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Abstract
Opioid use disorder (OUD) has become a serious leading health issue in the USA
leading to addiction, disability, or death by overdose. Research has shown that OUD
can lead to a chronic lifelong disorder with greater risk for relapse and accidental over-
dose deaths. While the prescription opioid epidemic is a relatively new phenomenon,
illicit opioid use via heroin has been around for decades. Recently, additional illicit
opioids such as fentanyl have become increasingly available and problematic. We
propose a mathematical model that focuses on illicit OUD and includes a class for
recovered users but allows for individuals to either remain in or relapse back to the
illicit OUD class. Therefore, in our model, individuals may cycle in and out of three
different classes: illicit OUD, treatment, and recovered. We additionally include a
treatment function with saturation, as it has been shown there is limited accessibility
to specialty treatment facilities. We used 2002–2019 SAMHSA and CDC data for the
US population, scaled to a medium-sized city, to obtain parameter estimates for the
specific case of heroin. We found that the overdose death rate has been increasing
linearly since around 2011, likely due to the increased presence of fentanyl in the
heroin supply. Extrapolation of this overdose death rate, together with the obtained
parameter estimates, predict that by 2038 no endemic equilibrium will exist and the
only stable equilibrium will correspond to the absence of heroin use disorder in the
population. There is a range of parameter values that will give rise to a backward bifur-
cation above a critical saturation of treatment availability. We show this for a range of
overdose death rate values, thus illustrating the critical role played by the availability
of specialty treatment facilities. Sensitivity analysis consistently shows the significant
role of people entering treatment on their own accord, which suggests the importance
of removing two of the most prevalent SAMHSA-determined reasons that individuals
do not enter treatment: financial constraints and the stigma of seeking treatment for
heroin use disorder.
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1 Introduction

A national crisis has emerged regarding opioid use disorder (OUD) (Vivolo-Kantor
et al. 2018). Opioid overdose rates are on the rise and opioids are the primary cause of
overdose deaths in theUSA (Vivolo-Kantor et al. 2018; Jalal et al. 2018). In 2009,more
than 20,000 people died in the USA by overdosing on opioids, including prescription
opioids, heroin, and illicitly manufactured fentanyl; in 2019, the number of yearly
opioid overdose deaths increased to nearly 50,000 according to the National Institute
on Drug Abuse (Centers for Disease Control and Prevention 2020; National Institutes
of Health 2019). Prescription opioid overdose, abuse, and dependence accounts for a
total cost of 78.5 billion dollars a year reported by the Centers for Disease Control
and Prevention (CDC). These costs are the result of elevated health care, drug abuse
treatment, criminal justice, and loss of productivity expenditures (National Institutes
of Health 2019; Florence et al. 2016). Other consequences of opioid abuse and depen-
dence are exposure to sexually transmitted diseases, bacterial infections, and Neonatal
abstinence syndrome (Hartnett et al. 2019; Centers for Disease Control and Prevention
2017; Haight et al. 2018; Volkow 2018). In addition, drug abuse is being closely linked
to major depressive disorders and suicide attempts, which is now one of the increasing
causes of death in the USA, according to the CDC (Dragisic et al. 2015; Center for
Disease Control and Prevention 2016; Brook et al. 2002; Cole et al. 2019).

Opioidswere commonlyknown in the past as naturally occurring substances derived
from the opium poppy plant. They were thought to reduce the suffering of pain safely
and effectively. Today, opioids now include the semisynthetic and fully synthetic drugs
which invoke more intense, longer-lasting feelings of euphoria. Whether natural or
synthetic, once in the bloodstream and traveled to the brain, they bind to μ-opioid
receptors. This triggers the same reward system of pleasure and pain relief as do our
body’s naturally occurring opioids called endorphins. The opioids activate the mid
part of our brain generating feelings of pleasure from the discharge of dopamine in
another part of our brain. This is known as the mesolimbic reward system (Kosten and
George 2002; Lyden and Binswanger 2019; Incze and Steiger 2019; Veilleux et al.
2010).

Simultaneously, another part of the brain is remembering those good feelings of
pleasure, specifically the details surrounding the event. Later,when facedwith a similar
situation, cravings for the drug taken are encountered. This is termed conditioned
associations and it makes it very difficult for the user to not seek out that past feeling
of pleasure. This leads to repeated use especially in the early stages. However, over
time, repeated use switches from invoking those feelings of pleasure to avoiding the
bad feelings of withdrawal. Another consequence of consistent opioid use is tolerance,
which occurs when higher doses are needed to create the same previous sought after
effects. The brain adjusted and now the individual feels right-minded when opioids are
present, but abnormal when they are not, making withdrawal symptoms and cravings
an issue. The implication of these complex brain processes then lead to the underlying
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causes for continuing usewhere a vicious cycle of repeated drug use has begun (Kosten
and George 2002).

In recent years, opioid analgesics have been overprescribed and given their effect
on the brain, this has resulted in an increased risk of OUD. This has also influenced an
increase of heroin use where multiple users (4 out of 5 reported) have switched over
from opioid pain reliever prescriptions because of lower cost and accessibility issues
(Kolodny et al. 2015; Volkow 2018; Schuckit 2016; Connery 2015).

Fentanyl and other potent synthetic opioids on the black market have also fueled
this problem. They are less expensive, more potent, and less costly to import and are
either used to adulterate the heroin or replace it. The adulterated outcome of heroin
mixed with fentanyl or other synthetics is unpredictable and dangerous (Volkow 2018;
Williams et al. 2017; Spencer et al. 2019; Lyden and Binswanger 2019).

Many articles report a great need for OUD treatment, largely unmet, that signals a
serious, widespread public health concern in the USA. For example, only about half of
those individuals with heroin use disorder in the USA received treatment as stated in a
2014–15 study. Reasons mentioned include treatment not easily accessible, shortages
of trained healthcare staff, insurance coverage issues, limited policy changes, limited
financing of care, and limited means of quality care (Ghitza and Tai 2014; Mojtabai
et al. 2019; Kolodny et al. 2015; Volkow 2018; Williams et al. 2019; Connery 2015;
National Institutes of Health 2021).

Other than the previously mentioned obstacles, another barrier for treatment and
limited access to care may include that the public’s view of drug abuse and depen-
dence is stigmatized as opposed to being viewed as a chronic life-threatening disease
in need of assistance. As a result of the stigma, in the past, the focus was on an
abstinence-based treatment plan. Currently, there are three medications approved by
the Food and Drug Administration (FDA) proven to reduce future overdoses and
illicit drug use when combined with counseling and behavioral therapies. However,
there still exists some reluctance on using these medications to treat OUD. The
three medications are methadone, buprenorphine, and extended-release naltrexone.
The combination of medication with counseling and behavioral therapies is called
medication-assisted treatment (MAT) (Mojtabai et al. 2019; Volkow 2018; Coffa and
Snyder 2019; Williams et al. 2019; Lyden and Binswanger 2019; SAMHSA 2021;
National Institutes of Health 2021).

These medications remain underused where only a minority receives any treatment
(including non-medication routes) and even a smaller amount receive MAT. Among
treatment programs in the private sector, less than fifty percent offer opioid based
medications and of these programs only thirty-three percent of patients are prescribed
them. Therefore, many of the 2.4 million in the USA with OUD do not receive any
MAT. To diminish the US OUD overdose epidemic, these barriers and misunderstand-
ings for using these treatment steps must be tackled. OUD treatment is important to
decrease the mortality of millions of Americans at risk of opioid-related overdoses.
As a result, public health authorities are increasing efforts to integrate such treatment
(Mojtabai et al. 2019; Kolodny et al. 2015; Volkow 2018; Williams et al. 2017; Lyden
and Binswanger 2019; National Institutes of Health 2021)

A tool that can be used for understanding the complex issues surrounding OUD and
illicit OUD, its treatment options, and methods for decreasing relapse, is a mathemat-
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ical model. Mathematical models are very important to gain understanding of disease
epidemiology.Using the spread ofOUDviewed as the potential contagion,we can then
use a mathematical model to describe the spread of OUD and the dynamics underlying
those patterns that can best inform and assist policy makers in targeting prevention
and treatment resources for maximum effectiveness (Bailey 1975; Anderson and May
1992; Murray 2007; Brauer and Castillo-Chavez 2012).

Studies ofmathematicalmodels on drug use have been previously conducted.White
andComiskey (2007) divided the population into susceptible, current, and in-treatment
drug users for heroin addiction. A basic reproductive number, representing how many
new users is produced per each current user, was found. A sensitivity analysis pertain-
ing to control efforts was performed, which found that decreasing the transmission
term of the contagion showed higher significance than increasing the proportion of
users who enter treatment. The authors also found a condition where a backward
bifurcation exists, which means that an endemic equilibrium may exist even when the
reproductive number is less than one. Therefore, extra efforts would be needed to drive
down the epidemic. Also noted in their model is the inclusion of enhanced death rates
for the current users and users-in-treatment classes.

Some model studies of the White and Comiskey article were considered by other
authors Mulone and Straughan (2009), Wang et al. (2011), Muroya et al. (2014), Ma
et al. (2017) including Wangari and Stone.

Wangari and Stone (2017) had the added compartment class of individuals who
left treatment but are not using. They also added a saturation term to deal with the
shortcomings of the healthcare system when too many people seek treatment at the
same time. They found when this saturation parameter was above a critical threshold,
backward bifurcation existed. Their sensitivity analysis concluded that this parameter
was of high importance in feeding the epidemic. The effective contact rate and relapse
rate from treatment are other parameters they found with high sensitivity.

Additional models branched off of the White and Comiskey as well, including
the distributed time delay (Liu and Zhang 2011; Liu and Wang 2016; Fang et al.
2014; Huang and Liu 2013; Samanta 2011) and the age structured models (Fang et al.
2015b, a; Wang et al. 2019).

Caldwell et al. (2019) implemented and analyzed a Vicodin epidemic model that
focused only on the population of people who were prescribed Vicodin. They also
included a global sensitivity analysis to show that preventativemeasures over treatment
efforts are more successful for reduction of misuse.

Battista et al. (2019) proposed a model that added an opioid prescription drug
user class where a potential user can become addicted through either the use of pre-
scriptions, legally or illicitly, or through contact with another addicted person; they
included a treatment class as well. Mathematical analysis was performed, showing
that an addiction-free state cannot be attained without controls over prescriptions.
Their sensitivity analysis showed that prevention, followed by vigorous treatment,
may result in a low status of endemic misuse.

We propose an “illicit opioid use disorder” (IOUD) model to describe the role that
black market opioids such as heroin, fentanyl, and other synthetic opioids play in the
current opioid epidemic. Our model does not include a prescription class but will be
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extended to do so in future work. Thus, our proposed IOUD model can be viewed as
what might happen if opioids were outlawed or, perhaps, severely restricted.

Novel to ourmodel is the inclusion of a recovered class that does not allow for a past
user to ever be considered as a nonusing susceptible individual in the future. Therefore,
we must allow for relapse from both the recovered and treatment classes. According
to Kosten and George (2002), repeated and prolonged drug use modifies physiological
brain functions. Moreover, alternating between abstinence and withdrawal creates a
“changed set point” model. Within this model, healthy dopamine (DA) transmitter
activity is permanently altered by use of opioids. This effectively changes the natural
baseline of DA tolerance in addicted individuals. Another model called the “cognitive
deficits model of drug addiction” explains that damage to the prefrontal cortex may
result due to habitual use. This further reduces judgment capacity and impulse con-
straint. The challenges arising from this neurobiological deterioration permanently
increases the risk of relapse. Since chronic opioid use results in these brain transfor-
mations, cravings may be produced, causing a recovered individual who is no longer
opioid dependent to relapse, following months or years of their abstinence (Kosten
and George 2002; Kolodny et al. 2015).

Our IOUD model also considers a treatment class with a saturation term that slows
down the rate at which people receive treatment, due to the previously mentioned
barriers. We will see that both of these extensions play a role in the dynamics of the
system.

2 Model Formulation and Basic Properties

Our proposed model assumes a homogeneous mixing of the human population. The
total population at time t is denoted by N (t) and is divided into four mutually
exclusive compartments as follows: susceptibles S(t), individuals with illicit OUD
I (t), individuals in a treatment facility T (t), and recovered individuals R(t). Thus,
N (t) = S(t) + I (t) + T (t) + R(t); see Fig. 1 for how individuals can move between
compartments.
Susceptibles (S(t)) :

The susceptible (potential individuals with illict OUD) class describes the number
of the population who either have never used opioids or have used illicit opioids but
never been considered to have illicit OUD. The susceptible population is increased
by the constant recruitment rate, �. A constant for recruitment was chosen because
it will lead to an asymptotically constant population size as opposed to a linear one
which might possibly lead to exponential growth or decay.
IOUD (I (t)) :

The IOUD class describes the individuals who have illicit OUD. OUD according to
the Diagnostic and Statistical Manual of Mental Disorders, 5th Ed. is defined as the
use of opioids leading to a precarious situation of repeated use and as a result, at least
two destructive symptoms occur within a year period. These include problems such
as strong, persistent cravings, failure to perform societal and personal obligations,
increased physical endangerment, and an increased tolerance to opioids. A full list
can be found in the manual (Edition et al 2013).
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Fig. 1 Compartmental flowdiagramof the illicit opioid use disorder (IOUD)model. S represents susceptible
individuals, I represents individuals with illicit OUD, T represents those in specialty treatment facilities,
and R represents recovered individuals. R is considered distinct from S due to an increased potential for
relapse. The factor b(T ) = 1

1+εT models the decreased rate of entrance into the T class due to limited
access of care in specialty treatment facilities

Someonewho takes opioids illicitly a few times, in somekind of social circumstance
(a few parties, music festivals, etc), but never has the kind of constant use that would
result in the patterns discussed above would not be considered as having illicit OUD.
Thus, this individual would not be considered in the IOUD class but will remain in
the susceptible class.

This population class is considered infectious and as a consequence of interacting
with individuals with illicit OUD, a susceptible individual may develop tendencies
that could lead to illicit OUD. The value β is the transmission rate of that interaction
resulting in a change of class from S to I . In this way, the susceptible population may
flow to the IOUD class.

There are multiple ways that individuals transition out of the IOUD.
Treatment class (T (t)) :

The treatment class describes individuals with illicit OUD who are in a specialty
treatment facility. Individuals with illicit OUD may decide to leave for the treatment
class on their own at a rate of η1, or through the influence of a recovered individual
or someone from the susceptible population; the last two interaction rates are η2, η3,
respectively. These individuals may relapse back to the IOUD class by relapse rate κ

or at the end of their treatment they may flow to the recovered class at rate ρ.
From the yearly statistics from the Substance Abuse and Mental Health Services

Administration (SAMHSA) published in the annual National Survey on Drug Use
and Health (NSDUH), specialty treatment facilities (our T class) include hospitals
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(inpatient only), rehabilitation facilities (inpatient or outpatient), or mental health
centers. In contrast, non-specialty treatment facilities include emergency room, private
doctor’s office, self-help group, and prison/jail (Center for Behavioral Health Statistics
and Quality 2020).
Recovered (R(t)) :

The recovered class describes all the individuals who either completed specialty
treatment (i.e., went from T (t) to R(t)), or those with illicit OUD who quit on their
own or with the help of a non-specialty treatment facility (i.e., went from I (t) to R(t)
in either case).

Since illicit opioid use is a chronic condition (Kosten andGeorge 2002), individuals
remain in the recovered state unless they relapse which may be on their own at a rate
of α1 or as a consequence of interacting with an individual in the IOUD class at a rate
of α2.

There is a removal from each class as the natural death rate μ, whereas the IOUD
class, I (t), has an additional removal rate of δ. With this, the added component due to
illicit OUD overdose death (Seth et al. 2018), an overall computed death rate for the
individuals with IOUD would be μ + δ.

2.1 Model Equations

The model is given by the following deterministic system of nonlinear differential
equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= � − βS

I

N
− μS,

dI (t)

dt
= βS

I

N
+ α1R + α2R

I

N
+ κT

− b(T )

(

η1 I + η2
R

N
I + η3

S

N
I

)

− (ω + μ + δ)I ,

dT (t)

dt
= b(T )

(

η1 I + η2
R

N
I + η3

S

N
I

)

− (κ + ρ + μ)T ,

dR(t)

dt
= ωI + ρT − (α1 + μ)R − α2R

I

N
.

(1)

where b(T ) = 1
1+εT and all parameters are nonnegative.

We use a saturation treatment function b(T ) to modify the flow of individuals with
illicit OUD to treatment, where the parameter ε models a saturation of availability of
specialty treatment facilities. This limits the amount of individuals with illicit OUD
that can go into specialty treatment facilities due to the limited access of care discussed
previously in the introduction.

A description of variable and parameter values are listed in Table 1.
The basic properties of the IOUD model were explored and those results can be

found in Appendix.
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Table 1 Description of variables and parameters of the model

Variable Description

S(t) The total number of people who are susceptible at time t

I (t) The total number of individuals with illicit OUD (for the first time and
from relapse) not in specialty treatment or recovered at time t

T (t) The total number of individuals in specialty treatment at time t

R(t) The total number of individuals who have either completed specialty or
non-specialty treatment or “quit cold turkey” at time t

Parameter Description

N Size of the total population

� The rate of the number of individuals entering the susceptible population

μ The natural death rate of the general population

β The transmission rate of becoming an individual with illicit OUD through
interaction with others in the IOUD class

η1 The rate of individuals in I who enter specialty treatment on their own

η2 The rate of individuals in I who enter specialty treatment through
interaction with a recovered individual

η3 The rate of individuals in I who enter specialty treatment through
interaction with a susceptible individual

ω The rate of individuals in I who enter the recovered class by either
completing treatment in non-specialty facilities and/or “quitting cold
turkey”

ρ The rate of individuals leaving treatment and entering the recovered class

κ The rate of individuals leaving treatment and returning to the I class

α1 The rate of individuals in the recovered state relapsing back to the I class
on their own

α2 The rate of individuals in the recovered state relapsing back to the I class
through interaction with an individual in the I class

δ Death rate of individuals in the I class due to overdose

ε Saturation term for entering a specialty treatment facility

3 Data Explanation and Parameter Estimation

Our model considers illicit OUD, treatment, and recovery, as well as overdose deaths.
CDC data exists for overdose deaths due to synthetic opioids (primarily fentanyl)
as well as heroin (sometimes in combination with synthetic opioids). However, the
data from SAMHSA on illicit OUD and treatment is limited to heroin likely because
the presence of synthetic opioids is a relatively recent phenomenon. Thus, for the
purpose of comparing our model to data, we consider only heroin use or heroin use
with synthetic opioids (both considered by SAMHSA) but do not include additional
synthetic-opioid-only use. We consider a generic US city of approximately 200,000
people and scale the national data from the number of individuals with heroin use
disorder (HUD), the number of individuals with treatment, and the number of overdose
deaths to a city of this size by taking into account the increasing yearly US population.
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Fig. 2 Model output compared to data scaled to a population of 200,000 by taking into account the yearly
US population values. (Top Left): CDC data for overdose deaths in HUD class due to heroin, obtained as
0.8× (total overdose deaths due to heroin), presented as red curve with diamonds compared with model
output as blue curve with circles. (Top right): SAMHSA data for in “HUD in past year,” with error bars when
given. Model approximation is the blue curve with circles, calculated with instantaneous model variable I
(solid, cyan curve immediately below) averaged over each year and added to the “correction” for those that
left and also possibly returned to I (see text). (Bottom right): SAMHSA data for in “specialty treatment in
past year coming from I ,” with error bars when given. Model approximation is the blue curve with circles,
calculated with instantaneous model variable T (solid, cyan curve immediately below) averaged over each
year and added to the “correction” for those that left and also possibly returned to T (see text). The bottom
2 curves in the right panels signify those who left I and T over the year presented with dash–dot curves and
the corrected quantities of those who left the respective classes are presented with dotted curves. These last
two quantities sum to give the solid curve with circles that we compare with the SAMHSA data. (Bottom
left): Data-derived and least squares fit for δ. Asterisks and x-marks are calculated from data (see text and
equation (3)) with blue x-marks used to obtain the horizontal (constant) line and black asterisks used to
obtain the nonzero sloped line; both lines are calculated with a least squares fit (Color figure online)

This allows us to consider a nearly constant population size aswe analyze the dynamics
of the model. For example, heroin use disorder (HUD) in 2002 in the top right graph
of Fig. 2 is 148.97 = (214,000/287.3E+06) × 200,000; see Table 2 for similar yearly
numbers.We found CDC data with the number of deaths due to heroin or heroinmixed
with synthetic opioids (third column of Table 2), which is dominated by fentanyl, as
well as death from synthetic opioids alone (second column). SAMHSAdata was found
for the number of individuals with HUD, with the NSDUH counting those with HUD
in the past year (fifth column, relates to our variable I ). SAMHSA data is available for
treatment in a specialty facility in the past year (sixth column, relates to our variable
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T ) and also in a general treatment center in the past year (not presented). Data for "in
specialty treatment for HUD" was only presented in the 2014–2017 SAMHSA survey
results. In order to scale the other years to give an approximate number in specialty
treatment facilities coming from HUD (our variable T ), we looked at the ratio of
specialty treatment from HUD to the specialty treatment data in the 4 years when it
was available. The factor 0.6874 is the average of the ratio. The specialty treatment
×0.6874 is labeled in the sixth column with an asterisk, and also given without error
bars in the graph. The treatment data, similar to the HUD data, counted individuals in
a specialty facility in the last year. This is the data presented in our graphs with the
raw data given in Table 2. The error bars in the graphs represent the standard error
given in the SAMHSA data (not presented in the table).

Our variables I and T are instantaneous in time, whereas the SAMHSA data gives
those in the respective classes in the past year. In the case of comparing our model
output with the SAMHSA treatment data, individuals that were in treatment in the
past year could (i) be currently in T , (ii) have relapsed and went from T back to I , or
(iii) have successfully completed treatment and moved from T to R in the past year.
In the case of comparing our model output with the SAMHSA HUD data, individuals
with HUD could (i) be currently in I , (ii) have moved to treatment (I to T ), or (iii)
moved directly from I to R in the past year. Thus, we additionally need to keep track
of the number of individuals who left each of these classes each year. We further
correct our model output with a small discount for those that went back again (after
having left and thus should not have been discounted). In the data matching plot, we
present the model output, those that left I and T over the year, and a correction of
those who left I and T over the year but then went back (estimated with κTI + α1RI ,
and IT

(
η1 + η3

S
N

)
/(1 + εT ), respectively). Those who left I and T over the year

are presented with dash–dot curves, the corrected quantities of those who left the
respective classes are presented with dotted curves, and the variable output of the
class is a solid curve with no circles. These last two quantities sum to give the solid
curve with circles that we compare with the SAMHSA data.

Wewere able to comeupwith reasonable estimates formanyof the parameters based
on the literature. We used μ from Wangari (2017), Wangari and Stone (2017) where
it was assumed that the average person’s lifespan is 80 years old and thus μ = 1/80.
From Battista et al. (2019), Battista et al. (2019), we obtained an approximate range
of ρ as 0.1 to 0.4 Weiss and Rao (2017). We estimated κ to be in the range 0.4 to
0.9 from Smyth et al. (2010), Bailey et al. (2013), Weiss and Rao (2017). We set
� = 2500 so that the population in the heroin-free model reaches 200,000 for the
assumed μ and for δ = 0. For parameters η1, η2, and η3, the entry to treatment rates,
we used the range 0.2−0.95 fromBattista et al. (2019) andWangari and Stone (2017),
Zhang and Liu (2008). Both models had only a linear term from their addicted class
to treatment, whereas our model has one linear term and two nonlinear terms between
the comparable classes. Considering η = η1 +η2(R/N )+η3(S/N ), we set estimates
for η1 = .5, η2 = .1, and η3 = .17. Similarly, we found a rate from recovery back
to HUD from the literature in a study by Gossop et al. (1989). We estimated α to be
in the range 0.1 to 1/3 with α = α1 + α2 · I/N and α1 significantly bigger than α2.
We used α1 = .2, α2 = .01. The parameter ω for going directly from I to R, either

123



Modeling the Dynamics of Heroin and Illicit Opioid Use… Page 11 of 49 48

Ta
bl
e
2

D
at
a
fo
r
U
SA

,2
00

2–
20

20
.T

he
nu

m
be
r
of

ov
er
do

se
de
at
hs

fo
r
20

02
–2

02
0
ar
e
fr
om

th
e
C
D
C
(C

en
te
rs

fo
r
D
is
ea
se

C
on

tr
ol

an
d
Pr
ev
en
tio

n
20

20
).
U
S
po

pu
la
tio

n
co
m
es

fr
om

U
ni
te
d
N
at
io
ns

(2
01

9)
.U

se
di
so
rd
er

an
d
sp
ec
ia
lty

tr
ea
tm

en
t
da
ta

co
m
e
fr
om

SA
M
H
SA

’s
N
SD

U
H

(C
en
te
r
fo
r
B
eh
av
io
ra
l
H
ea
lth

St
at
is
tic
s
an
d
Q
ua
lit
y
20

20
,

20
18

,
20

16
,
20

15
,
20

14
;L

ip
ar
ia
nd

H
ug

he
s
20

15
;C

en
te
r
fo
r
B
eh
av
io
ra
lH

ea
lth

St
at
is
tic
s
an
d
Q
ua
lit
y
20

13
;S

ub
st
an
ce

A
bu
se

an
d
M
en
ta
lH

ea
lth

Se
rv
ic
es

A
dm

in
is
tr
at
io
n

20
11

,
20

10
,
20

08
,
20

06
).
T
he

de
ri
va
tio

n
of

va
lu
es

in
th
e
co
lu
m
n

δ
-d
at
a
ar
e
gi
ve
n
in

(3
)
w
he
re

w
e
us
ed

(H
U
D

cl
as
s
da
ta

in
ye
ar
)×

0.
90
3
to

es
tim

at
e
av
er
ag
e
nu

m
be
r
w
ith

H
U
D
du

ri
ng

th
e
ye
ar
.T

he
va
lu
es

in
th
e
co
lu
m
n

δ
-fi
ta
re

ob
ta
in
ed

fr
om

(4
)

Y
ea
r

D
ea
th
s
du
e
to

ov
er
do
se

U
S
po
pu
la
tio

n
H
U
D
in

la
st
ye
ar

Sp
ec
ia
lty

tr
ea
tm

en
ti
n
la
st
ye
ar

fr
om

I
δ
-d
at
a

δ
-fi
t

Sy
nt
he
tic
s

H
er
oi
n

20
02

12
95

20
89

28
7.
3E

+
06

21
4,
00

0
N
ot

av
ai
la
bl
e

0.
00

86
48

0.
00

80
89

20
03

14
00

20
80

28
9.
8E

+
06

18
9,
00

0
N
ot

av
ai
la
bl
e

0.
00

97
50

0.
00

80
89

20
04

16
64

18
78

29
2.
4E

+
06

27
0,
00

0
10

7,
20

0∗
0.
00

61
62

0.
00

80
89

20
05

17
42

20
09

29
5.
0E

+
06

22
7,
00

0
13

0,
60

0∗
0.
00

78
41

0.
00

80
89

20
06

27
07

20
88

29
7.
8E

+
06

32
4,
00

0
25

9,
10

0∗
0.
00

57
09

0.
00

80
89

20
07

22
13

23
99

30
0.
6E

+
06

21
4,
00

0
13

8,
20

0∗
0.
00

99
32

0.
00

80
89

20
08

23
06

30
41

30
3.
5E

+
06

28
3,
00

0
15

6,
00

0∗
0.
00

95
20

0.
00

80
89

20
09

29
46

32
78

30
6.
3E

+
06

36
9,
00

0
22

1,
30

0∗
0.
00

78
70

0.
00

80
89

20
10

30
07

30
36

30
9.
0E

+
06

36
1,
00

0
18

8,
30

0∗
0.
00

74
51

0.
00

80
89

20
11

26
66

43
97

31
1.
6E

+
06

42
6,
00

0
20

0,
70

0∗
0.
00

91
44

0.
00

92
55

20
12

26
28

59
25

31
4.
0E

+
06

46
7,
00

0
20

1,
40

0∗
0.
01

12
40

0.
01

15
6

20
13

31
05

82
57

31
6.
4E

+
06

51
7,
00

0
24

6,
80

0∗
0.
01

41
49

0.
01

38
7

20
14

55
44

10
,5
74

31
8.
7E

+
06

58
6,
00

0
27

0,
00

0
0.
01

59
86

0.
01

61
8

20
15

95
80

12
,9
89

32
0.
9E

+
06

59
1,
00

0
24

2,
00

0
0.
01

94
71

0.
01

84
8

20
16

19
,4
13

15
,4
69

32
3.
0E

+
06

62
6,
00

0
23

5,
00

0
0.
02

18
92

0.
02

07
9

20
17

28
,4
66

15
,4
82

32
5.
1E

+
06

65
2,
00

0
35

8,
00

0
0.
02

10
37

0.
02

31
0

20
18

31
,3
35

14
,9
96

32
7.
1E

+
06

52
6,
00

0
29

1,
50

0∗
0.
02

52
58

0.
02

54
0

20
19

36
,2
59

14
,0
19

32
9.
1
E
+
06

43
8,
00

0
32

1,
00

0∗
0.
02

83
56

0.
02

77
1

20
20

56
,8
83

13
,0
58

33
1.
0E

+
06

N
ot

av
ai
la
bl
e

N
ot

av
ai
la
bl
e

N
ot

av
ai
la
bl
e

0.
03

00
2

∗ S
pe
ci
al
ty

tr
ea
tm

en
t×

0.
68
74

be
ca
us
e
sp
ec
ia
lty

tr
ea
tm

en
tf
ro
m

H
U
D
on
ly

as
ke
d
in

20
14
–2
01
7
SA

M
H
SA

su
rv
ey
s.
T
he

fa
ct
or

0.
68
74

is
th
e
av
er
ag
e
of

th
e
ra
tio

of
sp
ec
ia
lty

tr
ea
tm

en
tf
ro
m

H
U
D
to

sp
ec
ia
lty

tr
ea
tm

en
ti
n
th
e
4
ye
ar
s
w
he
n
da
ta
is
av
ai
la
bl
e

123



48 Page 12 of 49 S. Cole, S. Wirkus

“quitting cold turkey” or quitting through a general (non-specialty) treatment facility,
was estimated to be in the range .01 to 0.2 (Wangari and Stone 2017).

The parameters β and ε were difficult to determine, so we did parameter estimation
with them as well as for ρ and ω (where we used the above range from the literature
for the latter two) (Banks et al. 2013; Banks and Bihari 2001; Cintrón-Arias et al.
2009). While we were able to approximately match the data for I and T , we were
not able to come close to matching the overdose death data for a fixed δ, which
increased significantly from 2010 through 2016, even allowing for a possible change
in parameters in 2010 (see derivation below and Table 2).

We now consider δ in more detail. By definition, we have that

δ = HUD overdose deaths due to heroin per year

average number of individuals with HUD during the year
. (2)

For the numerator, the CDC data gives total yearly overdose deaths due to heroin,
irrespective ofwhether an individualwaswithHUDor not (Centers forDiseaseControl
and Prevention 2017). We note that the paper by Battista et al. on prescription opioids
estimates a discount factor from the literature on what portion of opioid deaths were
from someone addicted to opioids to address this analogous problem (Battista et al.
2019). In our current discussion that focuses on HUD, we did not find any comparable
statement in the literature regarding the percentage of individuals who die from an
overdose of heroin that were in the HUD class (in contrast to those who die from a
heroin overdose but are “casual users”). We estimate that 80% of the heroin overdose
deaths are from individuals with HUD as a first approximation that can be corrected if
data becomes available. For the denominator, we need to estimate the average number
of individuals with HUD during the year for a given year since the SAMHSA data
gives the cumulative number of thosewithHUD in the past year (Center for Behavioral
Health Statistics andQuality 2014, 2015, 2016, 2018, 2020; Lipari andHughes 2015;
Center for Behavioral Health Statistics andQuality 2013; SubstanceAbuse andMental
Health Services Administration 2006, 2008, 2010, 2011). In comparing the model
output variable I with the model calculation to give the number in I in the past year
(bothwith results from the parameter estimation), we observed the graphs were shaped
similarly (solid cyan curve immediately underneath solid blue curve with circles in
the top right graph of Fig. 2). We thus calculated the ratio of the average of the model
output I over the past year to the model output I in the past year (described above)
for each year and found its average value to be 0.903. In our calculation of δ, we thus
estimated the average number in the HUD class over the year as the SAMHSA data for
those individuals with HUD in the past year multiplied by 0.903. Thus, we calculate
the yearly δ values as

δ =
(total overdose deaths due to heroin per year) ·

(
0.8 HUD overdose deaths due to heroin

1 overdose death due to heroin

)

(number in the HUD class in past year) · (0.903)
.

(3)
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In examining the data-derived yearly values of δ, we observed a significant year over
year increase starting in 2012 through 2019; see the bottom left subgraph in Fig. 2 and
Table 2. The 2020 overdose deaths were published recently by the CDC. During the
revision of thismanuscript, SAMHSApublished the 2020 data forHUD; however, they
changed the criteria for classifying an individual as HUD, thus making the 2020 data
that were released not obviously compatible with the data from 2019 and earlier. Thus,
we are not able to include the 2020 δ value in our parameter estimates. When plotted
versus time, the δ-values follow a piecewise linear function (2002–2019), as shown
in the bottom left subgraph in Fig. 2. We use the corresponding piecewise function
obtained with a least squares fit (last column of Table 2) in our model calculations:

δ(t) =
{

0.0080891345, 2002 ≤ t < 2010.4947542468
.0023071201997 t − 4.63036392433, 2010.4947542468 ≤ t < 2020,

(4)

where we present this number of significant digits to have agreement to six significant
digits when the function switches branches. (In our computations, additional digits
are kept.) Incorporating this piecewise function for δ into our parameter estimation,
our baseline values are

β = .09, ρ = .1, ε = .0313, ω = .04 } via parameter estimation,

α1 = .2, α2 = .01, κ = .4, μ = .0125,
η1 = .5, η2 = .1, η3 = .17

}

via estimation from the literature,

� = 2500 } for a city of ≈ 200, 000.

(5)

We choose our initial conditions to approximately match the scaled data from
t0 = 2002: S0 = 199,500, I0 = 102, T0 = 95, R0 = 100. While our model is for
illicit opioid use and not just heroin, only heroin data is available for the I and T
classes, and that is the data we use to fit our model. The data match is provided in
Fig. 2.

Given the myriad of ways in which we varied parameters to try to match the data,
we conclude that we cannot fix δ at a constant but must vary it according to the yearly
data if we are to obtain agreement of model output with data. This increase in δ over
time corresponds to a higher overdose death rate per individual in the HUD class.
Given the agreement of data and model output, necessitated by an increasing δ, we
interpret this deadlier δ as follows: the increase in number of heroin overdose deaths
was driven by the increase in the prevalence of fentanyl in the heroin supply, as no
increase in the HUD class (either seen in the SAMHSA data or our model output)
could account for such a drastic increase with a fixed δ. Fentanyl first appeared in
2007, is 100 times more potent than heroin, and its prevalence is well known to have
been getting greater in the heroin supply and illicit opioid use (Worth and House 2018;
United States Drug Enforcement Administration 2021).

We note that the number of overdose deaths and the number in the HUD class
both have decreased over the last 3 years, whereas our model continues to increase.
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(Interestingly, the data-derived δ-value for 2018, 2019 still increases in spite of this
decrease.) As shown in the second column of Table 2, deaths due to synthetic opioids
have skyrocketed. Numerous articles suggest that heroin users may be switching to
synthetic opioids, but SAMHSA data does not keep track of synthetic opioid use
explicitly and only in the last few years has considered illicit opioid use. A recent
article from the RAND corporation states that “Cheap, accessible, and mass-produced
synthetic opioids could very well displace heroin, generating important and hard-to-
predict consequences” (Pardo et al. 2019).

4 Steady-State Analysis

Traditional epidemiological language uses the phrase “disease-free equilibria (DFE)”
to describe the absence of the given disease. Our I class consists of those active users
with illicit OUD. Thus, we will consider an “illicit opioid use disorder-free equilibria”
(IOUDFE) that we will shorten to “disorder-free equilibria” (DFE) for convenience.
We are interested in the DFE and its stability for (1). With I , T , R = 0, dS

dt = 0 gives
S∗ = �/μ. Hence, the DFE of our IOUDmodel is (S∗, I ∗, T ∗, R∗) = (�/μ, 0, 0, 0)

For the ensuing analysis, we consider a fixed δ so that the death rate due to overdose
remains constant at some level (e.g., at its 2020value).We tried to analyze the equilibria
of the systemusing the local stability analysis and theRouth–Hurwitz criterion (Wirkus
et al. 2017; Edelstein-Keshet 2005), but due to the complexity of the expressions we
were not able to obtain any useful information.

4.1 Calculating the Basic Reproductive NumberR0

The basic reproductive number,R0, is a quantity that represents the expected number
of new infections produced per infected individual during their infectious period when
a disease is introduced into a susceptible population. In the context of our model,
it determines the additional number of new individuals with illicit OUD that each
individual with illicit OUD will produce before entering treatment or recovery.

We will find the R0 for our model (1) by using the next generation method as
presented in Van den Driessche and Watmough (2002) and also by considering a
heuristic derivation (see, e.g., Van den Driessche and Watmough 2002; Wangari and
Stone 2017); both agree.

We restate (1) with the b(T ) saturation term explicitly in the equations:

dS

dt
= � − βS

I

N
− μS,

dI

dt
= βS

I

N
+ α1R + α2R

I

N
+ κT − η1 I + η2

I R
N + η3

I S
N

1 + εT
− (ω + μ + δ)I ,

dT

dt
= η1 I + η2

R
N I + η3

S
N I

1 + εT
− (κ + ρ + μ)T ,

dR

dt
= ωI + ρT − (α1 + μ)R − α2R

I

N
.

(6)
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For the heuristic derivation ofR0, as presented byVandenDriessche andWatmough
(2002) we observe that we can cycle in and out of the IOUD class, either through
treatment or recovery or both due to relapse of individuals in the treatment or recovery
classes (Van den Driessche and Watmough 2002; Wangari and Stone 2017). The
average time an individual spends time as an opioid user in I without treatment is
U0 = 1

μ+δ+η1+η3+ω
.

The fraction of surviving I and moving to treatment is U1 = η1+η3
μ+δ+η1+η3+ω

and
the fraction of surviving I and moving to recovered is W1 = ω

μ+δ+η1+η3+ω
. Now, the

fraction of the surviving opioid users in T returning to I is seen to be U2 = κ
μ+κ+ρ

,
while the fraction of the surviving opioid users in R returning to I directly is W2 =

α1
μ+α1

. We set r1 = U1U2, which defines going from IOUD to treatment and back to

IOUD; and r2 = W1W2, which defines going from the IOUD class to recovered and
back to the IOUD class.
In addition, we now have the fraction of surviving opioid users moving to treatment,
then to R, and then to I :

r3 = U1

(
ρ

κ + μ + ρ

)

W2

Our new expression for all possible combinations of multiple passes will now be

1 + (r1 + r2 + r3) + (r1 + r2 + r3)
2 + (r1 + r2 + r3)

3 + . . . .

As this is a geometric sequence, we can write its sum as 1
1−(r1+r2+r3)

. Substitution for
r1, r2, r3, and multiplication by βU0 gives us

R0 =
(

β

μ + δ + η1 + η3 + ω

)

(
1

1 − η1+η3
μ+δ+η1+η3+ω

κ
μ+κ+ρ

− ω
μ+δ+η1+η3+ω

α1
μ+α1

− η1+η3
μ+δ+η1+η3+ω

ρ
κ+μ+ρ

α1
μ+α1

)

,

(7)

which can also be rearranged as

R0 = β(κ + ρ + μ)(α1 + μ)
(

α1δκ + α1δμ + α1δρ + α1η1μ + α1η3μ + α1κμ + α1μ
2 + α1μρ + δκμ + δμ2 + δμρ

+ η1μ
2 + η1μρ + η3μ

2 + η3μρ + κμ2 + κμω + μ3 + μ2ω + μ2ρ + μωρ

) .

(8)

In this latter form, we see that entering treatment, either of ones own accord, η1,
or through the interaction with a susceptible individual, η3, as well as recovering
on one’s own, ω, (all increasing) will result in a lower value of R0. Decreasing the
transmission rate, β, or increasing the illicit OUD overdose death rate, δ, would also
result in decreasing R0. The cycling that can occur between the I , R, and T classes
makes the remaining parameters less obvious.
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This expression forR0 is the same as that obtained via the next generation method
FV−1 as we now show (Van den Driessche andWatmough 2002). The FV−1 method
requires that we identify “new infections” and “infected” compartments. We note
that changes of the individual from T to I and R to I are not considered to be new
infections, but rather the movement of an infected individual through the different
compartments. According to the definitions of F and V , we compute

F =

⎡

⎢
⎢
⎣

βSI
N
0
0
0

⎤

⎥
⎥
⎦

and

V =

⎡

⎢
⎢
⎢
⎢
⎣

−α1R − κT − α2RI
N + η1 I+ η2 I R

N + η3 I S
N

εT+1 + (ω + μ + δ)I
α2RI
N − ωI − ρT + (α1 + μ)R

(κ + ρ + μ)T − η1 I+ η2 I R
N + η3 I S

N
εT+1

−� + βS I
N + μS

⎤

⎥
⎥
⎥
⎥
⎦

Clearly I is an infected compartment as it holds those individuals with IOUD. Due
to the structure of the equations and the mathematical method, T and R must also be
considered as infected compartments because individuals can go from R or T into I
without interaction because of the non-contact rates between them and the I class. In
terms of the biological justification, T and R are infected compartments since opioid
use may result in brain transformation with cravings that may be invoked, leading to
relapse of an individual in treatment or a recovered individual (Kosten and George
2002). Thus, our infected compartments are I , T , and R giving m = 3.

According to the definitions of F and V and using our previously calculated DFE,
we obtain

F =
⎡

⎣

β�
μN 0 0
0 0 0
0 0 0

⎤

⎦

and

V =
⎡

⎢
⎣

η1 + η3�
μN + ω + μ + δ −α1 −κ

−ω α1 + μ −ρ

−η1 − η3�
μN 0 κ + ρ + μ

⎤

⎥
⎦ .

The calculation of FV−1 results in only one nonzero eigenvalue that contains only
nonnegative parameter values. This maximum eigenvalue of FV−1 gives us the same
expression for R0 as from (8).

One interesting observation is the absence of ε, α2, and η2 from theR0 expression.
Since the interpretation ofR0 is often stated as one infected introduced into an entirely
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susceptible population, this would suggest that limited access to special facilities
(modeled via ε) will not play a role initially and the size of RI

N will be too small for
α2 or η2 to have any effect.

4.2 Endemic Equilibria

We will now determine the existence of non-trivial endemic equilibria of the system.
We will be particularly interested in the situation of a backward bifurcation, which is
characterized by a stable endemic equilibria existing even whenR0 < 1. In the region
of bi-stability, both the endemic equilibria (EE) and the DFE exist and are stable. We
begin by considering the case of no saturation, ε = 0, so that the situation of limited
availability in specialty treatment facilities does not occur:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= � − βS

I

N
− μS,

dI

dt
= βS

I

N
+ α1R + α2R

I

N
+ κT −

(

η1 I + η2
I R

N
+ η3

I S

N

)

− (ω + μ + δ)I ,

dT

dt
=

(

η1 I + η2
R

N
I + η3

S

N
I

)

− (κ + ρ + μ)T ,

dR

dt
= ωI + ρT − (α1 + μ)R − α2R

I

N
.

(9)

We will show that this case does not permit the existence of a backward bifurcation
for α2 = 0 but does permit one for large enough α2. We can obtain an equation in
only the variable I ∗ as follows. We set dS

dt = 0 and solve for S∗:

S∗ = �N∗

I ∗β + μN∗ .

We set dN
dt = 0 and solve for N∗; see (17):

N∗ = � − I ∗δ
μ

.

We set dT
dt = 0 and dR

dt = 0 and solve for T ∗ and R∗:

T ∗ = I ∗(I ∗N∗α2η1 + I ∗N∗η2ω + I ∗S∗α2η3 + (N∗)2α1η1 + (N∗)2η1μ + N∗S∗α1η3 + N∗S∗η3μ)

(I ∗α2κ + I ∗α2μ + I ∗α2ρ − I ∗η2ρ + N∗α1κ + N∗α1μ + N∗α1ρ + N∗κμ + N∗μ2 + N∗μρ)N∗ ,

R∗ = I ∗(N∗η1ρ + N∗κω + N∗μω + N∗ωρ + S∗η3ρ)

I ∗α2κ + I ∗α2μ + I ∗α2ρ − I ∗η2ρ + N∗α1κ + N∗α1μ + N∗α1ρ + N∗κμ + N∗μ2 + N∗μρ
,

where S∗ and N∗ are defined as above.
We substitute S∗, T ∗, R∗ into dI

dt = 0. After simplification, we obtain an equation
of the form 0 = B/C, where B is a complicated expression involving the parameters
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as well as I ∗ and N∗ and

C = ((I ∗β + N∗μ)(N∗μ2 + ((κ + α1 + ρ)N∗ + I ∗α2)μ + α1(κ + ρ)N∗

+I ∗((α2 − η2)ρ + κα2))).

We observe from (8) that R0 does not depend on η2 or α2 since those factors are not
present in R0. Thus, the presence of the factor (α2 − η2) suggests that altering η2 or
α2 may affect the sign of the denominator. We first set η2 = 0, so that the denominator
is always positive, and thus, we focus only on roots of the numerator.

From inspection, we observe that B is a cubic expression in I ∗ without a constant
term. Thus, our cubic expression for the roots of dI

dt = 0 has the form

0 = I ∗[a(I ∗)2 + b(I ∗) + c], (10)

where

a = −μα2(βη1 + βκ + βμ + βρ + δη3), (11)

c = (N∗)2μ(α1δκ + α1δμ + α1δρ + α1η1μ + α1η3μ

+α1κμ + α1μ
2 + α1μρ + δκμ + δμ2

+δμρ + η1μ
2 + η1μρ + η3μ

2 + η3μρ + κμ2 + κμω

+μ3 + μ2ω + μ2ρ + μωρ)(R0 − 1), (12)

and

b = −μN∗(α1βη1 + α1βκ + α1βμ + α1βρ + α1δη3 − α2βκ − α2βμ − α2βρ

+α2δκ + α2δμ + α2δρ + α2η1μ + α2η3μ + α2κμ + α2μ
2 + α2μρ + βη1μ

+βη1ρ + βκμ + βκω + βμ2 + βμω + βμρ + βωρ + δη3μ + δη3ρ). (13)

Thus, this c term from (10) is positive when R0 > 1 and it is negative when
R0 < 1. We will use this information to interpret whether or not it is possible to have
a backward bifurcation when R0 < 1 by using Descartes’ Rule of Signs. We know
that when R0 < 1 our c term must be negative. We also know that our a term in the
quadratic in (10) must always be negative. According to Descartes’ Rule of Signs,
there can be two or no positive real roots if b > 0 and no positive real roots if b < 0.
Using our baseline parameters discussed later with the modification that δ = .06 and
α2 = 2000, we observe that b > 0 and the roots of (10) are positive. This is confirmed
in the full system, and thus, we conclude that we can have a backward bifurcation for
ε = η2 = 0 for sufficiently large α2 (approximately > 1200 for the given parameter
values). We note before proceeding that the value for δ is 2 times its current estimated
value; in contrast, α2 = .01 is the value that fit the data, and thus, the value of nonlinear
relapse rate α2 needed for a backward bifurcation is at least 120,000 times greater than
this and thus likely unrealistic.

We now keep ε = 0 and consider α2 = 0 with η2 > 0. The denominator may
become negative for sufficiently large η2. Trial and error shows that we can find
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roots of B/C that are positive. However, substituting these values into the full system
yield negative values for some of the other variables. Following Battista et al. (2019),
Castillo-Chavez and Song (2004) as shown in appendix, we show that this case cannot
have a backward bifurcation. Thus, without saturation, we can have a backward bifur-
cation for an unrealistically large α2, the nonlinear relapse from R to I , but cannot
have a backward bifurcation when the nonlinear relapse rate is zero.

Let us now look to analyze the equilibria when ε > 0, i.e., we will include the
saturation term. We will show that a critical value exists above which a backward
bifurcation is permitted. Of particular note is that this critical value for ε is within a
reasonable range and the value of α could be 0 or its baseline value.

Proceeding in a more straightforward manner complicates things immediately due
to the large algebraic expressions. We tried to simplify the saturation term through a
Taylor series expansion for small ε but that approach did not work. Instead, we allow
the system, whose total population is governed by dN

dt = � − μN − δ I , to reach its
steady-state population level, N∗, given by when N∗ = �−I δ

μ
. The resulting limiting

system is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS̃

dt
= � − βS

Iμ

(� − I δ)
− μS,

d Ĩ

dt
= βS

Iμ

(� − I δ)
+ α1R + α2R

Iμ

(� − I δ)
+ κT

− b(T )

(

η1 I + η2
I Rμ

(� − I δ)
+ η3

I Sμ

(� − I δ)

)

− (ω + μ + δ)I ,

dT̃

dt
= b(T )

(

η1 I + η2
Rμ

(� − I δ)
I + η3

Sμ

(� − I δ)
I

)

− (κ + ρ + μ)T ,

d R̃

dt
= ωI + ρT − (α1 + μ)R − α2R

Iμ

(� − I δ)
,

(14)

where b(T ) = 1
1+εT .

We again try to obtain an equation involving only parameters and the variable I ∗.
We proceed as before by solving for S∗ by setting dS̃

dt = 0 and then plugging that result

into d R̃
dt = 0 and dT̃

dt = 0. Next, we solve for R∗ and T ∗ in terms of I ∗ simultaneously

by setting d R̃
dt = 0 and dT̃

dt = 0.We plug S∗, R∗ and T ∗ into d Ĩ
dt . The resulting equation,

which we will refer to as (�), is in terms of the variable I ∗. This is all done usingMaple
and is not presented here due to its length.

Obtaining a general expression for when a backward bifurcation occurred yielded
pages of expressions that were too complicated to analyze. We thus chose to focus on
three parameters, δ, ε, and β the parameters addressing overdose death, saturation,
and transmission, respectively. We extrapolate the δ-values from Fig. 2 as well as
calculate the corresponding effective reproductive numberReff(t) = (R0S(t)/N0) to
determine when the DFE and EE will be stable; see Fig. 3. The results that we now
present use realistic parameter values based on data through 2019 and presented in (5)
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Fig. 3 (Left): Extrapolated δ-values. The blue x-marks and black asterisks are from the overdose data
and are the same as in the bottom left panel of Fig. 2. The line obtained with a least squares fit of the
data from 2011–2019 and given in (4) is extended to 2038. The labeled δ-values in 2020, 2029, and 2038
are from extrapolation (16) using the best fit line. (Right): The effective reproductive number, Reff (t) =
(R0S(t)/N (t)), is plotted as the solid black curve using the baseline values of the parameters from (5) and
the extrapolated δ-values from the best fit line. Just above the Reff curve, R0 is plotted as a dashed blue
curve; this close approximation is expected given that S(0) ≈ �/μ (Color figure online)

to give stability curves in terms of the overdose death, saturation, and transmission
parameters. We can observe regions in the δ–ε–β parameter space that correspond
to the EE stable (only), both DFE and EE stable (bi-stability), and the DFE stable
(only). In this latter situation, the EE no longer exists biologically with only the DFE
persisting and stable. While this is clearly not a desirable situation, the increase in
fentanyl in the heroin supply makes this scenario a potentially realistic one that needs
consideration.

We leave δ, ε, and β as parameters and substitute the remaining parameter values
from (5) into (�) to obtain an equation in the parameters δ, ε, and β and the variable
I ∗:

0 = I ∗[(I ∗)5ν6(δ, ε, β) + (I ∗)4ν5(δ, ε, β) + (I ∗)3ν4(δ, ε, β) + (I ∗)2ν3(δ, ε, β)

+I ∗ν2(δ, ε, β) + ν1(δ, ε, β)], (15)

where the coefficients νi (δ, ε, β) are given in appendix and the subscript refers to the
power of I ∗. We eliminate the variable I ∗ by simultaneously solving (15) and the
derivative of it, thus requiring the condition for a saddlenode bifurcation. This results
in a new equation in terms of δ, ε, and β that is pages of output in Maple. However,
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Fig. 4 Regions of stability for equilibria. Top panel (left and middle): in the ε–δ plane with β fixed at .09,
the solid blue horizontal line corresponds to the constant δ for whichR0=1 and below this line only the EE
is stable; above this line for large enough ε is the curve that separates the region of bi-stability from where
only the DFE is stable. Top panel (right): in the δ–β plane with ε fixed at .0313, the two lines separate
the regions of (i) EE stable (only), (ii) bi-stability of EE and DFE, and (iii) DFE stable (only); the upper
line corresponds to R0=1. Right panel (middle and bottom): In the ε–β plane with δ fixed at .0577 (its
extrapolated 2032 value), the solid red horizontal line corresponds to the constant β for which R0=1 and
above this line only the EE is stable; below this line for large enough ε is the curve that separates the region
of bi-stability from where only the DFE is stable. Bottom left panel: the previously described curves are
put together in the three-dimensional δ–ε–β space. The dots with years correspond to δ-values from the
extrapolated δ-curve with all other parameters fixed at their baseline values from (5) with the color magenta
corresponding to EE stable (only), blue corresponding to the region of bi-stability, and black corresponding
to DFE stable (only) (Color figure online)

we can plot this implicit equation numerically and present this three-dimensional δ–
ε–β surface with five cross-sectional subplots; see Fig. 4. The years given in Fig. 4
correspond with those shown in Fig. 3. For large ε, we have the situation where b(T )

is very small, which is not allowing people to go into treatment due to a lack of
availability in specialty treatment facilities.

The presence of a backward bifurcation yields a region of bi-stability whenReff <

1. This means that we will have two asymptotically stable equilibria, the EE and the
DFE, and which one a solution approaches simply depends on the initial conditions.
Above the plane Reff = 1 in the 3-d subplot, only the EE is stable. Below this plane,
there is a range of parameter values where we may either have bi-stability or have the
DFE as the only stable equilibrium.

For a given set of parameters, there is a critical εc > 0 that is required for bi-stability
and a backward bifurcation. There is an inverse relationship between the saturation
term, ε, and an availability of specialty treatment facilities. Thus, a lack of availability
of specialty treatment facilities that occurs when εc > 0 can give rise to a situation
in which the epidemic persists even though the conditions are such that R0 < 1. See
Fig. 5.
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Fig. 5 Backward bifurcation plots. The blue curves correspond to stable biologically relevant equilibria and
the red curves correspond to unstable biologically relevant equilibria. This demonstrates the difficulty there
may be in getting rid of the epidemic once it has taken hold. Top panel: δ is fixed at .0531, its extrapolated
2030 value; β is varied to changeR0. Bottom panel β is fixed at .09; δ is varied to changeR0 with δ ≈ .051
(2029 on its extrapolated curve) corresponding to R0 = 1. All other parameter values are from (5). The
middle column differs from the first column in scale only (Color figure online)

4.3 Sensitivity Analysis

For our sensitivity analysis, we run the model from 2002 to 2020 using the parameters
in (4)–(5) and then use the resulting 2020model output values as our initial conditions.
We use the baseline parameters given in (5) that generated this datamatch and consider
two scenarios for δ: (i) assume that δ(t) = δ(2020) = .03002 for t ≥ 2020, which
we interpret as the fentanyl levels being kept at their 2020 levels, and (ii) assume that
δ is defined by extrapolation based on its least squares fit line given in (16), which
we interpret as the fentanyl levels in the heroin supply increasing. In both cases, we
considerwhat happens in 2030 for the sensitivity. In thefirst scenario, δ is a constant and
will be a parameter in our sensitivity analysis. For the second scenario, we explicitly
rewrite δ(t) in (4) in a form that allows for a ±10% vertical shift at 2020 as well as
a potential shift in the slope of the line by ±10% at 2020. This is accomplished via
the extension of the least squares fit line in (4), shown in the left panel of Fig. 3, with
m, b > 0 and written as

δ(t) = m · (t − 2020) − b ·
(

1 − 0.002307120199666

4.630363924326326
· 2020

)

, t ≥ 2020,

= m · (t − 2020) + b · (0.006483049602509), t ≥ 2020, (16)

where a percent change in b changes δ through a vertical shift by the same percent
change of its 2020 value and a percent change in m changes the slope of δ by the
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same percent change. With baseline values of m = 0.002307120199666 and b =
4.630363924326326 from (4), we will examine these 2 additional parameters in our
sensitivity analysis for the second scenario (McLeod et al. 2006).

In order to determine the sensitivity of the system to the input parameters, we per-
form a sensitivity analysis using partial rank correlation coefficient (PRCC) method
(Marino et al. 2008). The PRCC method only applies when there is a monotonic
relationship between the model parameters and the output values against which sensi-
tivity is measured.We performedmonotonicity checks for all our parameter and initial
values and concluded that there is a monotonic relationship.

For our system, we consider the parameter values obtained through parameter esti-
mation and given in (5) as the baseline parameter values. When we consider the
extrapolated function for δ(t), we observe from Fig. 4 that the value δ(2030) puts the
system in the region of bi-stability.

We let the parameters and initial conditions vary ±10% from their baseline values
in 2020.

Discussion of the PRCCValues

We present the sensitivity of our variables S, I , T , and R to the parameters of the
system in plots and tables in appendix and focus here on variables that may be of
more interest to healthcare professionals and policy makers: number of those entering
I (HUD) for the first time (yearly new HUD), the yearly number of relapses from T ,
the yearly number of relapses from R and heroin-related deaths.

While none of these are the variables in our original system, all can be calculated
by keeping track of components that contribute to changes in our model variables.

We consider two graphs for each case corresponding to the sensitivities in 2030 for
the constant death rate (δ = 0.03002) vs. the variable death rate (16).

In describing the sensitivity results we will refer to a PRCC value of 0.85 or higher
as “highly significant,” a PRCC value of 0.70–0.84 as “significant,” values of 0.55–
0.69 “somewhat significant,” values of 0.45–0.54 as “slightly significant,” values of
.40–0.44 as “borderline significant,” and under .40 as “not significant.”

As can be seen in the tables, someof the initial conditionsmay showup as significant
or highly significant. We fit the 2002–2019 data to baseline parameters with the model
output final (year 2020) values forming the initial conditions for our PRCC analysis.
While S(0), I (0), T (0), and R(0) cannot really be changed, having somewhat different
data (e.g., more accurate data) could represent the importance of their significance.
Additionally, for the parameter μ (the natural death rate of the general population),
regardless of its significance, it is not a parameter that can be altered since it is the
natural death rate. Therefore, we would not focus on it either because it is something
we do not have control over. For the following, only the parameters that we have
control over will be discussed.

For the following variables’ PRCC results that will be discussed, it can be seen that
the graphs at the end time of 2030 are similar for the constant death rate (δ = 0.03002)
vs. the variable death rate (16). However, the PRCC values of the parameters are equal
to or lower in magnitude at the end time of 2030 for the constant death rate than
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for the variable death rate. This could be due to the fact that the variable death rate
results in higher number of deaths, which has the effect of lowering the HUD class.
We always want to lower the number of individuals in the HUD class in beneficial
ways. However, with the higher death rate it becomes more crucial for individuals to
exit out of the HUD class quicker due to the increased risk of heroin-related overdose.
If the treatment rates and/or recovery rates could be increased andmore users leave the
HUD class and enter treatment, they would be protected from those resulting dangers
that could lead to a heroin-related overdose death. It is vital at the higher death rates
to get individuals out of the HUD class quicker than for the lower death rate.
Yearly new I :

The yearly new I variable keeps track of the number of individuals from the S
class who are entering the I (HUD) class; see Fig. 6 and Table 3. The comparisons of
the PRCC values for the yearly deaths due to overdose at the year-end time of 2030
were very similar for both death rates. What follows discusses both death rates unless
otherwise noted. The parameterwith the highest significance (ranked highly significant
for both death rates) to focus on would be β (the transmission rate of becoming an
individual with HUD through interaction with others in the HUD class). Since this
parameter is positively correlated, a decrease of the transmission rate would result in a
decrease of the yearly new to HUD counts, as expected. Although not as significant as
the transmission rate, but ranked somewhat significant to significant, other parameters
to consider for focuswould beα1 (the rate of individuals in the recovered state relapsing
back to the HUD class on their own), ε (saturation term for entering treatment), κ (the
rate of individuals leaving treatment and returning to the HUD class), η1 (the rate of
individuals in HUDwho enter a specialty treatment facility on their own), and δ (death
rate of individuals in the HUD class due to overdose). Thus, decreasing the relapse rate
from treatment and the recovered class, increasing availability of specialty treatment,
or increasing the rate of access for someone to enter treatment on their own would
all decrease the yearly new to HUD counts. Although an increase in the HUD death
rate would decrease the counts, as expected since less individuals remaining in HUD
would result in less of the S class moving to HUD, ethically, we do not want the
counts to decrease because of less interactions due to the high death rate. Therefore,
the previously mentioned parameters, other than the HUD death rate, are best to focus
on.
Yearly relapse T :

The Yearly relapse T variable keeps track of the number of individuals who were
in treatment and have relapsed back into the HUD class; see Fig. 7 and Table 3. The
comparisons of the PRCC values for the yearly deaths due to overdose at the year-
end time of 2030 were very similar for both death rates. What follows discusses both
death rates unless otherwise noted. The parameterwith the highest significance (ranked
highly significant) to focus on would be κ (the rate of individuals leaving treatment
and returning to the HUD class). Since κ is positively correlated, a decrease in the
relapse rate of treatment decreases the yearly relapse T counts, as expected. Other
parameters that followed in significance (ranked somewhat significant to significant)
are β (the transmission rate of becoming an individual with HUD through interaction
with others in the HUD class), η1 (the rate of individuals in HUDwho enter a specialty
treatment facility on their own), and ε (saturation term for entering treatment). Thus,
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Fig. 6 PRCC results over time for those who are entering I (HUD) for the first time, with grayed region
denoting a lack of significance. These results are summarized in the text and in Table 3. Top: constant death
rate of δ = .03002, its extrapolated 2020 value. Bottom: variable death rate defined in (16) (Color figure
online)

decreasing the transmission rate, increasing the rate of individuals entering treatment
by one’s own accord, and increasing availability of treatment would all decrease the
yearly relapse T counts.
Yearly relapse R :

The yearly relapse R variable keeps track of the individuals who were in the R class
and have relapsed back into the I (HUD) class whether on their own or by being in
contact with someone from the HUD class; see Fig. 8 and Table 3. The comparisons
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Fig. 7 PRCC results over time for those who are entering I (HUD) by relapsing from T , with grayed region
denoting a lack of significance. These results are summarized in the text and in Table 3. Top: constant death
rate of δ = 0.03002, its extrapolated 2020 value. Bottom: variable death rate defined in (16) (Color figure
online)

of the PRCC values for the yearly deaths due to overdose at the year-end time of
2030 were very similar for both death rates. What follows discusses both death rates
unless otherwise noted. The parameter with the highest significance (ranked highly
significant) is ω (the rate of individuals in HUD who enter the recovered class by
either treatment in non-specialty facilities and/or “quitting cold turkey”). Since ω

is positively correlated, a decrease in the number of people entering the recovered
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Fig. 8 PRCC results over time for those who are entering HUD by relapsing from R, with grayed region
denoting a lack of significance. These results are summarized in the text and in Table 3. Top: constant death
rate of δ = 0.03002, its extrapolated 2020 value. Bottom: variable death rate defined in (16) (Color figure
online)

class decreases the number of yearly relapse R counts; however, we do not want the
count to decrease by lowering the rate individuals go into recovery. Hence, we look
at the next most significant parameters (ranked highly significant) which are ρ (the
rate of individuals leaving treatment and entering a “recovered” state), α1 (the rate of
individuals in the recovered state relapsing back to the A class on their own), and β

(the transmission rate of becoming an individual with HUD through interaction with
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Fig. 9 PRCC results over time for the yearly HUD overdose deaths, with grayed region denoting a lack of
significance. These results are summarized in the text and inTable 3. Top: constant death rate of δ = 0.03002,
its extrapolated 2020 value. Bottom: variable death rate defined in (16) (Color figure online)

others in the HUD class). Similar to the analysis for ω, we ignore decreasing ρ to
decrease the counts, and thus, the most significant parameters to focus on would be β

and α1. Hence, decreasing the transmission rate and/or decreasing the relapse rate of
individuals from R to HUD would decrease the yearly relapse R counts.
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Yearly deaths:
The yearly deaths variable accounts for the number of yearly deaths due to overdose

by HUD individuals; see Fig. 9 and Table 3. The comparisons of the PRCC values for
the yearly deaths due to overdose at the year-end timeof 2030were very similar for both
death rates. What follows discusses both death rates unless otherwise noted. The two
most significant parameters (ranked highly significant) are the death rates, δ (death rate
of individuals in the HUD class due to overdose)(scenario (i)), b andm (scenario (ii)),
and β (the transmission rate of becoming an individual with HUD through interaction
with others in the HUD class). Hence, lowering the HUD death rate and transmission
rate would decrease the yearly death counts, as expected. Other parameters (ranked
somewhat significant to significant) are α1 (the rate of individuals in the recovered
state relapsing back to the HUD class on their own), ε (saturation term for entering
treatment), κ (the rate of individuals leaving treatment and returning to theHUDclass),
η1 (the rate of individuals in HUD who enter a specialty treatment facility on their
own), and ω (the rate of individuals in HUD who enter the recovered class by either
treatment in non-specialty facilities and/or “quitting cold turkey”). Therefore, lowering
the relapse rates from treatment and the recovered class, increasing availability for
treatment, increasing the rate of number of individuals entering treatment on their
own, and/or increasing the rate of individuals entering the recovered class would all
result in decreasing the yearly deaths.

5 Conclusion

Our paper presents a deterministic model for the dynamics of an illicit opioid use dis-
order (IOUD) model. Besides a traditional susceptible class and a class of individuals
with illicit OUD, ourmodel includes a treatment class for individuals in specialty treat-
ment facilities. It further includes a recovered population class that holds individuals
who have either completed treatment (specialty or non-specialty) or “quit cold turkey.”
Here, they may remain or relapse back to the IOUD class. Our model also includes
a saturation treatment function, which slows down the rate of entry into treatment
due to the lack of availability of specialty treatment. Realistic parameter estimates
are obtained from the literature and via parameter estimation to match the available
SAMHSA data from 2002–2019. The overdose death rate for those in the IOUD class
is seen to have been increasing at a linear rate since around 2011. In addition, since our
model approaches a constant population N∗ = (� − I ∗δ)/μ, scaling the SAMHSA
data to a population of 200,000 allows us to better see the dynamics of this heroin
epidemic.

For the parameter estimates we found, the δ-value extrapolated to 2030 results in a
situation where the effective reproductive number,Reff , is less than one, yet a region
of bi-stability exists in the δ–ε–β space in which both EE and DFE are stable. There
is a backward bifurcation that occurs just below Reff = .82 as δ is varied (for fixed
β = .09) and just below Reff = .78 as β is varied (for fixed δ = .0531) illustrating
an additional difficulty of eradicating HUD. This region of bi-stability predicts a
minimum ε-value below which we will not have bi-stability. Thus, ensuring adequate
access to specialty treatment facilities is important. In addition, while our model has
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a backward bifurcation for no saturation, it requires an unrealistically large nonlinear
relapse rate α2; in contrast, with saturation, a backward bifurcation exists above the
minimum ε-value for a realistic nonlinear relapse rate (including a value of α2 = 0).

A surprising discovery in our analysis was that if the growth of the illicit OUD
overdose death rate continues on its path of the last 10 years, by 2038 the DFE will
be the only stable biologically relevant equilibrium. While we do want this epidemic
to end, we do not want it to end because of overdose deaths from illicit opioid use.
Law enforcement intervention, policies, and/or strategies can be taken to either slow
the increase of δ, keep the rate constant, or possibly reduce it.

While many of the results of our sensitivity analysis were expected, one result stood
out—the consistent importance of η1, which is the parameter quantifying the rate at
which someone in HUD enters T on their own accord. Out of the three variables to
move into treatment, η1 was more important than η2, entering treatment because of
interaction with a susceptible, or η3, entering treatment because of an interaction with
a recovered person. It would seem beneficial in the short term to increase efforts for
ways that make it easier for an individual to enter treatment if needed. This could be
through things such as financial support for treatment or perhaps lowering the stigma
to increase willingness to seek out help on their own as well.

Future work could include extensions to the model such as incorporating a pre-
scription class, a “casual user” class, or a second treatment class for non-specialty.
Finally, parameter estimation revealed the necessity of additional statistics that could
be calculated and questions that could be asked by SAMHSA in their NSDUH that
would allow for a better comparison of model output to data, including calculating
heroin use disorder (HUD) in the last month and determining synthetic opioids use
with all the time frames given including “in the last month.” Keeping track of whether
those individuals in treatment came from the I class or from a “casual user” class
would also help in estimating parameters.

Final notes: During the revisions of this paper, the SAMHSA data for 2020 were
released. We observe that there was a change in the definition of individuals with sub-
stance use disorder (SUD), including HUD, due to the switch in criteria for classifying
these individuals. “Beginning with the 2020 NSDUH, SUD estimates for alcohol and
illicit drugs were based on criteria in the Diagnostic and Statistical Manual of Mental
Disorders, 5th edition,” where previously the 4th edition was used (Center for Behav-
ioral Health Statistics and Quality 2021). Due to the different definition for classifying
HUD, we cannot directly incorporate the new data into our model and leave it to future
work to determine how to incorporate it.
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6 Appendix

6.1 Basic Properties

In this section, the basic dynamical features of the illicit opioid use disorder (IOUD)
model will be explored.

Since N (t) = S(t)+I (t)+T (t)+R(t),wehave dN (t)
dt = dS(t)

dt + dI (t)
dt + dT (t)

dt + dR(t)
dt .

Adding the four equations of (1), the total population dynamics are driven by the
following differential equation:

dN

dt
= dS

dt
+ dI

dt
+ dT

dt
+ dR

dt
= � − μS − (μ + δ)I − μT − μR

= � − μN − δ I (17)

Since the IOUD model tracks human populations, all of the associated parameters
are nonnegative.

Theorem 1 Local solutions to the IOUD model with initial data in the region


 = {(S, I , T , R) ∈ R
4+ : 0 < S, 0 < I , 0 < T , 0 < R},

S(0) = S0 > 0, I (0) = I0 > 0, T (0) = T0 > 0, R(0) = R0 > 0, N (0) = N0 > 0.

exist and are unique.

Proof Let us consider the set 
 and initial conditions for the system (1):


 = {(S, I , T , R) ∈ R
4+ : 0 < S, 0 < I , 0 < T , 0 < R},

S(0) = S0 > 0, I (0) = I0 > 0, T (0) = T0 > 0, R(0) = R0 > 0, N (0) = N0 > 0.

It is easy to see that the functions contained in (1) are differentiable, which ensures
its solutions with positive initial values exist and are unique by a direct application of
standard differential equation theory (Perko 2013). ��
Theorem 2 Given nonnegative initial conditions and parameter values, solutions to
the IOUD model are nonnegative on the interval of existence.

Proof (i) To verify the dS
dt equation satisfies the conditions of Proposition A.1 in

Mathematics in Population Biology by Horst Thieme, Thieme (2018), let S = 0.
Then

dS

dt
= � − β S︸︷︷︸

=0

I

N
− μ S︸︷︷︸

=0

= � (18)
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(ii) To verify the dI
dt equation satisfies the conditions of PropositionA.1 (Thieme2018),

let I = 0, and assume T , R ≥ 0. Then

dI (t)

dt
= βS

=0
︷︸︸︷
I

N
+ α1 R︸︷︷︸

≥0

+α2R

=0
︷︸︸︷
I

N
+ κ T︸︷︷︸

≥0

−b(T )(η1 I︸︷︷︸
=0

+η2
R

N
I︸︷︷︸

=0

+η3
S

N
I︸︷︷︸

=0

)

−(μ + δ) I︸︷︷︸
=0

= α1R + κT ≥ 0 (19)

(iii) To verify the dT
dt equation satisfies the conditions of Proposition A.1 (Thieme

2018), let T = 0, and assume S, I , R,≥ 0. Then

dT (t)

dt
= b(T )(η1 I︸︷︷︸

≥0

+η2
R

N
I︸︷︷︸

≥0

+η3
S

N
I︸︷︷︸

≥0

) − (κ + ρ + μ) T︸︷︷︸
=0

= η1 + η2

≥0
︷︸︸︷
R
N + η3

≥0
︷︸︸︷
S
N

1 + ε T︸︷︷︸
=0

I︸︷︷︸
≥0

≥ 0 (20)

(iv) To verify the dR
dt equation satisfies the conditions of Proposition A.1 (Thieme

2018), let R = 0, and assume I , T , S ≥ 0. Then

dR(t)

dt
= ω I︸︷︷︸

≥0

+ρ T︸︷︷︸
≥0

−α1 R︸︷︷︸
=0

−α2 R︸︷︷︸
=0

I

N
− μ R︸︷︷︸

=0

= ωI + ρT ≥ 0 (21)

��

Therefore, the coordinate planes and hence the positive octant
 = {(S, I , T , R) ∈
R
4+ : 0 < S, 0 < I , 0 < T , 0 < R}, are invariant under the local flow.

Theorem 3 All solutions starting in 
 = {(S, I , T , R) ∈ R
4+ : 0 ≤ S, 0 ≤ I , 0 ≤

T , 0 ≤ R} are bounded forward in time and hence are defined for [0,∞).

Proof From Eq. (17), we have

dN

dt
= � − μN − δ I
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Since N , I > 0,

dN

dt
≤ � − μN .

Therefore,

N (t) ≤ �

μ
+

(

N0 − �

μ

)

e−μt

where N0 = N (0). Thus, N is bounded along solutions for positive times starting in

. Thus, S, I , T , and R are also bounded on 
 for positive times. Since 
 is invariant
and solutions starting in 
 stay bounded for positive times, the solutions exist for all
positive times. ��

6.2 No Backward Bifurcation for� = ˛2 = 0

In themain text, we (i) numerically demonstrated that a backward bifurcation can exist
with ε = 0 for an unrealistically large α2 > 0 (120,000 times its estimated baseline
value), and (ii) found the analytical curve for the region of bi-stability in ε–β space
showing that a backward bifurcation can exist with realistic α ≥ 0 for ε > εc(β). To
show that we do not have a backward bifurcation when both ε = 0 and α2 = 0, we
consider the reduced system of S′, I ′, T ′ using R = N − S − I − T and letting (1)
go to its limiting system N = (� − I δ)/μ:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′ = � − βS
Iμ

(� − I δ)
− μS,

I ′ = βS
Iμ

(� − I δ)
+ α1

(
� − I δ

μ
− S − I − T

)

+ κT

−
(

η1 I + η2 I
((� − I δ)/μ − S − I − T )μ

(� − I δ)
+ η3

I Sμ

(� − I δ)

)

− (ω + μ + δ)I ,

T ′ = η1 I + η2 I
((� − I δ)/μ − S − I − T )μ

(� − I δ)
+ η3

I Sμ

(� − I δ)
− (κ + ρ + μ)T .

(22)

We calculate the Jacobian and evaluate it at the DFE:

JDFE =

⎡

⎢
⎢
⎣

−μ −β 0

−α1
−μ2 + (β − η1 − η3 − δ − ω − α1)μ − α1δ

μ
−α1 + κ

0 η1 + η3 −(κ + ρ + μ)

⎤

⎥
⎥
⎦
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Following Castillo-Chavez and Song (2004), we take β to be the bifurcation parameter
and analyze the bifurcation of this system whenR0 = 1 to determine the bifurcation’s
direction. We consider R0 = 1 in (8) and solve for β:

β∗ =

(
α1δκ + α1δμ + α1δρ + α1η1μ + α1η3μ + α1κμ + α1μ

2 + α1μρ + δκμ + δμ2 + δμρ

+ η1μ
2 + η1μρ + η3μ

2 + η3μρ + κμ2 + κμω + μ3 + μ2ω + μ2ρ + μωρ

)

(κ + ρ + μ)(α1 + μ)
.

(23)

Substituting (23) into the Jacobian at the DFE gives

JDFE,β=β∗ =

⎡

⎢
⎢
⎣

−μ J1,2 0

−α1
α1

μ
J1,2 + (α1 − κ)(η1 + η2)

κ + ρ + μ
−α1 + κ

0 η1 + η3 −(κ + ρ + μ)

⎤

⎥
⎥
⎦ (24)

where

J1,2 = −[ωμ + (α1 + μ)(μ + δ)](κ + ρ + μ) + μ(α1 + μ + ρ)(η1 + η3)

(κ + ρ + μ)(α1 + μ)

We can easily verify that zero is a simple eigenvalue of JDFE,β=β∗ and that all other
eigenvalues of JDFE,β=β∗ have negative real part. JDFE,β=β∗ has right eigenvector

x =
⎡

⎣
−[ωμ + (α1 + μ)(μ + δ)](κ + ρ + μ) + μ(α1 + μ + ρ)(η1 + η3)

(κ + ρ + μ)μ(α1 + μ)

μ(α1 + μ)(η1 + η3)

⎤

⎦

and left eigenvector

y = [(κ + ρ + μ)α1 − μ(κ + ρ + μ) (α1 − κ)μ] .

Writing the right-hand side of our system (22) as f , we let fk be the kth component
of f and set

a =
∑

k,i, j

yk xi x j
∂2 fk

∂xi∂x j
(DFE, β = β∗)

b =
∑

k,i

yk xi
∂2 fk
∂xi∂β

(DFE, β = β∗) (25)

For a backward bifurcation to exist, we need a > 0 and b > 0. For b in (25), its
nonzero components are

∂2S′

∂S∂β
= Iμ

δ I − �
,

∂2S′

∂ I∂β
= − μS�

(δ I − �)2
,
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∂2 I ′

∂S∂β
= − Iμ

δ I − �
,

∂2 I ′

∂ I∂β
= μS�

(δ I − �)2
.

We combine them together using (25), evaluating at the DFE, to get

b = −μ(α1 + μ)(κ + ρ + μ)
[
�S∗μ3 + �S∗(α1 + ρ + κ)μ2 + α1�S∗(κ + ρ)μ

]

�2 .

(26)

Thus, we will always have b < 0 and a backward bifurcation cannot exist for ε =
α2 = 0

6.3 Coefficients of the ı–�–ˇ Equation

The coefficients in Eq. (15) are given in rational form to avoid round off due to
decimals:

ν6(δ, ε, β) = 41ε(136000δ2 + 1940δ − 1)2(β − δ)2

32768000000000
, (27)

ν5(δ, ε, β) = −1

32768000000000
(β − δ)(7583360000000000βδ3ε

− 7583360000000000δ4ε

+ 13940000000βδ3 + 162261600000000βδ2ε

− 13940000000δ4 − 218579200000000δ3ε

+ 459274000βδ2 + 715778000000βδε − 459274000δ3

− 1491252000000δ2ε − 268440βδ

− 397700000βε + 268440δ2 + 1209500000δε

+ 33β − 33δ − 205000ε), (28)

ν4(δ, ε, β) = −141921

655360
βδ2 + 17425

4096
δ4 − 6711

327680000
β2

− 4351

65536000
δ2 + 199

32768000000
(δ − β)

+ 41

5242880
ε + 111084375

128
δ4ε + 52275

16384
β2δ2

− 121975

16384
βδ3 + 25876125

1024
δ3ε + 229637

3276800
β2δ

+ 1789445

65536
β2ε + 5817695

32768
δ2ε + 14233

163840000
βδ

+ 4059

65536
βε − 12259

131072
δε + 14999

102400
δ3

+ 25353375

2048
β2δε − 77105625

2048
βδ2ε
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− 5666815

32768
βδε + 111084375

128
(β2δ2ε − 2βδ3ε), (29)

ν3(δ, ε, β) = −32671875

4096
(2δ3 + β2δ) − 5740925

65536
β2

− 18774825

32768
δ2 − 3761

32768
β + 23377

131072
δ

+ 2588125

32768
ε + 23142578125

16
(2βδ2ε − β2δε − δ3ε)

− 5281953125

512
β2ε + 98015625

4096
βδ2

− 1361328125

32
δ2ε + 18257475

32768
βδ + 1211678125

8192
βε

− 1259340625

4096
δε − 233

26214400

+ 27063203125

512
βδε, (30)

ν2(δ, ε, β) = −3911421875

8192
β + 6806640625

1024
(β2 + 4δ2)

+ 14464111328125

16
(β2ε + δ2ε − 2βδε)

− 34033203125

1024
βδ + 3437353515625

128
(δε − βε)

− 5208125

32768
+ 2036546875

2048
δ, (31)

ν1(δ, ε, β) = −2646728515625

4096
+ 4254150390625

256
(β − δ). (32)

6.4 Additional PRCC Plots and Discussion

Here we find the tables and figures of other variables that may be of interest. For the
variable of Yearly completed treatment, see Fig. 10 and Table 4. The Yearly completed
treatment variable keeps track of the number of individuals who were in treatment and
have moved into the recovered class. For the variable of Yearly treatment, see Fig. 11
and Table 4. The Yearly treatment variable keeps track of the number of individuals
who went to treatment. For the variable of Yearly I to R, see Fig. 12 and Table 4. The
Yearly I to R variable keeps track of the number of individuals who left the HUD class
by either quitting on their own or with the help of a non-specialty treatment facility.
For the variable T , see Fig. 13 and Table 5. The T variable keeps track of the number
of individuals in the T class. For the variables S, I , and R, see Figs. 14, 15, and
Table 5. The S variable keeps track of the number of individuals in the HUD class.
The I variable keeps track of the number of individuals in the I class. The R variable
keeps track of the number of individuals in the R class.
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Fig. 10 PRCCresults over time for themodel variable yearly completed treatment variable (those individuals
who were in treatment and have moved into the recovered class), with grayed region denoting a lack
of significance. These results are summarized in Table 4. Top: constant death rate of δ = 0.03002, its
extrapolated 2020 value. Bottom: variable death rate defined in (16) (Color figure online)
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Table 4 PRCC results for those that completed treatment (yearly completed treatment), those that went to
treatment (yearly treatment), and those who are in those who left the HUD class either quitting on their
own or with the help of a non-specialty treatment facility (yearly I to R), using baseline parameters (5)
and either constant δ = 0.03002 or the variable δ in (16). The initial conditions for t = 0 in 2020 were
generated using (4)–(5), 2002 values of S = 199,500, I = 102, T = 95, R = 100, and running the system
until 2020 (as previously described to obtain Fig. 2). The PRCC values at 2030 are given here with the
columns labeled “constant” corresponding to the constant death rate of δ = 0.03002 (its extrapolated 2020
value) and the columns “variable” corresponding to the variable death rate defined in (16)

IC/param Yearly completed treatment Yearly treatment Yearly I to R
IC/ param Constant Variable Constant Variable Constant Variable

S(0) – – – – – –

I (0) 0.91 0.87 0.89 0.90 0.92 0.94

T (0) 0.65 0.61 0.58 0.65 0.68 0.73

R(0) 0.51 0.41 0.42 0.51 0.55 0.59

� ∗ – – – – – –

μ −0.40 – – – – −0.48

β 0.88 0.85 0.89 0.91 0.90 0.93

η1 0.84 0.78 0.82 0.82 −0.52 −0.63

η2 ∗ – – – – – –

η3 0.44 0.48 0.45 0.48 – −
ρ 0.98 0.97 – – – –

κ −0.84 −0.85 0.90 0.92 0.57 0.63

α1 0.59 0.52 0.52 0.59 0.58 0.66

α2 ∗ – – – – – –

δ −0.49 – −0.55 – −0.63 –

m – – – – – –

b – −0.40 – −0.59 – −0.65

ω – – – – 0.94 0.96

ε ∗ −0.85 −0.82 −0.80 −0.83 0.54 0.55

All table entries without a value are not significant. The notation of * denotes that the parameter does not
appear in the formula for R0. The corresponding graphs for this table are given in Figs. 10, 11, and 12
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Fig. 11 PRCC results over time for the Yearly treatment variable (those individuals who went to treatment),
with grayed region denoting a lack of significance. These results are summarized in Table 4. Top: constant
death rate of δ = 0.03002, its extrapolated 2020 value. Bottom: variable death rate defined in (16) (Color
figure online)
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Fig. 12 PRCC results over time for Yearly I to R (those who left the IOUD class either quitting on their own
or with the help of a non-specialty treatment facility), with grayed region denoting a lack of significance.
These results are summarized in Table 4. Top: constant death rate of δ = 0.03002, its extrapolated 2020
value. Bottom: variable death rate defined in (16) (Color figure online)
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Fig. 13 PRCC results over time for themodel variable T , with grayed region denoting a lack of significance.
These results are summarized in Table 5. Top: constant death rate of δ = 0.03002, its extrapolated 2020
value. Bottom: variable death rate defined in (16) (Color figure online)
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Fig. 14 PRCC results over time for the model variable I , (HUD), with grayed region denoting a lack
of significance. These results are summarized in Table 5. Top: constant death rate of δ = 0.03002, its
extrapolated 2020 value. Bottom: variable death rate defined in (16) (Color figure online)

123



Modeling the Dynamics of Heroin and Illicit Opioid Use… Page 45 of 49 48

Fig. 15 PRCC results over time for themodel variable R, with grayed region denoting a lack of significance.
These results are summarized in Table 5. Top: constant death rate of δ = 0.03002, its extrapolated 2020
value. Bottom: variable death rate defined in (16) (Color figure online)
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