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Semi‑automated identification 
of biological control agent using 
artificial intelligence
Jhih‑Rong Liao1, Hsiao‑Chin Lee1, Ming‑Chih Chiu2,3* & Chiun‑Cheng Ko1,3*

The accurate identification of biological control agents is necessary for monitoring and preventing 
contamination in integrated pest management (IPM); however, this is difficult for non-taxonomists to 
achieve in the field. Many machine learning techniques have been developed for multiple applications 
(e.g., identification of biological organisms). Some phytoseiids are biological control agents for small 
pests, such as Neoseiulus barkeri Hughes. To identify a precise biological control agent, a boosting 
machine learning classification, namely eXtreme Gradient Boosting (XGBoost), was introduced 
in this study for the semi-automated identification of phytoseiid mites. XGBoost analyses were 
based on 22 quantitative morphological features among 512 specimens of N. barkeri and related 
phytoseiid species. These features were extracted manually from photomicrograph of mites and 
included dorsal and ventrianal shield lengths, setal lengths, and length and width of spermatheca. 
The results revealed 100% accuracy rating, and seta j4 achieved significant discrimination among 
specimens. The present study provides a path through which skills and experiences can be transferred 
between experts and non-experts. This can serve as a foundation for future studies on the automated 
identification of biological control agents for IPM.

Integrated pest management (IPM) is applied in agricultural practices to concurrently minimise crop damage, 
environmental contamination, and economic loss1,2. Biological control agents are crucial for IPM and agro-
ecosystems. Regularly monitoring pests and biological control agents is necessary for IPM. Without accurate 
identification, the efficiency of biological control cannot be monitored2,3. In addition, companies currently breed 
biological control agents at large scales for commercial purposes. Contamination by various biological control 
agent species may become a serious problem because of their highly specialised functions4.

Machine learning is a form of artificial intelligence in which a computer learns from previous examples 
(called training) and subsequently performs task using new data (called inference)5. Morphological identifica-
tion requires expert knowledge, and machine learning, such as through the use of eXtreme Gradient Boost-
ing (XGBoost), can help boost scientific development. The use of fully verified and professional specimen-
making techniques (e.g., the slide-making technique for mites) and a detailed understanding of structures are 
required. For example, distinguishing feature states (e.g., longer or shorter setae) are difficult to identify without 
experience6. The application of statistical methods to distinguish morphometric features may be instrumental 
to the reliable discrimination of species6–9. The automated identification of biological organisms has been a goal 
for centuries10–12. This may gradually be achieved through the many machine learning techniques that have been 
developed since the rapid evolution of computation began. Deep learning (DL) is the most well-known technique 
in multiple domains and is particularly suitable for automatically identifying images3,13,14. For example, Fedor 
et al.14 identified 18 thrip species by using an artificial neural network and achieved 97% reliability. However, 
DL has the following limitations in identifying biological organisms: (1) large datasets are required, (2) label-
ling errors can occur, even among experts, (3) DL models can learn to solve only some problems particularly 
well, (4) it is time consuming, and (5) available datasets do not completely describe the problems they target13. 
Moreover, Gaston and O’Neill10 reviewed the difficulties of automated identification, which include (1) variations 
in morphological features from various causes, (2) the difficulty of capturing critical detailed features, and (3) 
the enormous number of described and unknown species. Missing data is also a problem. XGBoost has received 
attention because it is highly effective, saves considerable time15,16, and provides solutions for these problems. It 
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can be applied to supervised learning tasks, such as regression and classification. Several advantages of XGBoost 
have been reported, including its rapid computational speed, favourable model performance, ability to manage 
sparse or missing data, and low specimen requirements16–18. Identification using XGBoost has recently become 
popular in studying medicine18 and plant diseases19. Therefore, these characteristics of XGBoost make it suitable 
for use on biological organisms.

The mite family Phytoseiidae (Acari: Mesostigmata) inhabits diverse habitats, such as agronomic crops, 
horticultural crops, xylophyta, herbaceous plants, and weeds20,21. Some members of the family are predators 
of phytophagous mites and other small arthropods, whereas others feed on fungal spores, leaf juices, pollen 
grains, soil litter, and other plant materials21–23. They have received much attention because of their potential as 
biological control agents in IPM21. The predatory mite Neoseiulus barkeri Hughes is a species found worldwide 
and distributed across Asia, the Americas, Australia, Africa, and Europe24,25; it can be used as a biological control 
agent. McMurtry et al.21 proposed a lifestyle classification of phytoseiid mites, which included four types and ten 
subtypes. N. barkeri is a generalist predator with a type III lifestyle, meaning that it feeds on mite pests, some 
small insects such as thrips and whiteflies, and various pollens21,26–31. This species is also known for controlling 
Thrips tabaci26,29, Polyphagotarsonemus latus27, and Tetranychus urticae30,31.

To help non-taxonomists identify the aforementioned biological control agents, a semi-automated identifica-
tion method using XGBoost based on morphological features (e.g., dorsal setal length) was developed. The dorsal 
setal lengths of phytoseiid mites have long been studied to identify them and reconstruct their phylogeny7,8,33,34. In 
the present study, taxonomists first selected morphological characteristics. Subsequently, we manually extracted 
quantitative measurements for analysis. Therefore, the method in this study was semi-automated. Automatic 
identification by using photomicrograph to study mites is difficult because of their small body size and the 
complexity of phytoseiid morphology. This is also time-consuming because microscopic photos must be used. 
Furthermore, dorsal setae are occasionally missing because of the slide-making procedure. XGBoost was advan-
tageous in the present study for its rapid computational speed and ability to function even with missing data. 
Therefore, we developed a method for the semi‐automatic identification of N. barkeri and related species on the 
basis of their morphological features.

Results
We collected and captured microscopic images of 512 collected female phytoseiid specimens. Subsequently, 
from the microscopic images, we manually recorded 22 morphological measurements, including the lengths 
and widths of dorsal and ventrianal shields, lengths of 14 pairs of dorsal setae, length of ventral seta JV5, length 
of macroseta St IV, and length and width of the spermatheca calyx (Fig. 1, Table 1, Table S1).

During cross-validation, the number of errors in distinguishing the target species (i.e., N. barkeri) decreased 
as the number of decision trees increased and the XGBoost model fitted to training dataset. By contrast, the 
number of prediction errors of the fitted model regarding the morphological features of the testing dataset was 
lower with a greater number of trees but was generally higher than of the model during the training process. 
Through cross-validation and after 23 decision trees has been generated, the training and testing processes 
attained the same performance level in XGBoost modelling, and they achieved the identification accuracy of 
100 and 99%, respectively (Fig. 2). Finally, with all datasets and the determined number of decision trees, the 
identification accuracy reached 100%.

Because the number of decision trees was determined through cross-validation, the results of the final model 
using full data exhibited zero errors in distinguishing between the target species and related species. In addition, 
this final model indicated key morphological features (according to their importance; Fig. 3), and the individual 
conditional expectation (ICE) plots exhibited their determinative roles (Fig. 4). Twenty-one features (not all) 
were considered critical for target species identification. Furthermore, these key features were assigned to four 
clusters with different levels of importance. Their determinative roles influenced the probability of the target spe-
cies having several patterns (unimodal, monotonically increasing or decreasing, or more complex patterns). For 
example, seta j4 was the most crucial feature (more than 40%) and exhibited a unimodal pattern. The predicted 
probability of being the target species was clearly higher when the length of seta j4 varied within the range of 
and 30 μm. In addition, this probability decreased for other higher or lower values of seta j4 relative to that for 
the middle range. By contrast, the seta J5 was the second most crucial feature. Rather than exhibiting a unimodal 
pattern, a longer length of seta J5 monotonically increased with an increase in the probability of being the target 
species. A monotonically decreasing pattern was identified for the length of seta j3, which was considered the 
11th most crucial feature. Notably, the spermatheca was the most crucial identifying feature, but it was ranked 
18th in terms of feature importance (Figs. 3 and 4).

Discussion
To the best of our knowledge, the present study is the first to use a machine learning technique to identify bio-
logical control agents for agricultural use and is also the first such study on mites. The results achieved 100% 
accuracy in distinguishing between target species and related species. The high percentage of correctly identi-
fied specimens from our data set suggests that the practical use of XGBoost for phytoseiid identification may 
become more prevalent. Generally, more predictors (i.e., features in our study) for a certain number of samples 
(i.e., specimens) can improve modelling performance. Although overfitting occurs when noise is mistaken for 
information, validation helps to prevent this problem from influencing model performance. After validation, 
high accuracy (100%) was retained. This was unsurprising because a taxonomist selected morphological traits 
that have long been considered useful for identification.
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Drawbacks of machine learning techniques.  The major drawbacks of DL include the considerable 
data and time required to achieve adequate accuracy13. Furthermore, such an approach cannot be applied in 
every situation (e.g., the identification in our study). Nevertheless, we resolved the problems of insufficient and 
missing data by using machine learning to identify biological organisms. XGBoost saves considerable time and 
achieves more reliable identification than does DL (e.g., Fedor et  al.14). This method is convenient for non-
experts to use; however, several limitations must be mentioned. First, DL can only import raw image data or 
extract features automatically. However, features must be extracted first when XGBoost is applied; therefore, the 
selection of morphological features in the first step is crucial. Second, only the taxa included in the training set 
can be identified using the XGBoost algorithm. The identification of novel and excluded species is problematic 
for XGBoost and all machine learning techniques10. Third, the morphological boundaries of closely related spe-

Figure 1.   Measured variables of female phytoseiid mites: (a) dorsal shield, (b) ventral view, (c) spermatheca, 
(d) leg IV. Dorsal aspect: DSL, dorsal shield length; DSWj6, dorsal shield width at seta j6 level. Ventral aspect: 
VASL, ventrianal shield length; VASWZV2, ventrianal shield width at seta ZV2 level. Spermatheca aspect: Calyx 
L, spermatheca calyx length; Calyx W, spermatheca calyx width. Leg aspect: St IV, macroseta on barsitarsus IV.
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Table 1.   List and abbreviations of morphological features (μm).

Abbreviation Morphological features

1 DSL Dorsal shield length

2 DSW j6 Dorsal shield width at j6 level

3 j1 Length of the seta j1

4 j3 Length of the seta j3

5 j4 Length of the seta j4

6 j6 Length of the seta j6

7 J5 Length of the seta J5

8 z2 Length of the seta z2

9 z4 Length of the seta z4

10 z5 Length of the seta z5

11 Z1 Length of the seta Z1

12 Z4 Length of the seta Z4

13 Z5 Length of the seta Z5

14 s4 Length of the seta s4

15 r3 Length of the seta r3

16 R1 Length of the seta R1

17 VSL Length of the ventrianal shield

18 VSW Width of the ventrianal shield (at ZV2 level)

19 JV5 Length of the seta JV5

20 St IV Length of the macroseta St IV on the basitarsus of leg IV

21 Calyx L Length of the calyx of spermatheca (without atrium)

22 Calyx W Width of the calyx of spermatheca (at widest level)
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Figure 2.   Classification error of modelling with training data (blue line) and cross-validation test (red line) 
along with the number of trees (iter). The binary classification error rate was calculated as the number of 
incorrect case divided by the total number of all cases.
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cies may not be recognised through machine learning identification. This is a common problem in identification 
of biological organisms.

Key morphological features and their roles.  XGBoost could detect interspecific variations among 
phytoseiid mites in our study. We collected N. barkeri specimens from various countries, including the United 
States, China, Israel, Japan, the Netherlands, Taiwan, and Thailand. All specimens were identified accurately. 
This result indicated that XGBoost can classify target species with intraspecific variations among phytoseiid mite 
specimens from around the world. For comparison with our target species N. barkeri, 35 non-target speciesof the 
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Figure 3.   Relative importance of features, with automatically divided clusters in the eXtreme Gradient Boosting 
model.

Figure 4.   Centred individual conditional expectation plot for predicted probability of being the target species 
(Neoseiulus barkeri) based on 21 key features (μm). The lines reveal the difference in prediction from that with 
the respective feature value at its observed minimum.
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subfamily Amblyseiinae were selected. Dorsal setae j2, j5, J2, S2, S4, and S5 were excluded from the comparison. 
The present results indicated that XGBoost can overcome interspecific variations among phytoseiid mite speci-
mens. However, for the classification of more taxa, setal patterns may present a limitation for comparison, and 
more morphological features should be chosen.

Some features are crucial for mite identification through machine learning. The results presented here reveal 
that 22 quantitative features can be helpful for identifying phytoseiid mites. Most of these measurements involved 
setal length, and the results indicated that seta j4 is one of the most critical features. Dorsal setae are the most crit-
ical features for phytoseiid identification and phylogeny32. However, the morphological features have intraspecific 
variations within species caused by factors such as gene expression, life stage, and environmental conditions10. 
Variations in setal length and pattern can occur in phytoseiid mites8,34. Tixier et al.7 reported significant differ-
ences in setal lengths between winter and summer seasons, indicating that additional features are necessary for 
species identification. Tixier8 reported on setal length variations in phytoseiid mites and recommended using at 
least 10 specimens for comparison. Moreover, apart from aspects related to the mites themselves, two possible 
reasons for errors should be considered: measurement errors5 reveal a need for standard measurement among 
experts; and excessive use of medium while making slides influences setal length. The slide-making technique 
also affects the observation of morphological features6, such as chelicera dentition and spermatheca shape, 
both of which are key identifying features. However, Toyoshima and Amano34 reported six conditions of setal 
pattern variation in phytoseiid mites: (1) absent seta, (2) additional seta, (3) inserted seta, (4) deviated seta, (5) 
expanded seta, and (6) shortened seta. They considered such phenomena to be caused not by accidents during 
post-embryonic development but by heritable features. Future efforts can be focused on the association between 
phylogeny and ML classification; this association may provide a basis for mechanistic explorations.

Conclusions
The automated identification of biological organisms may gradually become a reality through the development 
of machine learning techniques, which are widely applied in domains such as medicine18 and agriculture14,19. 
The automated extraction of morphological features is a method that will be used in the future but requires more 
development in the context of mite research. Many studies have reported on the automatic extraction of mor-
phological features, such as insect wing veins3,9; however, mite studies have many limitations. High-quality slide 
specimens and high-resolution microscopic photos are required. Porto and Voje9 proposed a machine learning 
pipeline for automated detection and landmarking of biological structures in images. This method may enable 
the collection of morphological data from images. However, the main morphological features of phytoseiid mites 
are setal patterns (presence or absence) and setal lengths8,32. Detecting setae is impossible because their direction 
of setae may vary and can be affected by the slide-making technique. In addition, Prasad and Tixier33 indicated 
that the difficulty in obtaining accurate length measurements is due to setae not being straight and having thin 
and pointed tips. To develop automated identification techniques for phytoseiid mites, additional features must 
be used for identification, such as the distances between setae, distance between pores, and shield width and 
length. However, tabletop scanning electronic microscopes (TSEMs) may be another method for capturing 
high-resolution photos. TSEMs have recently begun being applied in mite studies; for example, Yamasaki et al.35 
compared light microscope and TSEM photos of feather mites. TSEMs have several advantages, such as the ability 
to capture the living positions of specimens, simple operability by non-experts, and no need for pre-processing.

Our study is the first to successfully identify biological control agents through artificial intelligence. Accu-
rately identifying pests is the first step of IPM (e.g., Fedor et al.14); however, the accurate identification of bio-
logical control agents is also necessary2. The present study developed a semi-automated identification method 
for phytoseiid mites by using XGBoost, which can facilitate the accurate identification of target and non-target 
phytoseiid species for IPM. After morphological features of phytoseiid mites were selected in accordance with 
experts’ recommendations, the machine learning technique could bridge the gap between taxonomists and 
non-taxonomists, through the transfer of taxonomy skills and experience. This approach can also provide a 
quick method for dealing with insufficient or missing data. Therefore, XGBoost can be used for the identifica-
tion of mites and for that of all similar animals in which morphometrics are used extensively, such as aphids and 
whiteflies. We consider the present study to be the first step toward realising mite identification through artificial 
intelligence. Based on the application potential, more species and individuals that more possibly provides the 
entire ranges and variations of morphometric features before XGBoost identification can become more reliable 
in all situations. The practical application of artificial intelligence is expected to overcome all identification 
problems for IPM in the future.

Methods
Sampling of N. barkeri and related species.  Phytoseiid mites inhabit a variety of habitats, such as vari-
ous plants and soil litters. Individuals were collected from plants and those on substrates and soil litters were 
isolated using Berlese’ funnels and kept in 95% alcohol. Samples were mounted in Hoyer’s medium and softened 
and cleaned with lactic acid if the mite body was hard. In addition, specimens were deposited at several insti-
tutes: GIABR (Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong, China), HUM 
(Hokkaido University Museum, Sapporo, Japan), NMNS (National Museum of Nature and Science, Tsukuba, 
Japan), NTU (Department of Entomology, National Taiwan University, Taipei, Taiwan), TARL (Taiwan Acari 
Research Laboratory, Taichung City, Taiwan). Female phytoseiid mites were collected, including 250 specimens 
of N. barkeri, and 262 specimens of 35 non-target species belonging to subfamily Amblyseiinae, in 6 tribes, and 
11 genera. The following numbers of these non-target species were collected: 4 of N. baraki, 10 of N. longispino-
sus, 10 of N. makuwa, 6 of N. taiwanicus, 9 of N. womersleyi, 9 of Amblyseius alpinia, 10 of A. bellatulus, 10 of A. 
eharai, 10 of A. herbicolus, 2 of A. pascalis, 10 of A. tamatavensis, 10 of Euseius aizawai, 6 of E. circellatus, 7 of E. 
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daluensis, 11 of E. macaranga, 10 of E. ovalis, 6 of E. paraovalis, 3 of E. nicholsi, 6 of E. oolong, 7 of E. sojaensis, 4 
of Gynaeseius liturivorus, 3 of G. santosoi, 10 of Okiseius subtropicus, 4 of Paraamblyseius formosanus, 7 of Para-
phytoseius chihpenensis, 10 of Parap. cracentis, 3 of Parap. hualienensis, 10 of Parap. orientalis, 6 of Phytoscutus 
salebrosus, 10 of Proprioseiopsis asetus, 3 of Prop. ovatus, 8 of Scapulaseius anuwati, 10 of S. cantonensis, 10 of 
S. okinawanus, and 8 of S. tienhsainensis. In addition, specimens of N. barkeri were collected from the United 
States, China, Israel, Japan, the Netherlands, Taiwan, and Thailand (including intercepted specimens in plant 
quarantine).

Quantitative measurements of phytoseiid mites.  Specimens were examined under an Olympus 
BX51 microscope, and measurements were performed using a stage-calibrated ocular micrometer and ImageJ 
1.4736. Photos were taken using a Motic Moticam 5+ camera attached to the microscope (Figure S1). All meas-
urements were recorded in micrometres (μm). The general terminology used for morphological descriptions in 
this study conformed to that of Chant and McMurtry20. The notation for idiosomal setae conformed to that of 
Lindquist and Evans37 and Lindquist38, as adapted by Rowell et al.39 and Chant and Yoshida-Shaul32. Phytoseiid 
mites exhibit pronounced sexual dimorphism, and female individuals are more crucial for identification because 
of their distinguishing features and greater prevalence. In the present study, 22 quantitative measurements were 
collected from the female specimens: dorsal shield length and width; j1, j3, j4, j6, J5, z2, z4, z5, Z1, Z4, Z5, s4, 
r3, and R1 setae length; ventrianal shield length and width (at ZV2 level); JV5 length; St IV length; spermatheca 
calyx length, and spermatheca calyx width (Fig. 1, Table 1).

XGBoost training and computing.  We used XGBoost to develop a classification system for target mite 
species and related species based on their morphological features. Among machine learning methods, XGBoost 
is the most efficient for implementing the gradient boosting decision tree algorithm from multiple decision trees, 
which are created successively. For each iteration, a tree enhances its predictive power by minimising the unex-
plained part of the last tree. First, we determined the number of decision trees through cross-validation. The 
original sample was randomly partitioned into five equally sized subsamples (Table S1). A single subsample and 
the other subsamples were retained for use as the validation and training data, respectively. Cross-validation was 
then performed five times, with each subsample used exactly once as the validation data. The number of decision 
trees allows the same level of performance to be achieved in training and validation. The number of decision 
trees was then used for the full dataset to create a final model, and key morphological features were selected for 
their relative importance. Next, we used ICE plots to indicate the determinative roles of these key features in 
classification. Plots in which one line represents one specimen indicate changes in predictions (of target species) 
that occur as a morphological feature change. We generated XGBoost and ICE plots by respectively using the R 
package “xgboost”40 and “pdp”41.

Drawings.  Hand-drawn illustrations (Fig. 1) were made under an optic microscope (Olympus BX51). These 
drawings were first scanned, then processed and digitized with Photoshop CS6 (Adobe Systems Incorporated, 
USA).
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