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Abstract: Metabolism and physiology frequently follow non-linear rhythmic patterns which are
reflected in concepts of homeostasis and circadian rhythms, yet few biomarkers are studied as
dynamical systems. For instance, healthy human development depends on the assimilation and
metabolism of essential elements, often accompanied by exposures to non-essential elements which
may be toxic. In this study, we applied laser ablation-inductively coupled plasma-mass spectrometry
(LA-ICP-MS) to reconstruct longitudinal exposure profiles of essential and non-essential elements
throughout prenatal and early post-natal development. We applied cross-recurrence quantification
analysis (CRQA) to characterize dynamics involved in elemental integration, and to construct a
graph-theory based analysis of elemental metabolism. Our findings show how exposure to lead, a
well-characterized toxicant, perturbs the metabolism of essential elements. In particular, our findings
indicate that high levels of lead exposure dysregulate global aspects of metabolic network connectivity.
For example, the magnitude of each element’s degree was increased in children exposed to high lead
levels. Similarly, high lead exposure yielded discrete effects on specific essential elements, particularly
zinc and magnesium, which showed reduced network metrics compared to other elements. In sum,
this approach presents a new, systems-based perspective on the dynamics involved in elemental
metabolism during critical periods of human development.

Keywords: recurrence quantification analysis; network analysis; graph theory; elemental metabolism;
environmental exposures

1. Introduction

There are myriad examples in biology of rhythmic patterns of physiology. Sleep
occurs on a 24 h cycle. The hormone cortisol follows a diurnal pattern. Menstrual cycles are
approximately monthly. Disruptions in these cyclic biological processes clearly affect health
but are difficult to quantify using linear or even non-linear regression analysis. To capture
the impact of environmental factors that disrupt homeostasis, different approaches are
likely needed to capture patterns of rhythm that predict and reflect health. As an example,
children are persistently exposed to chemical elements throughout their pre- and post-natal
development, many of which are essential to the emergence of healthy development and
metabolic function [1]. Elements considered essential to healthy development include zinc
(Zn), copper (Cu), magnesium (Mg), and manganese (Mn), although the impact of these
chemicals in supporting healthy development may be dependent not just on dose, but also
on the timing of exposures. Trace elements are mediated through in utero development via
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the placenta, and are accordingly dependent on maternal diet, experience, and exposure
history [2,3]. Post-natal levels are similarly mediated by parental influences, and, ultimately,
by children’s diet and environment [4,5]. These factors, and concomitant exposures to
non-essential and toxic elements, are typically studied by the assessment of exposure
biomarkers in blood or urine, which can capture a momentary “snapshot” of a child’s level
of exposure [6]. Recent innovations in exposure assessment, primarily focusing on the
analysis of shed deciduous (“baby”) teeth, allow for the reconstruction of longitudinal
biomarker profiles which capture the time-varying concentration of exposure biomarkers
throughout prenatal and postnatal development at a time scale that allows for rhythmic
patterns to be quantified [6,7].

Several recent studies have approached the analysis of longitudinal elemental biomark-
ers through the lens of recurrence quantification analysis (RQA) and a related bivariate
method, cross-recurrence quantification analysis (CRQA). Key insights developed from
this approach include the identification of periodic dynamics, indicative of seasonal, cir-
caseptan, or circadian metabolic cycles, in the metabolism of essential elements [8], and
the disruption of these processes in the emergence of neurodevelopmental disorders [9,10].
Critically, although these insights have been essential in highlighting the importance of
metabolic dynamics in health and disease, the focus of these studies on single- and dual-
element dynamics has not extended to the consideration of broader network dynamics;
that is, although these approaches effectively characterize dynamics in discrete elemental
pathways, or in pairwise combinations of pathways, they have not considered the overall
architecture of dynamic connectivity.

Similarly, several studies have looked at environmental exposures with network
analyses, though these studies have typically focused on levels of organization beyond
exposure metabolism. Social network architecture, for example, is a common focus of
analysis in environmental epidemiological studies [11,12], either as a mediator of exposure
or relating to the consequences of exposure [13,14]. Similarly, network analysis is a powerful
tool for exploring the organization of molecular mechanisms, particularly genomic and
epigenomic mechanisms [15,16], and the modulation of these factors via exposure. Network
analysis of environmental exposure and metabolism remain relatively unexplored in the
current epidemiological literature, although with some notable exceptions, such as the
recent work by Li et al. [17], which utilized a hierarchical community network to integrate
exposomic and metabolomic factors.

Here, we developed an approach to characterize elemental metabolism through the
lens of network connectivity; that is, the temporal correlation structure among differ-
ent elements. Using tooth-based biomarkers which provide longitudinal measurements
of elemental exposure, we applied CRQA to characterize dynamic connectivity within
and between essential and non-essential elements, including zinc, copper, manganese,
magnesium, strontium, barium, and lithium. Similarly, we characterized exposure to an
unambiguous toxicant, lead. We highlight the utility of this approach in a use case devel-
oped to address three basic and/or applied research questions. First, in considering the
architecture of dynamic connectivity, we contrast the role of discrete elemental pathways
in the overall metabolic network. Second, in consideration of lead exposure, we tested
how lead impacts global network architecture. Finally, we extend this analysis to consider
the effects of lead on discrete elemental pathways. In sum, the approach developed here
presents a new approach to characterize elemental exposure and metabolism in terms of
network architecture and connectivity, providing biomarkers directly impinging on the
changes in global metabolism structure rather than single chemical species.

2. Materials and Methods
2.1. Study Population

Human study participants were recruited from the Programming Research in Obesity,
Growth, Environment, and Social Stressors (PROGRESS) cohort in Mexico City, Mexico.
Pregnant women who were receiving health insurance and prenatal care through the
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Mexican Social Security Institute (Instituto Mexicano del Seguro Social [IMSS], Ciudad de
México, Mexico) were recruited between July 2007 and February 2011. The IMSS provides
health care to affiliated private sector employees, most of whom are low- to middle-income
workers, and their families. In total, 434 participating children provided deciduous tooth
samples for this analysis.

2.2. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry

Our approach to measuring metals in teeth using laser ablation-inductively coupled
plasma-mass spectrometry (LA-ICP-MS) and assigning developmental times has been
detailed elsewhere [7,18]. Briefly, teeth are sectioned and the neonatal line (a histological
feature formed in enamel and dentine at the time of birth) and incremental markings are
used to assign temporal information to sampling points. A New Wave Research NWR-193
(ESI, Fremont, CA, USA) laser ablation unit equipped with a 193 nm ArF excimer laser
was connected to an Agilent Technologies 8800 triple-quad ICP-MS (Agilent Technologies,
USA). Helium was used as a carrier gas from the laser ablation cell and mixed with argon
via a Y-piece before introduction to the ICP-MS. The system was tuned daily using NIST
SRM 612 (trace elements in glass) to monitor sensitivity (maximum analyte ion counts),
oxide formation (232Th16O+/232Th+, <0.3%) and fractionation (232Th+/238U+, 100 ± 5%).
The laser was scanned in dentine parallel to the enamel-dentine junction from the dentine
horn tip towards the tooth cervix. A pre-ablation scan was run to remove any surface
contamination. Data were analyzed as metal to calcium ratios (e.g., 138Ba:43Ca) to control
for any variations in the mineral content within a tooth and between samples. Exposure
profiles covered a range from −143 days prenatally to 389 days postnatally.

2.3. Recurrence Quantification Analysis

We previously described the application of recurrence quantification analysis (RQA)
and cross-recurrence quantification analysis (CRQA) to characterize dynamics in longitudi-
nal tooth biomarkers in prior studies [8–10,19]. Briefly, this non-linear analytical method
involves the application of Taken’s delay embedding for attractor reconstruction; a thresh-
old function, ε, is then applied to each point in the reconstructed attractor, and the timing of
the system’s reentry within this perimeter is defined as a recurrence. RQA focuses on the au-
tocorrelation structure of a time series, whereas CRQA describes the relation between two
different time series. Accordingly, three parameters require specification in the reconstruc-
tion of the attractor: ε, which as noted indicates the size of the specified threshold; m, which
indicates the dimensionality of the reconstructed system; and τ, which indicates the delay
(lag) used to define lag-delayed dimensions. To determine an appropriate delay, a mutual
information algorithm was used to estimate the effect of varying lags on mutual informa-
tion between the original and delayed signals; the minimal lag interval which minimized
mutual information was used as τ. Similarly, to estimate m, a false nearest neighbors algo-
rithm was used, and the dimensionality chosen was likewise the m-value which minimized
the number of false nearest neighbors. For specifying ε, two approaches were taken. First,
in our initial analysis, which focused on the analysis of recurrence rates (in some senses, a
non-linear proxy of correlation), ε was approximated by taking 10% of the estimated phase
space diameter of reconstructed attractors. In subsequent analyses, which focused on other
RQA/CRQA metrics, the value of ε was varied in our analysis to yield a fixed recurrence
rate of 0.1 in order to facilitate cross-element comparisons (that is, in cases where recurrence
rates might vary, but our interest was in features such as entropy). A fixed recurrence rate
of 0.1 was chosen to align our results with prior investigations, and because this value
approximated the mean recurrence rate across all elements (0.103) when estimated using a
ε-function based on phase space diameter. Following the specification of these parameters,
RQA and CRQA were used to calculate standard metrics of signal dynamics, particularly
entropy in diagonal lines, which, in the context of a recurrence plot, indicate the emergence
of periodicity within and between signals. C/RQA analyses were performed with the
Cross-Recurrence Toolbox v5.16 (http://tocsy.pik-potsdam.de/CRPtoolbox/ (accessed

http://tocsy.pik-potsdam.de/CRPtoolbox/


Entropy 2021, 23, 1633 4 of 12

on 19 March 2021)) in Matlab v2019b (Mathworks) and the Dynamical Systems package
in Julia (https://juliadynamics.github.io/DynamicalSystems.jl/latest/ (accessed on 19
March 2021)).

2.4. Graph Construction and Network Analysis

Following the application of CRQA to characterize dynamics between longitudinal
elemental time series, these features were used to construct and quantify network dy-
namics. In our initial analysis, focusing on the quantification of recurrence rates (RR),
cross-recurrence rates between elements were used as edges in the construction of graphs.
Recurrence rates which were below the median recurrence rate were excluded from this
analysis; graphs thus reflect only non-trivial connections between elements. This approach
was separately applied to each individual in the study, yielding, per subject, a unique
graph of cross-element dependencies. We then applied standard graph theory analytical
methods to quantify key metrics of connectedness among each individuals’ metabolic
graph, including the degree [20], betweenness [21], closeness [22], eigenvalue, (local) clus-
tering coefficient [23], and eccentricity [24] of connections for each element. Although our
initial analysis used recurrence rates to define edges between elements, our subsequent
analysis utilized entropy in diagonal lengths to define edges; the analytical procedure in
both approaches was identical.

2.5. Statistical Analysis

The application of CRQA to quantify cross-element metabolic dynamics, and the
usage of graph theory to characterize, in each individual, the role of discrete elements,
provided an array of descriptive statistics for each individual. To test if toxic exposures,
in particular lead exposure, impacted these metrics, we constructed linear models to test
for associations between high/low lead exposure related to network dynamics for each
essential (Cu, Mg, Mn, Zn) and non-essential (Ba, Li, Sr) element. For each of the 6 graph
theory metrics derived, we constructed a discrete linear model to determine if that feature
varied by element, by Pb exposure, or by the interaction of these functions, such that:

Centrality = α + βElement + βPb + βElement × Pb, (1)

where “Centrality” is an example of one derived network measure, α is the model intercept,
β represents regression parameters, “Element” indicates a categorical (dummy-coded)
factor representing a given element, and Pb represents a dichotomized factor for lead
exposure. To account for repeated measurements in participants—that is, multiple elements
were measured in each participant—a random effect was included in the construction of
linear mixed models. In sum, these models yield direct hypothesis tests to answer the
questions: Are some elements more connected than others? Does lead exposure impact
connectivity? And, are lead’s effects specific to some elements?

3. Results
3.1. Network Dynamics in Recurrence Rates

Our initial analysis focused on the characterization of networks defined by recurrence
rates in cross-recurrence quantification analysis (CRQA), a metric which essentially cap-
tures non-linear dependencies (correlations) between elements. For each participant, a
unique network was constructed such that each discrete element in this analysis served as
a node in the network, and edges were defined by the CRQA recurrence rates; from each
network, six graph metrics were derived to characterize connectivity between elements in
these networks. Figure 1 provides a high-level summary of this approach, with networks
constructed for participants in low- and high-lead exposure conditions. In these depic-
tions, edges were constructed by taking the mean (for that group) CRQA recurrence rates;
however, in all analyses to follow, unique networks were constructed for each participant.

https://juliadynamics.github.io/DynamicalSystems.jl/latest/
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Figure 1. Network architecture in children exposed to low (A) or high (B) levels of lead. Edges reflect
the mean recurrence rates observed between elements in each group. In subsequent analyses, unique
networks were constructed in each participant, excluding edges with recurrence rates below the
median global recurrence rate, in order to contrast connectivity between elements and between high-
and low-lead conditions.

In Figure 2, we show graph theory metrics derived through the analysis of networks
in children with high or low lead exposure. In Tables 1 and 2, we provide details on
hypothesis tests relating to the main effects of lead across all elements, or the discrete
effects of lead within a given elemental pathway, respectively.

Generally, these results emphasize three general findings. First, irrespective of lead
exposure, we find that the network connectivity varies significantly between different
elements; copper and lithium, for example, consistently differed from other elements
in their network connectivity. Second, relating to lead exposure, we find that network
architecture is highly sensitive to toxicant exposure. The magnitude of each element’s
degree was significantly elevated in children with high lead exposure, indicating that
the lead exposure disrupts pathway-specific connectivity profiles. With other measures,
for example closeness centrality, this trend was reversed, such that high lead exposure
was associated with reduced closeness, i.e., lead yields reduced efficiency of information
transmission between elements; however, this overall trend (main effect of lead) was not
significant. Third, and most commonly, we find that the effects of lead exposure yield
both network-wide and element-specific effects; that is, the magnitude of lead’s effects
on network connectivity varies between elements. This effect was particularly prominent
in measures of eigenvalue centrality and per-element clustering coefficients, where we
observed that copper and lithium were significantly dysregulated by lead exposure, but
other elements were not; we likewise found that zinc clustering coefficients were also
significantly elevated with high lead exposure (p = 0.04).
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Figure 2. Recurrence rates in metabolic networks in children with high or low lead exposure. For each element (x-axis),
graph theory metrics (y-axis) were estimated, with graph edges defined by recurrence rates estimated with cross-recurrence
quantification analysis.

Table 1. Diffuse effects of lead exposure in networks constructed with recurrence rates 1.

Measure p-Value

Degree 0.002
Closeness 0.301

Betweenness 0.895
Eigenvalue 0.372

Clustering Coefficient 0.375
Eccentricity 0.330

1 p-values reflect tests for the main effect of lead in linear mixed models which include covariates of element, lead,
and element × lead interactions.

Table 2. Discrete effects of lead exposure in networks constructed with recurrence rates 1.

Element Degree Closeness Betweenness Eigenvalue Clustering Coefficient Eccentricity

Ba 0.002 0.301 0.895 0.372 0.375 0.330
Cu 0.001 0.325 0.882 0.007 <0.001 0.582
Li 0.002 0.334 0.432 0.006 <0.001 0.424

Mg 0.003 0.273 0.987 0.314 0.234 0.532
Mn 0.003 0.279 0.974 0.632 0.438 0.120
Sr 0.015 0.271 0.782 0.510 0.153 0.872
Zn 0.027 0.261 0.741 0.539 0.041 0.555

1 p-values reflect post-hoc tests for the comparison of high-lead vs. low-lead conditions within each discrete elemental pathway.
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3.2. Entropy in Elemental Metabolic Networks

To understand the dynamics driving the observed differences in global connectivity
metrics, we next undertook an analysis of periodic entropy derived from cross-recurrence
quantification analysis (CRQA). As in our analysis of global correlation structure, for each
individual we constructed a discrete metabolic network, here utilizing entropy emerging
in between-element periodicity in the construction of edges. Results of these analyses,
summarized across individuals, are shown for children with high and low lead exposure
in Figure 3. In Tables 3 and 4, we provide details on hypothesis tests relating to the main
effects of lead across all elements, or the discrete effects of lead within a given elemental
pathway, respectively.
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Figure 3. Entropy in metabolic networks in children with high or low lead exposure. For each element (x-axis), graph
theory metrics (y-axis) were estimated, with graph edges defined by periodic entropy (that is, with respect to diagonal lines)
estimated with cross-recurrence quantification analysis.

Table 3. Diffuse effects of lead exposure in networks constructed with periodic entropy 1.

Measure p-Value

Degree 0.784
Closeness 0.000

Betweenness 0.052
Eigenvalue 0.057

Clustering Coefficient 0.034
Eccentricity 0.007

1 p-values reflect tests for the main effect of lead in linear mixed models which include covariates of element, lead,
and element × lead interactions.
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Table 4. Discrete effects of lead exposure in networks constructed with periodic entropy 1.

Element Degree Closeness Betweenness Eigenvalue Clustering Coefficient Eccentricity

Ba 0.784 <0.001 0.052 0.057 0.034 0.007
Cu 0.182 <0.001 0.731 0.002 0.006 0.640
Li <0.001 <0.001 0.434 <0.001 <0.001 0.137

Mg <0.001 0.341 0.399 <0.001 0.044 0.001
Mn <0.001 <0.001 <0.001 0.341 0.321 0.107
Sr 0.734 <0.001 0.906 0.002 0.118 0.503
Zn <0.001 0.022 0.066 <0.001 <0.001 <0.001

1 p-values reflect post-hoc tests for the comparison of high-lead vs. low-lead conditions within each discrete elemental pathway.

Consistent with our analysis of recurrence rates, our findings in the analysis of entropy-
based network connectivity indicate both general and discrete effects of lead exposure
on metabolic network connectivity. For measures of general connectivity, e.g., number of
edges, we found that high lead exposure did not yield a broadly consistent effect; rather, we
found that high lead exposure was associated with discrete effects for different elemental
pathways. In particular, lead exposure yielded significantly reduced connectivity in critical
essential elements including zinc, magnesium, and manganese; conversely, high lead
exposure increased the degree of connectivity associated with lithium.

For other measures of network architecture, particularly network closeness, we found
high lead exposure elevated network closeness, indicating inefficiency in transmission
among elements. However, even in the context of this broad pattern, we observed ex-
ceptions, such that zinc and manganese closeness were significantly reduced with high
lead exposure.

Measures of networks centrality, including betweenness, eigenvalue centrality, and
clustering coefficient, similarly experienced complex effects relating to lead exposure. For
betweenness and eigenvalue centrality, these effects were manifest as borderline-significant
main effects of high lead exposure (p-values approximately 0.05; see Table 3); or, in the
case of clustering coefficients, significant main effects (p = 0.03), such that high lead
exposure was generally associated with increased clustering coefficients. As in other cases,
however, these effects also varied in direction and intensity across different elemental
pathways. Betweenness centrality was significantly reduced in manganese and tended
to differ between groups (p-values approximately 0.05; see Table 4) for zinc and barium.
For eigenvalue centrality, high lead exposure was associated with reduced centrality in
zinc and magnesium pathways, but was associated with increased centrality in all other
elements. This general pattern was also consistent in comparing clustering coefficients.

Measures relating to path integration, including closeness and eccentricity, similarly
reiterated the general pattern of global and discrete effects associated with lead exposure.
For closeness, we observed that high lead exposure yielded increased closeness for bar-
ium, copper, lithium, manganese, and strontium, but, conversely, reduced closeness for
the essential elements of magnesium and zinc. Similarly, with network eccentricity, we
found that high lead exposure reduced eccentricity in barium connectivity, but conversely
increased eccentricity for magnesium and zinc.

4. Discussion

Here we integrated cross-recurrence quantification analysis (CRQA) in a graph-theory
based network analysis to characterize the effects of toxic elemental exposures on the
assimilation and metabolism of essential elements. We used CRQA to construct network
edges which captured global non-linear correlation structure, via recurrence rates, and,
via the analysis of cross-element entropy, the complexity of periodic dynamics between
varying elemental pathways. Our results identify three general principles. First, we show
that discrete elemental pathways exhibit distinct network architectures, such that each
element was associated with varying levels of degree, centrality, and path complexity.
Second, we show that these features are highly sensitive to lead exposure, in that these
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features differ between children exposed to high and low levels of lead. Third, we show
that the effects of lead exposure yield varying effects on different elemental pathways.
In particular, we show that lead exposure dysregulates network architecture involving
the essential elements of zinc, copper, magnesium, and manganese, and, similarly, also
acts on non-essential elements including barium, strontium, and lithium. In sum, these
results emphasize the utility of integrating dynamical analytical methods in network-based
analyses to characterize the architecture of metabolic dynamics, and the perturbation of
these processes following toxicological insult.

This paper follows several recent advances [8–10,20] which highlighted the utility of
recurrence quantification analysis (RQA) and CRQA in characterizing dynamics involved
in elemental exposure and metabolism. In contrast to those papers, which focused on
the analysis of single- or dual-element dynamics, in this paper we characterize elemental
dynamics through the lens of network connectivity. From this perspective, the critical
descriptive measures analyzed here are the role of a given element in relation to the full
array of elements measured. This provides an important conceptual and methodological
advance in the consideration of elemental metabolism. Our findings nonetheless align well
with those of prior studies. For example, prior studies have found that zinc and copper
dynamics are dysregulated in subjects diagnosed with autism spectrum disorder and
attention deficit hyperactivity disorder [9,10]. Similarly, prior studies have also identified
elevated lead levels in these subjects [25]. Our current findings, which emphasize that
lead dysregulates the network architecture involving zinc metabolism, provide a bridge
between these results, suggesting that lead exposure plays a role in the dysregulation of
mechanisms associated with these diseases.

This approach to exploring high-dimensional environmental exposure data parallels
and complements current approaches in the literature, particularly so-called ‘mixtures’
analyses [1,26,27]. These approaches typically employ forms of supervised dimensionality-
reduction, particularly weighted quantile sum regression [28–30] and Bayesian kernel
machine regression [31,32], to link the additive or multiplicative integration of multiple
exposure biomarkers to a single health outcome. From this perspective, the complexity of
correlation patterns observed among exposure variables is something of a nuisance, which,
if uncontrolled, may impede estimation of associative effects. In contrast, the utilization
of a network-based analysis, as applied here, leverages the structural organization of
correlations among exposures as the fundamental unit of analysis. As such, this approach
may provide a fruitful and complementary avenue of investigation in future environmental
epidemiological studies, which may be adapted to cross-sectional studies through the
construction of simple correlation-based edges, or be applied to longitudinal exposures
data, as was demonstrated in the present study.

Furthermore, at a more basic level, our findings emphasize the utility of both network-
based and dynamical analyses as tools for understanding longitudinal metabolic processes.
We previously reported that essential elements, including those studied in the current
study, exhibit characteristic periodic dynamics which are markedly different from the
dynamics of toxicant exposures [8]. Here, we demonstrate that these dynamics contribute
to a global network architecture which is perturbed through toxicological insult. The
approach outlined in the present paper opens new avenues for future investigations,
shifting the unit of analysis and interpretation of a given elemental pathway’s function
from intrinsic dynamics to integrative functionality. In this pursuit, the flexibility of the
paradigm developed here will be a key advantage for future studies, as assessment of net
network dynamics can be linked to cross-sectional assessments of health, parameterized
much as lead was dichotomized in the present study. Alternatively, given the availability of
health indicators assessed in longitudinal contexts, such as electrophysiological or circadian
assessment, RQA-based assessment of health outcome measures could be used to connect
periodic dynamics across multiple stages of biological organization, i.e., from metabolic
indicators to behavioral/organismal indicators.
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5. Conclusions

In this study we introduced the use of cross-recurrence quantification analysis for ap-
plications in network analysis in elemental assimilation and metabolism. We demonstrate
that these measures are highly sensitive indicators of toxicant exposures; here, in the case
of high or low lead exposure. The approach advanced in this paper offers a new research
tool and perspective for the exploration of exposure assimilation and metabolism, and
future studies may expand on these findings through the application of this approach in
contexts relating to health and disease.

From a more methodological perspective, these findings are still far from linking the
observed changes in dynamic metabolic correlation structure to a mechanistic hypothesis.
Instead, this approach should be viewed as a tool or paradigm that future studies can use
to address those questions. For example, future studies might contrast differences in lead-
related effects on network connectivity across genotypes relating to elemental metabolism.
Similar approaches may be also useful in extending current theoretical perspectives and
providing practical frameworks for hypothesis testing. For example, the current dominant
paradigm in exposure-related research focuses on the Developmental Origins of Health and
Disease (DoHAD) hypothesis, which focuses on the exploration of early-life conditions as
antecedents of later-life health and disease [33]. A network-based perspective on early-life
metabolism provides a framework for investigating how environmental programming of
metabolic networks—as, here, we characterized the effects of lead exposure on the inte-
grated metabolic function of essential elements—relates to the emergence of disease in later
life. In practice, this can be implemented through a simple modification of the study design
applied here; that is, rather than contrasting the effects of high and low lead exposure,
future studies could compare metabolic networks in healthy participants and those who
later experience disease. From the present findings, we can state that lead exposure, by
increasing the degree, i.e., the ‘aspecific connectivity’ among elements, provokes a general
stress on global metabolism, using the generalized increase in correlation as a signature of a
stress response (e.g., see Gorban et al., 2021 [34]). As such, we can surely state that network
dynamical biomarkers provide new means to study environment–physiology interaction.
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