
Frontiers in Immunology | www.frontiersin.

Edited by:
Tiago W. P. Mineo,

Federal University of Uberlandia, Brazil

Reviewed by:
Ana Rosa Pérez,
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2 Laboratório de Vacinas Recombinantes, Departamento de Biociências, Universidade Federal de São Paulo, Santos, Brazil,
3 Divisão de Patologia, Instituto do Coração (INCOR), Faculdade de Medicina, Universidade de São Paulo, São Paulo,
Brazil, 4 Department of Cell Biology, University of Miami, Miami, FL, United States, 5 Laboratório de Imunologia Experimental
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A variety of signaling pathways are involved in the induction of innate cytokines and CD8+

T cells, which are major players in protection against acute Trypanosoma cruzi infection.
Previous data have demonstrated that a TBK-1/IRF3-dependent signaling pathway
promotes IFN-b production in response to Trypanosoma cruzi, but the role for STING,
a main interactor of these proteins, remained to be addressed. Here, we demonstrated
that STING signaling is required for production of IFN-b, IL-6, and IL-12 in response to
Trypanosoma cruzi infection and that STING absence negatively impacts activation of
IRF-dependent pathways in response to the parasite. We reported no significant
activation of IRF-dependent pathways and cytokine expression in RAW264.7
macrophages in response to heat-killed trypomastigotes. In addition, we showed that
STING is essential for T. cruzi DNA-mediated induction of IFN-b, IL-6, and IL-12 gene
expression in RAW264.7 macrophages. We demonstrated that STING-knockout mice
have significantly higher parasitemia from days 5 to 8 of infection and higher heart
parasitism at day 13 after infection. Although we observed similar heart inflammatory
infiltrates at day 13 after infection, IFN-b, IL-12, CXCL9, IFN-g, and perforin gene
expression were lower in the absence of STING. We also showed an inverse
correlation between parasite DNA and the expression of CXCL9, IFN-g, and perforin
genes in the hearts of infected animals at day 13 after infection. Finally, we reported
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that STING signaling is required for splenic IFN-b and IL-6 expression early after infection
and that STING deficiency results in lower numbers of splenic parasite-specific IFN-g and
IFN-g/perforin-producing CD8+ T cells, indicating a pivotal role for STING signaling in
immunity to Trypanosoma cruzi.
Keywords: STING, IFN-b, IL-6, IL-12, CD8+ T cell, Trypanosoma cruzi
INTRODUCTION

Chagas disease is caused by the flagellate protozoan
Trypanosoma cruzi (T. cruzi) and affects over 8 million people
worldwide. The acute infection results in mild symptoms, which
include fever and muscle pain. Most individuals evolve to a
chronic asymptomatic infection with low parasitism, but 30%–
40% either have or will develop cardiomyopathy, digestive
megasyndromes, or both (1). While effective innate and
adaptive immunity promotes parasite control, imbalanced host
immune responses to persistent infection are suggested to favor
inflammation and the development of chronic Chagas pathology
(2, 3).

To l l - l i ke recep tor s (TLRs) , nuc l eo t ide -b ind ing
oligomerization domain 1 (NOD1) receptor, and NOD-, LRR-
and pyrin domain-containing protein 3 (NLRP3) have been
described as major contributors to innate immunity against T.
cruzi, promoting production of cytokines and nitric oxide (NO)
(4–11). Interleukin (IL)-6 and IL-12 are crucial cytokines for
immune-mediated resistance to T. cruzi, as shown either by
infection of genetically deficient mice or in vivo cytokine
neutralization (12–15). TLR signaling may also result in
interferon-b (IFN-b) production, which has been previously
implicated in parasite control in dendritic cells and
macrophages, in addition to increasing resistance to infection
in mice (16, 17).

In terms of adaptive immunity, T helper 1 (Th1) cells figure as
an important source of IFN-g, promoting activation of infected
macrophages and providing help for other effector cells against
T. cruzi (18–20). Unlike CD4+ T cells, T. cruzi-specific CD8+ T
cells are essential for infection control, either by promoting
protection during early contact with the parasite or by limiting
T. cruzi burden during chronic infection (21–23). While
perforin-producing CD8+ T cells have a contradictory role
against T. cruzi, being related to myocarditis and heart damage
in chronically infected mice (24, 25), IFN-g-producing CD8+ T
cells have been indicated as protective in both experimental
models and patients (25–28).

DNA sensing is highly conserved as a cellular mechanism of
response to pathogens and can be mediated by a variety of
molecules, such as Z-DNA-binding protein 1 (ZBP1), leucin-
rich repeat flightless-interacting protein 1 (LRRFIP1), DEAD-
box helicase 41 (DDX41), IFN-g-inducible protein 16 (IFI16),
and the cyclic-GMP-AMP synthase (cGAS), leading to activation
of stimulator of IFN genes (STING) (29–33). Activation of STING
leads to conformational changes that trigger its oligomerization
and translocation from the endoplasmic reticulum to the Golgi
apparatus (34, 35). During translocation, STING recruits and
org 2
activates TANK-binding kinase 1 (TBK-1), which in turn
phosphorylates the interferon-regulatory factor 3 (IRF3),
enabling its dimerization and translocation to the nucleus to
induce type I IFN (IFN-a and IFN-b) gene expression (36).
Alternatively, STING activation results in NF-kB translocation
to the nucleus, where it functions together with IRF3 and other
transcription factors to induce the expression of type I IFN and
inflammatory cytokines such as tumor necrosis factor a (TNF-a),
IL-1b, and IL-6 (37, 38). This ability of STING in orchestrating
multiple DNA sensing pathways has been implicated not only in
innate immunity to multiple pathogens but also in promoting
effector CD8+ T cells against cancer (39–41).

The STING ligand cyclic di-AMP (c-di-AMP) has been
successfully used as an adjuvant to increase immunogenicity of
anti-T. cruzi vaccines and to promote protection against
infection in mice (42, 43). It has also been demonstrated that
in vitro cGAS inhibition limits macrophage response to
extracellular vesicles derived from T. cruzi-infected cells (44).
In addition, previous data indicated that TBK-1 and IRF3 are
involved in IFN-b production during in vitro T. cruzi infection
(45). Therefore, we hypothesized that STING signaling would
play an important role in mediating production of innate
cytokines and generation of CD8+ T cells against T. cruzi,
promoting protection against acute infection.

Here, we demonstrated that STING signaling is required for
expression of IFN-b, IL-6, and IL-12 in response to T. cruzi
infection in RAW264.7 macrophages and that STING absence
negatively impacts activation of IRF-dependent pathways in
response to the parasite. We reported that heat-killed
trypomastigotes promoted no significant activation of IRF-
dependent pathways and cytokine production in RAW264.7
macrophages. In addition, we showed that STING is essential
for T. cruzi DNA-mediated induction of IFN-b, IL-6, and IL-12
gene expression in RAW264.7 macrophages. Our results also
revealed that STING signaling promotes production of key
innate cytokines and generation of parasite-specific CD8+ T
cells in mice, contributing to better control of parasitemia and
heart parasitism.
MATERIALS AND METHODS

Cell Culture, Trypanosoma cruzi Infection,
and Cellular Transfections
Rhesus monkey kidney epithelial cells (LLC-MK2 cells) (ATCC)
were routinely cultured in high-glucose Dulbecco’s modified
Eagle’s medium (DMEM), supplemented with 10% fetal
January 2022 | Volume 12 | Article 775346
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bovine serum (FBS) (Thermo Fisher, Waltham, MA, USA)
(DMEM10) at 37°C and 5% CO2. These cells were infected
with the Trypanosoma cruzi Y stain in high-glucose DMEM,
supplemented with 2% FBS (DMEM2) (Thermo Fisher) to
maintain the parasite.

Supernatant of T. cruzi-infected LLC-MK2 cells was collected,
centrifuged in a 15-ml tube (Corning, Corning, NY, USA) at
1,350×g for 10 min and washed twice with DMEM2. After the last
centrifugation, the pellet was left in DMEM2 for 2 h at 37°C and
5% CO2 to allow live trypomastigotes to swim. The supernatant
containing live trypomastigotes was collected and filtered in a
bottle top 0.22-µm filter (Corning). The filter was washed with
DMEM2 to resuspend the live trypomastigotes, which were
transferred to a new 15-ml tube and incubated at 56°C for 10
min. Parasite DNA was obtained by incubating approximately 200
million heat-killed trypomastigotes in 500 µl of lysis buffer
(Tris.HCl 0.1 M, pH 8.5; EDTA 5 mM, pH 8.0; NaCl 0.2 M,
SDS 0.2%, and 100 µg of proteinase K in water) at 37°C and 600
rpm for 18 h, followed by precipitation with isopropanol at
8,600×g for 5 min, washing with ethanol at 70%, centrifugation
at 8,600×g for 5 min, and resuspension in 25 µl of DNAse/RNAse-
free water. The ratios of absorbance at 260/280 and 260/230 nm
were used to assess the purity of DNA with a Nanodrop 2000
(Thermo Fisher). The parasite DNA used in transfection
experiments had 260/280 and 260/230 ratios of 1.92 and
2.21, respectively.

RAW264.7-Lucia™ ISG and RAW264.7-Lucia™ ISG-
STING-KO macrophages (InvivoGen, Toulouse, France) were
plated in 24-well plates (Corning) at a density of 105 cells per well
in 500 µl of DMEM2 24 h before infection, exposure to heat-
killed trypomastigotes, or transfections. The cells were incubated
for 16 h with 3 × 106 live or heat-killed trypomastigotes per well
in 300 µl of DMEM2, washed with PBS (Thermo Fisher), and
incubated for additional 24 h in 300 µl of DMEM2. Supernatant
was collected and total RNA extracted. Alternatively, the cells
were transfected with 80 ng of parasite DNA complexed with
lipofectamine 2000 (Thermo Fisher) in 300 µl of OPTIMEM
(Thermo Fisher) per well, accordingly to manufacturer’s
instructions. As experimental controls, the cells were
transfected either with 1.0 mg/ml of c-di-GMP (InvivoGen) or
0.5 mg/ml of Poly I:C (InvivoGen) complexed with lipofectamine
2000 in 300 µl of OPTIMEM. Lipofectamine 2000 and
OPTMEM were used in negative control wells. Supernatant
was collected and total RNA extracted 24 h after transfection.

Luciferase Activity and Cytokine
Measurement
Twenty microliters of supernatant from infected, heat-killed
parasite-exposed or transfected RAW264.7-Lucia™ ISG and
RAW264.7-Lucia™ ISG-STING-KO macrophages were mixed
with 50 ml of QUANTI-Luc™ (InvivoGen) and immediately read
in a Smart Line TL luminometer (Titertek Berthold, Pforzheim,
Germany), with an acquisition time of 1 s for determination of
luciferase activity. The detection of IFN-b, IL-6, and IL-12
cytokines in the supernatant of infected RAW264.7-Lucia™

ISG and RAW264.7-Lucia™ ISG-STING-KO macrophages was
performed using the Mouse Custom ProcartaPlex kit (Thermo
Frontiers in Immunology | www.frontiersin.org 3
Fisher), accordingly to manufacturer’s instructions. The samples
were read with a MagPix Luminex system (Merck Millipore,
Burlington, MA, USA) and analyzed using the Milliplex Analyst
software (Merck Millipore).

Ethics Statement
The study was approved by the Ethics Committee on the Use of
Animals (CEUA) of the Faculty of Medicine, University of Sao
Paulo (FMUSP), under protocol number 1567/2020, and carried
out in accordance with Brazilian Federal Law number 11,794 on
scientific use of animals and the National Institutes of Health
guide for the care and use of laboratory animals.

Mice and Experimental Infection
Six- to 8-week-old male wild-type BALB/c, wild-type C57BL6, and
STING-KO mice with a C57BL6 background were maintained at
the Tropical Medicine Institute II, Faculty of Medicine, University
of Sao Paulo. BALB/c and C57BL6 mice were purchased from the
Faculty of Medicine, University of Sao Paulo. STING-KO mice
were kindly provided by Dr. Baber and are derived from his
previously described laboratory colony (46). The animals were
housed in groups of up to 5 per cage in a room with controlled
light and temperature (12 h light/dark cycles, 21°C ± 2°C) and free
access to food and water.

The Trypanosoma cruzi Y strain was maintained in BALB/c
mice and used to infect wild-type C57BL6 and STING-KO mice.
Blood was collected from euthanized BALB/c mice at the peak of
infection and centrifuged at 200×g for 10 min. The supernatant
was collected, centrifuged at 3,800×g, and the pellet of parasites
resuspended in RPMI1640 (Thermo Fisher). Fifty thousand
trypomastigotes in 200 µl of RPMI1640 were intraperitoneally
injected in each C57BL6 and STING-KOmouse. Parasitemia was
monitored by counting the number of trypomastigotes in 5 µl of
fresh blood collected from the tail vein as previously
described (47).

Nitrite Detection
RAW264.7-Lucia™ ISG and RAW264.7-Lucia™ ISG-STING-
KO macrophages were plated and incubated with live
trypomastigotes for 16 h, as previously described. The cells
were washed with PBS and incubated for an additional 48 h in
300 µl of high-glucose DMEM without phenol red (Nova
Biotecnologia, Ribeirao Preto, Brazil). Alternatively, splenocytes
from 4-, 7-, and 13-day-infected C57BL6 and STING-KO mice
were incubated for 48 h at a density of 5 × 105 cells in 200 µl of
high-glucose DMEM without phenol red per well. The
supernatant was collected and centrifuged at 15,000×g for 5
min. The Nitric Oxide Assay kit (Thermo Fisher) was used
accordingly to manufacturer’s instructions for total nitrate and
nitrite detection with an Epoch spectrophotometer (BioTek,
Winooski, VT, USA).

Real-Time PCR
Total RNA extraction from RAW264.7 macrophages, hearts, and
spleens was performed using Trizol reagent (Thermo Fisher),
RNeasy Fibrous Tissue kit (Qiagen, Hilden, Germany), and
RNeasy mini kit (Qiagen), respectively. Synthesis of cDNA was
January 2022 | Volume 12 | Article 775346
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performed using the Superscript II Reverse Transcriptase
(Thermo Fisher), accordingly to manufacturer’s instructions.
Real-time PCR was performed using Power SyBr green master
mix (Thermo Fisher) and a QuantStudio 12k thermocycler
(Thermo Fisher) with the following parameters: 95°C for 15
min, 40 cycles of 95°C for 15 s, and 60°C for 1 min. The primer
sequences were as follows: HPRT1 forward 5′-GTTGGG
CTTACCTCACTGCT-3′; HPRT1 reverse 5′-GCAAAAAGC
GGTCTGAGGAG-3′; IFN-b forward 5′-TGGGAGATGTCC
TCAACTGC-3′; IFN-b reverse 5′-CCAGGCGTAGCTGTT
GTACT-3′; IL-6 forward 5′-CCCCAATTTCCAATGCTCTCC-
3′; IL-6 reverse 5′-GGATGGTCTTGGTCCTTAGCC-3′; IL-12
forward 5′-GAAGTCCAATGCAAAGGCGG-3′; IL-12 reverse
5′-GAACACATGCCCACTTGCTG-3′; TNF-a forward 5′-ATG
GCCTCCCTCTCATCAGT-3′; TNF-a reverse 5′-TTTGCTAC
GACGTGGGCTAC-3′; CXCL9 forward 5′-CCAAGCCCCA
ATTGCAACAA-3′; CXCL9 reverse 5′-AGTCCGGATCTA
GGCAGGTT-3′; IFN-g forward 5′-AGCAAGGCGAAAAAG
GATGC-3′; IFN-g reverse 5′-TCATTGAATGCTTGGCGCTG-
3′; PRF1 forward 5′-TGGTGGGACTTCAGCTTTCC-3′; PRF1
reverse 5′-GAAAAGGCCCAGGAGGAACA-3′.

For detection of parasite DNA in the hearts of infected
animals, we extracted DNA using the FlexiGene Kit (Qiagen),
accordingly to manufacturer’s instructions and used previously
described primer sequences (48). Real-time quantitative PCR
was performed using Power Sybr green Master mix and the
Quanti Studio 3 thermocycler (Thermo Fisher). The b-actin gene
was used as an endogenous control and the calculation of
parasitism in the heart was based on a T. cruzi DNA
dilution curve.

Preparation of TSKB20 Peptide
TSBK20 peptide (ANYKFTVL-NH2) was synthesized by manual
solid phase peptide synthesis on NovaSyn TGR R resin (Merck)
using the Fmoc/tBu strategy. 2-(1H-Benzotriazole-1-yl)-1,1,3,3-
tetramethyluronium hexafluorophosphate (HBTU) (Merck) and
N,N-diisopropylethylamine (DIPEA) were used in the coupling
reactions and N,N-dimethylformamide (DMF) was used as
solvent. Purity (>97%) was determined by RP-HPLC
(Shimadzu, Kyoto, Japan). The peptide was resuspended in
dimethyl sulfoxide (DMSO) at a stock concentration of 10 mg/
ml and used in immunological assays at a concentration of 10
µg/ml.

Flow Cytometry
Spleens from uninfected and 13-day-infected C57BL6 and
STING-KO mice were aseptically removed and disrupted using
70 µm Cell Strainer (Corning). Red blood cells were lysed using
ACK lysis buffer (Thermo Fisher); the samples were centrifuged
at 300×g for 5 min and splenocytes resuspended in R10 medium
(RPMI-1640 supplemented with 10% FBS, 2 mM L-glutamine, 1
mM sodium pyruvate, 1% vol/vol nonessential amino acid
solution, 1% vol/vol vitamin solution, 40 µg/ml of gentamicin,
and 5 × 10−5 M 2b-mercaptoethanol, all from Thermo Fisher).
Splenocytes were plated in 96-well round-bottom plates
(Corning) at a density of 0.5 × 106 cells in 200 µl of R10
medium and stimulated with 10 µg/ml of the T. cruzi H2-Kb-
Frontiers in Immunology | www.frontiersin.org 4
restricted peptide TSKB20 in the presence of 5 µg/ml of brefeldin
A (BioLegend, San Diego, CA, USA) for 14 h at 37°C and 5%
CO2. DMSO and PMA (50 ng/ml) plus ionomycin (500 ng/ml)
(Sigma, St. Louis, MO, USA) were used as negative and positive
control stimuli, respectively.

After stimulation, the cells were transferred to 96-well V-
bottom plates (Corning), centrifuged at 300×g for 5 min and
stained with the monoclonal antibodies anti-CD3 APC-Cy7 (BD
Biosciences, Franklin Lakes, NJ, USA), anti-CD4 PerCP (BD
Biosciences), and anti-CD8 PE-Cy7 (BD Biosciences) diluted in
PBS for 30 min at 4°C. The cells were washed twice with PBS
and fixed with BD Cytofix/Cytoperm™, accordingly to
manufacturer’s instructions. Thereafter, the cells were washed
twice with BD Perm/Wash™ buffer and stained with the
monoclonal antibodies anti-IFN-g APC (BD Biosciences) and
anti-Perforin PE (BioLegend) diluted in BD Perm/Wash™ buffer
for 30 min at 4°C. The cells were washed twice with BD Perm/
Wash™ buffer and resuspended in PBS. The samples were
acquired with a FACS Canto II (BD Biosciences) cytometer
and analyzed with FlowJo 10 software (BD Biosciences).

Histological Analysis
Heart samples were fixed in a 10% buffered formalin solution,
dehydrated in an increasing concentration of ethanol (Merck), and
embedded in paraffin. The blocks were sectioned with a thickness
of 5 mm and stained with hematoxylin-eosin (H&E). The
pathologist performed blinded histological analysis and provided
a score for the intensity of myocarditis, as follows: (0) absence of
myocarditis: absence or minimal focal inflammatory infiltrate;
(1) mild myocarditis: mild, focal, or multifocal inflammatory
infiltrate, with little cardiomyocyte aggression; (2) moderate
myocarditis: clear inflammatory infiltrate, predominantly
multifocal with occasional diffuse areas (coalescence), with
multiple foci of cardiomyocyte aggression; and (3) intense
myocarditis: exuberant inflammatory infiltrate, predominantly
diffuse, with multiple foci of cardiomyocyte aggression.

Statistical Analysis
The results were analyzed using the Graph Pad Prism 8 software.
We used Mann-Whitney U test for comparisons between 2
parameters and two-way ANOVA, Tukey’s, and Bonferroni’s
tests for multiple comparisons. Pearson’s correlation coefficient
was used for correlation analysis.
RESULTS

STING Deficiency Negatively Impacts
Activation of IRF-Dependent Pathways
and Cytokine Expression in Response to
Trypanosoma cruzi Infection
Although previous data have suggested that a TBK-1/IRF3-
dependent signaling pathway is essential for IFN-b induction
in response to T. cruzi infection, the role of STING remained to
be determined (45). To address this question, we used
RAW264.7-Lucia™ ISG and RAW264.7-Lucia™ ISG-STING-
January 2022 | Volume 12 | Article 775346
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KO macrophages, which are sufficient or deficient for STING
expression, respectively, and designed to secrete luciferase into
the culture medium in response to activation of IRF-dependent
signaling pathways. We incubated these cells with live or heat-
killed T. cruzi Y strain trypomastigotes for 16 h, removed
residual parasites, and incubated for additional 24 h to collect
supernatant and total RNA for evaluation of luciferase activity
and gene expression (Figure 1A). We observed that although
infection of STING-KO macrophages promoted activation of
IRF-dependent pathways, this activation was significantly lower
than that observed for RAW264.7 ISG macrophages upon T.
cruzi infection (Figure 1B). On the other hand, no differences in
activation of IRF-dependent pathways were found in heat-killed
T. cruzi-exposed STING-KO or RAW264.7 ISG macrophages
when compared with their respective controls (Figure 1B). In
line with our luciferase results, we observed significantly lower
IFN-b, IL-6, and IL-12 gene expression in STING-KO-infected
macrophages when compared with RAW264.7 ISG-infected
macrophages, while no induction of these genes was observed
in either STING-KO or RAW264.7 ISG macrophages exposed to
heat-killed T. cruzi (Figures 1C–E). Infection with T. cruzi
resulted in similar induction of TNF-a gene expression in
STING-KO and RAW264.7 ISG macrophages, but no
significant response was observed upon exposure to heat-killed
trypomastigotes (Supplementary Figure S1A). We also
evaluated NO production in response to infection and found
no difference when comparing STING-KO and RAW264.7 ISG
macrophages (Supplementary Figure S2A). Overall, our results
Frontiers in Immunology | www.frontiersin.org 5
indicate that STING deficiency negatively impacts activation of
IRF-dependent pathways and cytokine expression in response to
Trypanosoma cruzi infection, while heat-killed trypomastigotes
failed to promote activation of RAW264.7 macrophages.

Trypanosoma cruzi DNA Induces STING-
Dependent Cytokine Expression
DNA from adenovirus 5, herpes simplex virus, Listeria
monocytogenes Plasmodium sp., and Leishmania donovani
activates STING-dependent signaling in a variety of cells,
indicating that STING signaling may have a role in immune
responses to multiple pathogens (46, 49–53). Therefore, we
hypothesized that STING would be required for cytokine
induction in response to T. cruzi DNA. To test our hypothesis,
we transfected RAW264.7-Lucia™ ISG and RAW264.7-Lucia™

ISG-STING-KO cells with T. cruzi Y strain DNA, collected
supernatant and total RNA 24 h after transfection, and
evaluated luciferase activity and gene expression (Figure 2A).
We found that STING was essential for DNA-mediated
activation of IRF-dependent pathways, as STING-KO cells
showed significantly lower luciferase activity upon transfection
(Figure 2B). As observed for infection, STING-KO cells had
significantly lower IFN-b, IL-6, and IL-12 gene expression in
response to T. cruzi DNA (Figures 2C–E). Although STING-KO
and RAW264.7 ISG cells had similar TNF-a gene expression
upon infection, we found that parasite DNA transfection resulted
in increased TNF-a gene expression in RAW264.7 ISG cells
when compared with nontransfected control, which was not
A B

C D E

FIGURE 1 | STING deficiency negatively impacts activation of IRF-dependent pathways and cytokine expression in response to T. cruzi infection. (A) Experimental
procedure. (B) IRF-dependent luciferase activity of STING-KO and RAW264.7 ISG macrophages infected or exposed to heat-killed T. cruzi. (C–E) Real-time PCR
analysis of IFN-b, IL-6, and IL-12 mRNA expression in STING-KO and RAW264.7 ISG macrophages infected or exposed to heat-killed T. cruzi. HPRT1 was used as
housekeeping gene. Control, T. cruzi uninfected/unexposed STING-KO and RAW264.7 ISG macrophages; NS, no statistical significance. (B–E) Two-way ANOVA
and Tukey’s multiple comparison test. Data are shown as mean ± SD. Experimental figure was created with BioRender.com.
January 2022 | Volume 12 | Article 775346
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observed in STING-KO cells (Supplementary Figure S1B). To
ensure our system was working properly, we transfected
RAW264.7 ISG and STING-KO cells with poly IC (TLR3
ligand) and c-di-GMP (STING ligand). We observed that while
STING-KO cells were responsive to poly IC, c-di-GMP elicited
no luciferase activity or gene expression. In contrast to infection
and parasite DNA, c-di-GMP failed to induce IL-6 and IL-12
gene expression while poly IC failed to induce IL-12 gene
expression in RAW264.7 ISG cells (Supplementary Figures
S3A–D). Taken together, these results indicate that T. cruzi
DNA activates STING-dependent signaling.

STING Signaling Increases Resistance to
Acute T. cruzi Infection and Promotes
Expression of Key Immunological Genes
in the Heart of Infected Animals
Our in vitro results suggested that STING is required for
induction of cytokines involved in T. cruzi immunity.
Therefore, we hypothesized that STING-KO mice would have
lower immune activation and would be less effective in
controlling the parasite during acute infection. To test our
hypothesis, we intraperitoneally infected C57BL6 and STING-
KO mice (Figure 3A) and found that STING-KO mice had
significantly higher parasitemia from days 5 to 8 after infection
(Figure 3B). Real-time PCR analysis showed that both groups of
Frontiers in Immunology | www.frontiersin.org 6
animals had similar amounts of T. cruzi DNA in the heart on
days 4 and 7 after infection (Figure 3C). However, we observed
significantly higher amounts of T. cruzi DNA in the hearts of
STING-KO-infected animals at day 13 after infection
(Figure 3C), indicating that STING-dependent signaling plays
a role in parasite control.

We performed heart histological analysis of STING-KO and
C57BL6-infected animals and observed no difference in the
magnitude of inflammatory infiltration 13 days after infection
(Figures 3D, E). Real-time PCR analysis of the heart tissue at
days 4, 7, and 13 after infection revealed a kinetic increase in the
expression of genes related to immune control of the parasite in
both groups of animals. Notably, IFN-b gene expression was
significantly lower in the hearts of STING-KOmice at days 7 and
13 after infection when compared with C57BL6 mice
(Figure 4A). IL-12, CXCL9, IFN-g, and perforin gene
expression was significantly lower in the hearts of STING-KO
mice 13 days after infection (Figures 4C–F). No significant
difference in IL-6 gene expression was found in the hearts of
STING-KO-infected mice when compared with C57BL6 mice
(Figure 4B), while significantly lower TNF-a gene expression
was observed in the hearts of STING-KO mice 13 days after
infection (Supplementary Figure S1C), indicating that STING
deficiency negatively impacts the expression of key genes related
to protection against acute T. cruzi infection.
A B

C D E

FIGURE 2 | Trypanosoma cruzi DNA activates STING-dependent signaling. (A) Experimental procedure. (B) IRF-dependent luciferase activity of nontransfected (NT)
and T. cruzi DNA-transfected STING-KO and RAW264.7 ISG macrophages. (C–E) Real-time PCR analysis of IFN-b, IL-6, and IL-12 mRNA expression in
nontransfected (NT) and T. cruzi DNA-transfected STING-KO and RAW264.7 ISG macrophages. HPRT1 was used as housekeeping gene. NS, no statistical
significance. (B–E) Two-way ANOVA and Tukey’s multiple comparison test. Data are shown as mean ± SD. Experimental figure was created with BioRender.com.
January 2022 | Volume 12 | Article 775346

http://biorender.com
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Vieira et al. Trypanosoma cruzi Activates STING Signaling
Given that all immunological genes evaluated in our study were
previously shown to contribute to protection against acute T. cruzi
infection, we performed correlation analysis to understand
whether the magnitude of gene expression would be associated
with parasite control. We found that IFN-b, IL-6, and IL-12 gene
expression had no correlation with T. cruzi DNA in the heart at
day 13 after infection (Figures 4G–I). However, CXCL9, IFN-g,
and perforin gene expression was inversely correlated with T. cruzi
DNA (Figures 4J–L). Moreover, we observed a positive
correlation among CXCL9, IFN-g, and perforin gene expression
in the heart of infected animals (Supplementary Figures S4A–C),
suggesting that CXCL9-mediated recruitment of IFN-g and
perforin-expressing cells may have had a positive impact on
parasite control at day 13 after infection.

STING Signaling Promotes Expression of
Innate Cytokines and Generation of CD8+

T Cells in the Spleen of Infected Animals
To have a more systemic view of the immune response to the
parasite in the context of STING signaling, we evaluated the
spleens of STING-KO- and C57BL6-infected mice at days 4, 7,
and 13 after infection. We observed that IFN-b, IL-6 and IL-12
gene expression was higher at day 4 after infection and decreased
overtime in both groups of animals (Figures 5A–C). Notably,
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STING-KO-infected mice had significantly lower IFN-b and IL-6
gene expression in the spleen at day 4 after infection when
compared with C57BL6-infected mice (Figures 5A, B),
indicating that STING-dependent signaling may play a role in
early induction of key cytokines against T. cruzi. On the other
hand, IL-12 gene expression (Figure 5C) and TNF-a gene
expression were similar in the spleens of STING-KO- and
C57BL6-infected mice in all time points (Supplementary
Figure S1D). We also evaluated NO production by splenocytes
and found no significant differences between groups
(Supplementary Figure S2B), suggesting the involvement of
other signaling pathways in immunity to T. cruzi.

To further exploit the role of STING signaling in T. cruzi-
driven immunity, we performed flow cytometry using
splenocytes to investigate IFN-g and perforin production by
CD8+ T cells against a T. cruzi H-2Kb-restricted peptide
named TSKB20 (Figure 5D). As expected, we found very low
numbers of splenic IFN-g, perforin, and IFN-g/perforin-
producing CD8+ T cells in uninfected animals (Figures 5E–G).
On the other hand, we observed significantly lower numbers of
splenic TSKB20-specific IFN-g and IFN-g/perforin-producing
CD8+ T cells in STING-KO-infected mice when compared
with C57BL6-infected mice (Figures 5H, J), while the numbers
of splenic TSKB20-specific CD8+ T cells producing only perforin
A B

C D E

FIGURE 3 | STING signaling increases resistance to T. cruzi infection. (A) Experimental procedure. (B) Parasitemia of STING-KO and C57BL6-infected mice. (C)
Real-time PCR analysis of T. cruzi DNA in the hearts of STING-KO and C57BL6 mice 4, 7, and 13 days after infection. (D, E) Histological analysis of the hearts of
STING-KO and C57BL6 mice 13 days after infection, ×200 magnification. NS, no statistical significance. (B, C) Two-way ANOVA and Bonferroni’s multiple
comparison test. (E) Two-way ANOVA and Tukey’s multiple comparison test. (B, D) Data are shown as mean ± SD. (C) Data are shown as mean ± SEM.
Experimental figure was created with BioRender.com.
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were similar in both groups (Figure 5I). Collectively, our results
indicate that STING signaling promotes expression of innate
cytokines and generation of CD8+ T cells against T. cruzi.
DISCUSSION

Innate and adaptive immune responses are required for
controlling T. cruzi replication and disease establishment (54).
Although TLR-dependent IFN-b production increase resistance
to infection in mice (16), contrasting data have demonstrated
that MyD88, TRIF, TLR-2-, TLR-3-, and TLR-4-deficient MEF,
and bone marrow-derived macrophages (BMDM) still produce
IFN-b in response to T. cruzi, while TBK-1 and IRF3 deficiency
significantly impairs IFN-b production (45).

STING signaling, which is intimately related to TBK-1 and IRF3,
has been studied in the context of immunity to many pathogens (39,
40). Formulations with STING ligand (c-di-AMP) as an adjuvant
have been shown to increase immunogenicity of anti-T. cruzi
Frontiers in Immunology | www.frontiersin.org 8
vaccines (42, 43). In addition, previous work has demonstrated
that in vitro cGAS inhibition limits macrophage response to
extracellular vesicles derived from T. cruzi-infected cells (44).
However, the role of STING during in vitro and in vivo T. cruzi
infection remained to be addressed.

Here, we showed that STING is not only required
for expression of IFN-b in T. cruzi-infected RAW264.7
macrophages but also promotes IL-6 and IL-12 expression,
which are involved in host resistance to infection (12–14, 16,
17). We demonstrated that activation of IRF-dependent
signaling is negatively impacted by STING absence but may
also rely on other pathways, as we still observed significantly
higher luciferase activity in STING-KO-infected macrophages
when compared with STING-KO-uninfected macrophages. In
contrast to previous data demonstrating IFN-b expression by
MEF exposed to dead trypomastigotes (45), we found no
significant differences in cytokine expression or luciferase
activity in either STING-KO or RAW264.7 ISG cells
exposed to heat-killed trypomastigotes, indicating that live
A B C

D E F

G H I

J K L

FIGURE 4 | STING deficiency negatively impacts immune responses in the heart of T. cruzi-infected mice. (A–F) Real-time PCR analysis of IFN-b, IL-6, IL-12,
CXCL9, IFN-g, and PRF1 mRNA expression in the hearts of STING-KO and C57BL6 mice 4, 7, and 13 days after infection. (G–L) Correlation analysis of IFN-b,
IL-6, IL-12, CXCL9, IFN-g, and PRF1 mRNA expression with T. cruzi DNA in the hearts of STING-KO (blue circles) and C57BL6 (red circles) mice 13 days after
infection. NS, no statistical significance. (A–F) Two-way ANOVA and Bonferroni’s multiple comparison test. (G–L) Pearson’s correlation. (A–F) Data are shown
as mean ± SEM.
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trypomastigotes are required for activation of IRF-dependent
pathways and cytokine expression in RAW264.7 macrophages.
Whether T. cruzi internalization through phagocytosis occurred
(55), it was not sufficient to alter our parameters in STING-KO
and RAW264.7 ISG cells.

Previous data have demonstrated that adenovirus 5, herpes
simplex virus, Listeria monocytogenes, Plasmodium sp., and
Leishmania donovani DNAs activate STING-dependent
signaling in a variety of cells, such as human monocytes,
STING-expressing HEK293 cells, MEF, and RAW264.7 ISG
macrophages (46, 49–53). Our results bring additional support
to these observations by demonstrating that T. cruzi DNA
transfection triggers robust STING-mediated activation of IRF-
dependent pathways and expression of IFN-b, IL-6, and IL-12
genes, reinforcing the role of STING signaling in intracellular
DNA sensing and host defense against microbial infection (39).

In line with most infections in humans, we investigated T.
cruzi-driven immune response and parasite control using a
parasite inoculum that was not lethal in acute infection. Our
results demonstrated that STING absence negatively impacted
parasite control, as we observed significantly higher parasitemia
in STING-KO mice from days 5 to 8 of infection. Although not
statistically significant, we noticed an early difference in systemic
infection control, with 60% less blood parasites in C57BL6 mice
at day 4 after infection, indicating that innate immunity may
Frontiers in Immunology | www.frontiersin.org 9
have had a major impact on initial parasite infection. In fact,
higher IFN-b and IL-6 gene expression in the spleens of C57BL6
mice at the same period corroborates our hypothesis. Although
other studies regarding innate immunity have shown distinct
intensity and kinetics in parasite control, late differences in
parasitemia were more frequently observed (8, 12, 14, 16). In
addition, we cannot exclude that parasite strain and inoculum
may have contributed to our observations.

STING deficiency resulted in significantly higher heart
parasitism at day 13 after infection, suggesting impairment of
local immunity. Although we found no difference in the intensity
of myocardial inflammatory infiltrate, the quality of the immune
response may have been affected, as suggested by lower
expression of genes related to immune protection against acute
infection in the hearts of STING-KO mice. The kinetics of the
local immune response may also have contributed to early
parasite control, as STING-KO mice presented much less-
efficient IFN-b response at day 7 after infection, which was
when we detected parasite DNA for the first time in the heart of
infected animals. Supporting our hypothesis, previous data have
demonstrated early induction of type I IFN response against T.
cruzi Y strain at the skin of infected mice (56).

CXCL9 chemokine gene expression, known to promote
migration of effector T cells to infected tissues and protective
immune response against T. cruzi (57–60), was found to be
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FIGURE 5 | STING deficiency negatively impacts innate cytokine expression and generation of CD8+ T cells in response to T. cruzi infection. (A–C) Real-time PCR
analysis of IFN-b, IL-6, and IL-12 mRNA expression in the spleens of STING-KO and C57BL6 mice 4, 7, and 13 days after infection. (D) Intracellular flow cytometry
analysis of IFN-g and perforin production by CD8+ T cells. (E, F) Number (#) of IFN-g, perforin, and IFN-g/perforin producing-CD8+ T cells in total splenocytes of
uninfected mice, nonstimulated (NS) or stimulated with TSKB20 peptide 13 days after infection. (H–J) Number (#) of IFN-g, perforin, and IFN-g/perforin-producing
CD8+ T cells in total splenocytes of T. cruzi-infected mice, nonstimulated (NS) or stimulated with TSKB20 peptide 13 days after infection. NS, no statistical
significance. (A–C) Two-way ANOVA and Bonferroni’s multiple comparison test. (E–J) Two-way ANOVA and Tukey’s multiple comparison test. (A–C) Data are
shown as mean ± SEM. (E–J) Data are shown as mean ± SD.
January 2022 | Volume 12 | Article 775346

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Vieira et al. Trypanosoma cruzi Activates STING Signaling
significantly lower in the hearts of STING-KO mice at day 13
after infection, as was IFN-g and perforin gene expression. In
addition, our analysis demonstrated a positive correlation among
these 3 genes, indicating that STING signaling may drive
CXCL9-dependent infiltration of IFN-g and perforin-
producing cells in the hearts of acutely infected animals.
Although CD4+ T cells have been demonstrated as an
important source of IFN-g during infection (61, 62) and
natural killer (NK) cells may also migrate in response to
CXCL9 (63) and express IFN-g and perforin (64, 65), CD8+ T
cells are still the most predominant infiltrated population in the
heart (66, 67), leading to the hypothesis that CD8+ T cells may
have played a major role in ours findings. Nevertheless, further
investigation will be necessary to demonstrate whether STING
signaling modulates NK and CD4+ T cells during infection.

Our flow cytometry analysis revealed a negative impact of
STING deficiency on the numbers of splenic parasite-specific
IFN-g and IFN-g/perforin-producing CD8+ T cells at day 13 after
infection, which may explain why we found lower IFN-g and
perforin gene expression in the hearts of STING-KO-infected
mice. In contrast to our data, TLR4-KO animals were shown to
have preserved CD8+ T cells while having impaired innate
immunity against T. cruzi (8), indicating a broader function of
STING signaling in immune responses to the parasite. While
generation of T. cruzi-specific CD8+ T cells has been shown to be
unaffected by the absence of type I interferon signaling (68), we
believe that impairment in the production of IFN-b, IL-6, and IL-
12 against the parasite in STING-KOmice may have had a major
impact on the CD8+ T cells. In fact, these three cytokines have
been shown to promote CD8+ T cell activation, proliferation, and
survival (69–73), supporting our hypothesis.

Perforin-producing CD8+ T cells have a contradictory role in
acute and chronic T. cruzi infection, being related to myocarditis
and heart damage in chronically infected mice (24, 25). In
contrast, IFN-g-producing CD8+ T cells have been indicated as
protective in both experimental models and patients, although a
dysregulated IFN-g response may be suggested as detrimental in
chronic Chagas disease cardiomyopathy (2, 25–28, 74). Here, we
showed an inverse correlation between parasite DNA and the
expression of CXCL9, IFN-g and perforin in the hearts of
infected animals, reinforcing a protective role for these genes
in acute infection. Moreover, we found a more prominent
impairment in parasite-specific IFN-g-producing CD8+ T cells
in STING-KO mice, suggesting that STING signaling may be
responsible to promote a more effective CD8+ T cell-mediated
immune response against T. cruzi. Therefore, we believe our
results bring an important contribution to the field of
imunoparasitology by unveiling new molecular mechanisms
underlying immunity against this remarkable pathogen.
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Supplementary Figure 1 | STING deficiency has variable impact on TNF-a
response to T. cruzi. (A) Real-time PCR analysis of TNF-a mRNA expression in
STING-KO and RAW264.7 ISG macrophages infected or exposed to heat-killed T.
cruzi. (B) Real-time PCR analysis of TNF-a mRNA expression in non-transfected
(NT) and T. cruzi DNA-transfected STING-KO and RAW264.7 ISG macrophages.
(C, D) Real-time PCR analysis of TNF-amRNA expression in the hearts and spleens
of STING-KO and C57BL6 mice 4, 7 and 13 days after infection, respectively.
HPRT1 was used as housekeeping gene. NS, no statistical significance. (A, B)
Two-way ANOVA and Tukey’s multiple comparison test. (C, D) Two-way ANOVA
and Bonferroni’s multiple comparison test. (A, B) Data are shown as mean ± S.D.
(C, D) Data are shown as mean ± S.E.M.

Supplementary Figure 2 | STING deficiency has no impact on nitric oxide
production against T. cruzi. (A) Nitrite detection in the supernatant of uninfected and
infected STING-KO and RAW264.7 ISG macrophages 48h after infection. (B) Nitrite
detection in the supernatant of splenocytes from STING-KO and C57BL6 mice at
days 4, 7 and 13 after infection, incubated for 48h. NS, no statistical significance.
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(A) Two-way ANOVA and Tukey’s multiple comparison test. (B) Two-way ANOVA
and Bonferroni’s multiple comparison test. (A) Data are shown as mean ± S.D. (B)
Data are shown as mean ± S.E.M.

Supplementary Figure 3 | STING-KOmacrophages are responsive to poly IC but
not to c-di-GMP transfection. (A) IRF-dependent luciferase activity of non-transfected
(NT) and transfected STING-KO and RAW264.7 ISG macrophages. (B–D) Real-time
PCR analysis of IFN-b, IL-6 and IL-12 mRNA expression in non-transfected (NT) and
Frontiers in Immunology | www.frontiersin.org 11
transfected STING-KO and RAW264.7 ISG macrophages. HPRT1 was used as
housekeeping gene. NS = no statistical significance. (A–D) Two-way ANOVA and
Tukey’s multiple comparison test. (A–D) Data are shown as mean ± S.D.

Supplementary Figure 4 | CXCL9, IFN-g and perforin gene expression positively
correlates in the hearts of infected animals. (A–C) Pearson’s correlation analysis of
CXCL9, IFN-g and PRF1 mRNA expression in the hearts of STING-KO (blue circles)
and C57BL6 (red circles) mice 13 days after infection.
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