B), and cognition averaged across 
speed of processing and nonverbal intelligence domains (Figure 
3, C and D), a conjunction of three vertex-wise analyses (con-
trolled for sex) in Freesurfer (Figure 3, E and F) was conducted. 
ROIs that were no longer significant in regression models 
predicting cognition from age, brain ROIs and SWA measures 
were excluded. Finally, serial mediation models controlled for 
sex on the remaining ROIs showed that the age-related im-
provements in both speed of processing and nonverbal intel-
ligence domains were mediated by cortical thickness in these 
brain ROIs and SWA measures (speed of processing—Figure 4A: 
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Figure 1. Scatter plots relating (A) speed of processing (SOP) T-scores and (B) nonverbal intelligence (APM) with age for males (blue) and females (red), respectively. 

Overall linear regression lines are shown as black solid lines. r-values denote partial correlations, controlled for sex.
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left superior temporal region; indirect effect b = 0.141, SE = 0.090, 
95% CI = [0.0057; 0.3478]; Figure 4B: right middle temporal re-
gion; indirect effect b  =  0.2078, SE  =  0.1314, 95% CI  =  [0.0275; 
0.5245]; nonverbal intelligence—Figure 4C: left middle temporal 
region; indirect effect b = 0.0317, SE = 0.0236, 95% CI = [0.0003; 
0.0888]; Figure 4D: right middle temporal region; indirect effect 
b = 0.0313, SE = 0.022, 95% CI = [0.0024; 0.0833]). Results also in-
dicated full mediation of the age-related improvement effect 
on cognition, as direct effects were no longer significant after 
inclusion of SWA and cortical thickness measures as medi-
ators. The proportion of variance explained by the model with 
stepwise inclusion of cortical thickness followed by SWA in-
creased significantly in all models considered (speed of pro-
cessing: from 11% to 30% and 33% in the left hemisphere, and 
to 23% and 26% in the right hemisphere; nonverbal intelligence: 
from 7% to 15% and 20% in the left hemisphere, and to 14% and 
18% in the right hemisphere; all ps < 0.05). Even where SWA 
measures included before cortical thickness, analyses simi-
larly show that proportion of variance increased significantly 

(speed of processing: from 11% to 18% and 33% in the left hemi-
sphere, and to 18% and 26% in the right hemisphere; nonverbal 
intelligence: from 7% to 15% and 20% in the left hemisphere, 
and to 15% and 18% in the right hemisphere; all ps < 0.05), sug-
gesting independent contributions of both serial mediators to 
cognition.

Discussion
In the present work, we observed age-related improvements in 
cognitive abilities across mid-late adolescence, alongside re-
ductions in cortical thickness and SWA measures, congruent 
with findings obtained over a broader childhood-adolescent 
age range [27, 28]. In addition, we expand on these findings by 
demonstrating that the extent of cortical thinning—particu-
larly in the middle/superior temporal regions, and reduction in 
SWA mediated the age-related improvements on cognition. This 
solidifies evidence for cross-linkages involving brain develop-
ment, sleep, and cognitive functioning.

Male Female

r = - 0.32 ** r = - 0.32 ** r = - 0.35 ***

**p<0.01, ***p<0.001

A B C

Figure 2. Scatter plots relating cortical thickness measures in the (A) left and (B) right hemispheres, and (C) all-night SWA with age for males (blue) and females (red), 

respectively. Overall linear regression lines are shown as black solid lines. r-values denote partial correlations, controlled for sex.

Table 2. Brain regions of interest showing significant partial correlations between cortical thickness measures and age/SWA, controlled for sex

Hemisphere/lobe Region rAge P rlogSWA P

RH Temporal Middle temporal −0.49 <0.001 0.30 0.002
LH Temporal Middle temporal −0.46 <0.001 0.22 0.02
LH Temporal Superior temporal −0.45 <0.001 0.30 0.002
RH Parietal Supramarginal −0.45 <0.001 0.21 0.03
LH Parietal Supramarginal −0.44 <0.001 0.25 0.009
LH Temporal Inferior temporal −0.41 <0.001 0.26 0.007
LH Temporal Banks of the superior temporal sulcus −0.39 <0.001 0.32 0.001
RH Temporal Superior temporal −0.36 <0.001 0.19 0.04
LH Parietal Inferior parietal −0.34 <0.001 0.27 0.005
RH Parietal Inferior parietal −0.31 0.001 0.11 n.s.
LH Parietal Postcentral −0.28 0.004 0.14 n.s.
RH Temporal Inferior temporal −0.24 0.01 0.21 0.03
RH Parietal Superior parietal −0.22 0.02 0.04 n.s.
RH Temporal Banks of the superior temporal sulcus −0.21 0.03 0.19 n.s.
LH Occipital Cuneus −0.21 0.03 0.15 n.s.
LH Parietal Precuneus −0.21 0.03 0.11 n.s.
LH Temporal Transverse temporal −0.21 0.03 0.11 n.s.
RH Occipital Precuneus −0.21 0.03 0.06 n.s.

Regions are sorted in descending order, beginning with the strongest negative associations between cortical thickness and age.
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We found that cognition, particularly in the speed of pro-
cessing and nonverbal intelligence domains, improved with age. 
Given that sleep history was carefully controlled and that there 
was no association between average KSS scores and cognitive per-
formance, these results could not be explained by differences in 
sleepiness levels. Compared to simple reaction time tasks that 
reach maturity in early adolescence [55], cognitive tasks that re-
cruit higher-order executive processes such as information in-
tegration, reasoning, and problem solving are more reliant on 
heteromodal association areas that develop in late adolescence. 

The temporoparietal areas which show the strongest associations 
with age, SWA, and cognition in the present work are involved in 
higher order cognitive processes such as semantic processing, lan-
guage, and cross-sensory modality integration of information [11].

Prior work has shown associations between age, cortical 
thinning, and SWA reduction during adolescence over a wider 
age window (8–19 years [27] and 12–21 years [28]). Even within 
a narrow age window of 4  years during mid-late adolescence 
(15–19  years), we found significant age/SWA-related cortical 
thinning; although this was observed mainly in the temporal 

Figure 3. Whole-brain vertex-wise analysis of the left and right hemisphere in Freesurfer identifying brain regions whose thickness was associated with (A) age, (B) 

slow wave activity, (C) speed of processing, and (D) nonverbal intelligence. Statistical maps show regions with positive (red) and negative (blue) correlations between 

cortical thickness measures and these variables, controlled for sex. The color bars indicate logarithmic scale of p values (−log10). To visually demonstrate widespread 

changes, significant thresholds were set at p < 0.01, uncorrected. Panels (E) and (F) indicate intersecting brain regions from the conjunction of these three thresholded 

maps (age, SWA, and speed of processing/nonverbal intelligence). Regions identified in these conjunction analyses were then extracted for further serial mediation 

analyses.
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lobe rather than in frontal cortices described previously [27, 28]. 
This may be because temporal lobe gray matter volume peaks 
at around 16.6  years—the midpoint of the present sample’s 

age-range, compared to 10–11  years in the parietal lobes and 
11–12 years in the frontal lobes [13]—with development of the 
prefrontal cortex continuing well into early adulthood [56–58].

Figure 4. The serial mediating effect of cortical thickness measures in middle/superior temporal brain regions as well as sleep slow wave activity in the relationship 

between age and cognitive domains of speed of processing (A, B) and nonverbal intelligence (C, D) (*p < 0.05, **p < 0.01, ***p < 0.001). All effects are unstandardized; an 

represents effects of age on cortical thickness measures and SWA as mediators; bn represents the effect of these mediators on cognition; c' and c represent direct and 

total effects of age on cognition; d is effect of cortical thickness in the right and left middle/superior temporal regions on SWA. All models were controlled for sex 

(male = 0). Results indicated full mediation of the age-related improvement effect on cognition, as direct effects were no longer significant after inclusion of SWA and 

cortical thickness measures as mediators.
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The provision of 9-h TIB for over a week prior to PSG assess-
ment was designed to obviate the influence of sleep restriction 
on SWA. Adolescents in this age group often curtail sleep [59] 
and this can elevate early-night SWA on subsequent nights [45, 
60, 61]. Whether chronic insufficient sleep in childhood and ado-
lescence alters the generators of slow waves is an important 
unanswered question. Alteration of sleep homeostasis has not 
been observed following up to five nights of sleep restriction to 
5-h TIB in human adolescents [62] but the effect of consistent 
short sleep over months or even years has not been evaluated. 
Changes to sleep homeostasis with a relatively short sleep re-
striction of five nights have been shown in rodents [63], sug-
gesting the need for longitudinal studies on populations such 
as ours where nocturnal sleep durations are habitually below 
what is recommended [64]. It is thus important to evaluate the 
potential effects of habitual sleep duration on brain maturation. 
“Overpruning” during adolescence has been linked to schizo-
phrenia, [9] mood disorders, [65] autism [66], and intellectual 
disability [67]. In addition, due to age-related SWA reductions 
and cortical thinning measures in typically developing adoles-
cents, it would be imperative to control for age or include an 
age-matched control group when analyzing sleep EEG data 
involving children/adolescents even within a very small age 
range, for example, when investigating the role of SWA on 
memory consolidation/encoding.

Limitations
Cross-sectional data precludes tests for causal relationships be-
tween the variables examined. Future work should investigate 
longitudinal sleep–brain relationships, which would help assess 
whether SWA simply mirrors reductions in synaptic density or 
cortical thickness or whether it could be actively involved in 
synaptic refinement processes [68]. Although cross-sectional 
studies suggest that the peak of synaptic pruning occurs earlier 
than SWA [69], they could also bidirectionally influence each 
other. For example, chronic short sleep at an early age could 
alter SWA levels later on in life.

A longitudinal investigation will also enable better control 
over variation in peak thickness across individuals. Cortical 
thickness measures have been shown to exhibit moderate to 
strong heritability [70, 71] particularly in association areas be-
tween the ages of 12 and 17 [72]. These would be important 
to disentangle from cultural or environmental influences that 
could similarly impact developmental trajectories. Cortical 
thickness trajectories themselves could be more informative 
than point measurements. For example, children with superior 
intelligence exhibited a higher rate of cortical thinning than 
those with average intelligence [73]. Students in our sample 
were also recruited from among better-performing schools and 
typically have well-practiced cognitive abilities from an early 
age [74, 75].

In addition, age-related increases in intracortical myelin-
ation that affect gray-white tissue contrast as well as changes 
to cortical morphology during development can also result in 
apparent cortical thinning [76], while white matter microstruc-
ture can influence SWA [77, 78] and cognition [79]. Further work 
is needed to disentangle these developmental mechanisms with 
multimodal techniques as well as investigate the potential con-
tribution of other EEG microstructural features to cognition, 

for example, sleep spindle characteristics—number, density, 
duration, and its temporal coordination with slow oscillations, 
which have also been known to mature with age [80, 81].

Our findings were limited to analysis of a single central elec-
trode. Frontal SWA may be more sensitive to age-related changes 
in late adolescence [82] and should be considered in future 
studies. Finally, these results relate to East Asian adolescents. 
Future work should investigate whether developmental trajec-
tories and relationships with sleep and cognition differ across 
race and cultures. One study in children between 8 and 16 years 
of age found regional differences in brain morphological devel-
opment between Chinese and Caucasian children [83].

Conclusions
In summary, our findings show that age-related improvements 
in cognition during mid-late adolescence are mediated by cor-
tical thinning and reductions in SWA, particularly in the middle/
superior temporal regions—which undergo the most matur-
ational change in this age range. These findings affirm prior 
work showing neural refinement for learning efficiency still 
taking place in late adolescence. Future work should investigate 
multimodal associations of brain, sleep, and cognitive develop-
ment longitudinally and explore the impact of brain insults or 
sleep habit changes during specific developmental periods.
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