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Background. More than 70 single nucleotide polymorphisms (SNPs) have been reported to be
associated with prostate cancer (PC) risk; these were mainly identified in the general population
with predominantly sporadic PC (SPC). Previous studies have suggested similar associations
between a selection of these SNPs and hereditary PC (HPC). Our aim was to evaluate the effect
of all known PC risk SNPs and their discriminative value for SPC and HPC.
Methods. Seventy-four PC susceptibility SNPs (reported in literature up to June 2014)
were genotyped in a population-based series of 620 SPC patients, 312 HPC patients from
the national Dutch registry and 1819 population-based referents. Association analyses were
performed using logistic regression, focusing on directional consistency of the odds ratios
(ORs) with those in the original reports, that is, whether the OR was in the same direction as
in the original report. Discriminative performance was evaluated by a genetic risk score used
in logistic regression and receiver operating characteristic (ROC) curve analyses.
Results. Directional consistency was seen for 62 SNPs in SPC and 64 SNPs in HPC, 56 of which
overlapped. ORs were mostly higher for HPC with 22 ORs >1.25 versus 5 for SPC. Discriminative
performance was better for HPC with an area under the ROC curve of 0.73 versus 0.64 for SPC.
Conclusions. A large overlap was found for the associations between low-penetrance
susceptibility SNPs and SPC and HPC, suggesting a similarity in genetic etiology. This
warrants a reconsideration of “HPC” and a restrictive policy toward prostate-specific antigen
testing in men with a positive family history. Genetic risk scores might be used for PC risk
stratification on the population level. Prostate 75:474–483, 2015.
# 2014 The Authors. The Prostate published by Wiley Periodicals, Inc.
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INTRODUCTION

Globally, 307,000 men died from prostate cancer
(PC) in 2012 [1]. This high number fuels the continu-
ous search of the global research community for better
biomarkers to identify men at high risk of PC, to
improve (early) detection and to identify new ther-
apeutic targets. In addition to urinary biomarkers
such as PCA3 and TMPRSS2-ERG, 74 germline single
nucleotide polymorphisms (SNPs, reported in litera-
ture up to June 2014) have been discovered that are
associated with PC risk (Table I). Most of these SNPs
were identified and replicated in genome-wide associ-
ation studies (GWAS) conducted in the general pop-
ulation, that is, predominantly sporadic PC (SPC)
[2–5]. SPC is considered to be multifactorial, resulting
from a combination of environmental factors and rare
to common genetic variants with small to modest
risk- increasing effects. By contrast, the cause for
“hereditary” PC (HPC, defined as PC in three or more
first-degree relatives, two or more first-degree rela-
tives diagnosed under 55 years of age, or PC in three
consecutive generations) is sought in high-penetrance
mutations [6]. Linkage analysis studies in HPC fami-
lies have indeed identified causal mutations, for
example, in RNASEL (HPC1), HPC2/ELAC, and
MSR1 [7]. However, these variants are rare and the
results about their relevance in HPC are inconsistent
among studies, making them inefficient as tests in
genetic counseling.

It has been suggested that a considerable part of
HPC families may not have an increased PC risk
caused by a high-penetrance mutation [8]. In these
families, more likely an accumulation of SPCs has
occurred, because of increased PC awareness and
testing [7–9]. With the most recent discovery of PC
susceptibility SNPs, it was estimated that the low-
penetrance variants may explain as much as 30% of
familial PC (FPC) risk [10]. In addition, the Interna-
tional Consortium for Prostate Cancer Genetics
(ICPCG) found that 20 out of 25 SPC-associated SNPs
were similarly associated with familial PC [11]. It is
interesting to know whether these low-penetrance
genetic risk factors for SPC play a similar role in HPC.
A large overlap might indicate that HPC nowadays is
predominantly an accumulation of SPCs. That would
mean that the globally used HPC definition, based on
the number of diagnoses in a family, might fail to
identify men with an inherited risk of PC. It would
imply that, for the greater part, the men in the HPC
families are more likely part of the general population
and merely at the end of a normal distribution of
common low-risk risk variants. This could also mean
that there is no good reason to pursue prostate-spe-
cific antigen (PSA) screening in all HPC families if

such screening is not advocated in the general
population. Here, we aim to extend the findings of the
ICPCG by performing association analyses for all 74
known PC risk SNPs (as reported in the literature up
to June 2014) in Dutch SPC and HPC patients and to
compare their discriminative value for SPC and HPC.

MATERIALS AND METHODS

Patients and Referents

The SPC patients were recruited for a population--
based study into the genetic susceptibility of PC and
breast cancer (the EU 6th Framework Program funded
project “Polygene”), which has been described in
detail elsewhere [12]. This study invited all newly
diagnosed PC patients registered between 2003 and
2006 by the Comprehensive Cancer Centre the Neth-
erlands (IKNL), location Nijmegen, who were 75 years
or younger at diagnosis, living in the IKNL catchment
area, and alive at the date of invitation (between
September 2006 and June 2007). After exclusion of all
nonwhite, non-Western patients, 795 participants who
completed a postal questionnaire and donated a blood
sample were available for analysis. Of these partic-
ipants, 175 (22%) were excluded because of a positive
family history of PC. The HPC patients were recruited
through the Netherlands Foundation for the Detection
of Hereditary Tumours (NFDHT). The NFDHT regis-
try holds 191 Dutch HPC families comprising 836
HPC patients, including 663 with a PC diagnosis
verified by medical file review [13]. All families were
informed both by telephone and in writing about the
current investigation in 2009, at which point 378
of the 663 verified HPC patients were still alive.
Eighteen families denied consent and 26 were non-
informative, as all HPC patients were deceased. In
total, 312 (81%) verified HPC patients, all of Caucasian
descent, from 147 families provided sufficient material
for germline DNA isolation, which was either saliva
(Oragene1 OG-500 DNA Tube) or blood (two vials).
Clinical information was successfully collected for 613
SPC and 309 HPC patients by cancer registry person-
nel of the IKNL via medical file review and used to
stratify patients for PC aggression. Aggressive PC was
defined according to the d’Amico criteria, that is,
pT � T2c, and/or pNþ , and/or pMþ , and/or
PSA >20 and/or Gleason score �8. If a patient had
missing data on one or more clinical characteristics,
the remaining data were used to determine aggression
using the same criteria. Aggressive PC was present in
387 SPC and 204 HPC patients [14].

The referents were selected from the Nijmegen
Biomedical Study (NBS; a population-based investiga-
tion initiated in 2001 by the Radboud university
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medical center (Radboudumc) in Nijmegen) [15]. In
short, 6468 age- and sex-stratified randomly selected
inhabitants of Nijmegen completed a postal question-
naire including questions about lifestyle, health status,
and medical history and donated a blood sample for
DNA isolation and biochemical studies. One thousand
nine hundred and eighty of these participants,
frequency-matched for age and gender to patients
with PC and female patients with breast cancer were
chip-genotyped (Illumina HumanHapCNV370-Duo
BeadChip) to serve as referents in GWAS (financial
limitations prohibited the chipping of all partici-
pants) [16]. A total of 1819 referent samples passed
quality control (sample yield �96% [after exclusion of
intensity-only markers (n¼ 23,573)], Caucasian ances-
try �90% [based on Structure analysis], SNP yield
�96%). All participants provided written informed
consent and approval to conduct these studies was
obtained from the Institutional Review Board of the
Radboudumc.

Genotyping

Germline DNA was isolated at the Radboudumc
(HPC patients and referents) or at the deCODE
Genetics facilities in Reykjavik, Iceland (SPC patients).
Single-SNP genotyping for SPC and HPC was carried
out by deCODE Genetics, applying the Centaurus
(Nanogen) platform [17]. The quality of each Centau-
rus SNP assay was evaluated by genotyping each
assay in the CEU and/or YRI HapMap samples and
comparing the results with the HapMap publicly
released data. Assays with >1.5% mismatch rate were
not used. Correlated SNPs were used for rs11135910
(rs6984769; r2¼ 1) and for rs2405942 (rs35330386;
r2¼ 0.987), because we did not succeed in developing
a working genotyping assay for the originally
reported SNPs. For the referents, 10 SNPs had already
been genotyped using the previously mentioned chip.
For the other SNPs, single-SNP genotyping was
performed as described above. Missing genotypes for
the referents (due to quality control issues) were filled
using imputed data from the genome-wide chip,
which was available for 70 of the 74 SNPs (three
X-chromosomal SNPs and rs3096702 were not
imputed). Regarding imputation of the genome-wide
chip data: 323,414 SNPs passed quality control (minor
allele frequency [MAF] �1%, and Hardy–Weinberg
equilibrium [HWE] P-value >10�6) and were used for
imputation using 1000 genomes phase1 integrated
version 3 as a reference sample using IMPUTE
v2 software (http://mathgen.stats.ox.ac.uk/impute/
impute_v2.html) [18]. Genotype probabilities were
extracted for the SNPs present in the imputed data
and transformed to hard calls using the software

GTOOL (http://www.well.ox.ac.uk/�cfreeman/soft-
ware/gwas/gtool.html) and a genotype probability
threshold of 0.9. Correlations of genotypes measured
with single-SNP assays and imputed genotypes
were r2> 0.9 for all SNPs except for rs2242652
(r2¼ 0.55), rs2736098 (r2¼ 0.74), rs16901979 (r2¼
0.86), rs16902094 (r2¼ 0.87), rs4054823 (r2¼ 0.86),
rs11649743 (r2¼ 0.80), rs4430796 (r2¼ 0.84), and
rs5759167 (r2¼ 0.83). Individuals with a SNP call
rate <90% were excluded, leaving 609 SPC and
282 HPC patients and 1803 referents available for
analysis.

Very recently, a meta-analysis reported 23 addi-
tional SNPs for prostate cancer [19]. These new
markers could not be included anymore in the present
analysis because of logistical reasons.

Statistical Analyses

Association analyses were performed using
Plink v1.07 (http://pngu.mgh.harvard.edu/purcell/
plink/), Stata v9.1 (Statacorp, College Station,
Texas) and SPSS for Windows, release 20 (IBM
Corporation, Armonk, NY) [20]. Logistic regression
models were used, assuming an additive relation-
ship between the risk variants and PC. ORs and
95% confidence intervals (95% CI) were calculated
for SPC and HPC separately, relative to the refer-
ents. As the referents were age-matched, the logistic
regression models only included the individual
SNPs as a variable. The X-chromosomal SNPs were
analyzed using male referents only. The “risk allele”
for each SNP, defined as the PC risk-increasing
allele, was extracted from www.genome.gov or
from the original article (Table I). Our prime
interest was directional consistency of the ORs in
the SPC and HPC groups as compared with the
literature, that is, an OR >1.00 for the risk-increas-
ing allele in the patient groups. Statistical signifi-
cance was considered to be of less relevance,
because the difference in group size (the SPC group
was twice as large as the HPC group) makes that
SPC would need a smaller effect size to reach the
same significance level. Additionally, analyses were
stratified by tumour aggressiveness. The analyses
for HPC were repeated using a generalized estimat-
ing equation (GEE) regression analysis, which takes
familial correlations into account.

To compare the discriminative value of the 74 SNPs
for SPC and HPC patients, genetic risk scores were
constructed by summing the number of risk alleles
carried by each individual. Because all SNPs were
replicated previously and our main purpose was to
compare SPC versus HPC, all SNPs were included in
the models, irrespective of statistical significance.
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The analyses were based only on patients and male
referents with complete SNP data (169 SPC patients,
151 HPC patients, and 587 referents, respectively).
The genetic risk score distribution among the
referents with complete genotype data was used to
generate 10 risk strata based on 10%-percentiles.
Logistic regression was used to calculate the OR
per stratum for SPC and HPC separately, as
compared to the two middle strata (41st–60th
percentile). The risk score was also evaluated as
a continuous variable in a logistic regression
analysis. The area under the receiver-operating
characteristic curves (AUC) of the genetic risk
score was also calculated. This was done for: (1)
the subset of participants with complete genotype
data; and (2) all participants after imputation of
missing genotypes with the mean risk allele dosage
for each SNP in the subgroup that the participant
belonged to.

RESULTS

Table II lists the demographic and clinical charac-
teristics of the groups. Tumor characteristics were
comparable for the PC groups.

Single SNP Associations for SPC and HPC

For SPC, 62 of the 74 SNPs showed directional
consistency as compared to the literature (OR >1.00)
(Table I). ORs were mostly between 1.05 and 1.25, in
accordance with the original reports. For HPC, 64
SNPs showed directional consistency. Fifty-six of these
overlapped with the SNPs with directional consis-
tency for SPC. The ORs were higher in HPC, with 22
ORs exceeding 1.25, as compared to only five for SPC.
The SNPs with the highest ORs overlapped for SPC
and HPC, that is, rs16901979 (SRRM1P1 - POU5F1B)
and rs1447295 (intergenic variant near LOC727677).

TABLE II. Baseline and Clinical Characteristics of the SPC Patients, HPC Patients, and Referents

SPC patients (N¼ 620) HPC patients (N¼ 312) Referents (N¼ 1,819)

65/43–75 62/40–85 61/27–78
Age at diagnosis (patients) or
selection (referents) – mean/range

N % N % — —

T-stage
T1 116 18.7 40 12.8 — —

T2 285 46.0 148 47.4 — —

T3 192 31.0 86 27.6 — —

T4 15 2.4 7 2.2 — —

Unknown 12 1.9 31 9.9
N-stage
N0/Nx 581 93.7 303 91.7 — —

N1 39 6.3 9 2.9 — —

M-stage
M0/Mx 594 95.8 306 98.1 — —

M1 26 4.2 6 1.9 — —

Gleason score
2–6 355 57.2 161 51.6 — —

7 150 24.2 49 15.7 — —

8–10 61 9.8 22 7.1 — —

Unknown 54 8.7 80 25.6 — —

PSA at diagnosis (ng/ml)
<4 66 10.6 21 6.7 — —

4–10 271 43.7 144 46.2 — —

10–20 135 21.8 66 21.2 — —

>20 137 22.1 65 20.8 — —

Unknown 11 1.8 16 5.1 — —

Aggressive PCa

Yes 387 62.4 204 65.4 — —

No 226 36.5 105 33.7 — —

Unknown 7 0.9 3 1.0 — —

PC, prostate cancer; HPC, hereditary prostate cancer; PSA, prostate-specific antigen.
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In the stratified analysis, 64 ORs >1.00 were seen
for non-aggressive SPC versus 59 for aggressive
SPC (data not shown). ORs >1.00 were seen for 62
SNPs in non-aggressive HPC versus 60 in aggr-
essive HPC. The ORs in the stratified analyses were
similar to the overall analysis. The GEE-analyses for
HPC [312 patients from 147 different families with
a mean of two patients per family (range 1–7)],
showed similar ORs with slightly wider 95% CIs
(data not shown).

Discriminative Value of SNPs for SPC and HPC

With 74 SNPs (71 in autosomes and 3 on the
X-chromosome), each person can carry between 0 and
145 risk alleles. SPC and HPC patients carried more
risk alleles than the referents (median [P5-P95] SPC:
67 [58–76]; HPC: 69 [60–78]; referents: 64 [55–73])
(Figure 1). The discriminative value of the SNPs was
better for HPC (Table III) and the genetic risk scores
showed a clear dose–response pattern with increasing
ORs for men carrying more risk variants (Table IV). In
both groups, the top-20% of the risk distribution had
ORs of >1.8 as compared to the reference 41st–60th
percentile group. The HPC patients had a higher
per-allele OR than the SPC patients (1.14 vs. 1.09)
and a higher AUC (0.73 [95%CI 0.69–0.76] vs. 0.64
[0.62–0.67]).

DISCUSSION

This study evaluated the effects of all 74 known
susceptibility SNPs for PC in both SPC and HPC
groups. The differences between SPC and HPC were
relatively small, while both patient groups clearly
differed from the referents. The highest ORs for
individual SNPs as well as for the risk scores were
found for HPC. Stratified analyses indicated similar
SNP effects for aggressive and non-aggressive PC.
Recently published results from the ICPCG study in
which 25 risk SNPs were evaluated showed ORs
similar to those of our study [11]. The ICPCG
genotyped 9516 patients who were classified as
familial PC. They concluded that the majority of the
known PC risk SNPs also contributed to the risk of
familial PC, as well as to aggressive familial PC in a
subgroup analysis. Our results very much resemble
the ICPCGs results, even though methodological
differences between our studies are present. For
instance, we used a less stringent definition of
aggressive PC, genotyped an SPC group for direct
comparison and included all known SNPs in the
genetic risk score [21].

The similarity in SNP associations for SPC and
HPC suggests an overlap in genetic etiology. Had PC
in HPC families been caused by rare high-penetrance
mutations (as has been assumed in all previous
linkage analyses), then the low-penetrance SNP dis-
tribution of the HPC patients was expected to be
similar to that of the referents. By contrast, our results
show that the SNPs may even be somewhat stronger
associated with HPC. This suggests that most likely
(known or unknown) high-penetrance mutations play
only a minor role in HPC etiology. The results raise
the question whether, nowadays, the larger part of
HPC is different from SPC at all. Since the HPC
definition was introduced in 1993, an increasing
number of men have undergone opportunistic testing
for PC, particularly men with an affected relative. A
previous study concluded that the increased diagnos-
tic activity among men with a family history of PC in
itself contributed to their PC “risk” [9]. Within some
families this may have led to the detection of multiple
(relatively low-stage) PCs and, subsequently, “HPC.”
As a result, a (probably growing) part of HPC might
simply be an accumulation of SPCs [22,23]. This is
supported by a screening study among non-affected
first-degree relatives of HPC patients, in which no
elevated PC risk was found [8]. Also, population
studies have not consistently shown differences
between SPC and HPC with regard to clinical charac-
teristics and prognosis, except for a lower age
at diagnosis for HPC [22,24]. The results of this
study and the previous investigations may therefore

Fig. 1. Distribution of the number of risk alleles for SPC
patients, HPC patients, and male referents. Subscript: median
number of risk alleles carried (P5-P95): SPC patients (n¼ 609) 67
(58–76); HPC patients (n¼ 282) 69 (60–78); referents (n¼ 894)
64 (55–73).
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warrant a revision of the HPC definition. In its current
form it will continue to lose validity as a criterion for
selection of men to undergo targeted PC screening
and/or genetic (sequencing) studies to identify novel,
rare mutations. A new definition should attempt to
incorporate an adjustment for the number of male
relatives and the clinical characteristics of the diag-
nosed PCs, including the fact whether the PCs were
screen-detected or symptomatic. Obviously, in fami-
lies with a known high-risk mutation or families in
which aggressive PCs are detected at young age,
individual targeted screening remains important to
prevent PC-related mortality [25]. One of the muta-
tions that may become important in the near future, is
a relatively new G84E-variant in the HOXB13-gene,
that was first described in the four American HPC-
families [25]. The HOXB13-variant is not a SNP, as its
population frequency in the Netherlands is <1%, so it
was not included in this analysis. Still, also in our
populations, the variant was more frequently present
in both SPC (17/620¼ 2.7%) and HPC (9/312¼ 2.9%;

this included one family with three affected carriers
of the HOXB13-variant and one family with two
affected carriers of the HOXB13-variant) than in the
referents (7/1819¼ 0.4%). In the (near) future, as also
attempted in this study, genetic risk scores will hope-
fully be able to replace or complete family history
in trying to better estimate an individual’s genetic
susceptibility to PC. A comprehensive genetic test in
the future might combine the SNPs with the known
high-risk variants, such as mutations in, for example,
MSR1, BRCA2, and HOXB13 into one genetic risk
score [7,25,26]. Although the currently known SNPs
have limited discriminative power, Eeles et al. already
demonstrated that risk alleles might be used for risk
stratification at the group level [10]. Our results
support this idea, with ORs of >1.8 for the top-20% of
the risk allele distribution, as compared to the
population median. This indicates that these SNPs
might already be useful in risk calculators that
incorporate factors with similar ORs, such as family
history, age, and urinary complaints.

TABLE IV. Genetic Risk Score Analysis for SPC (n¼169) and HPC (n¼ 151) Patients Versus All Male Referents With
Complete Genotype Data (n¼ 587)

Percentiles Risk alleles

Referents SPC HPC

N N OR (95%CI) N OR (95% CI)

1–10% �57 59 11 0.73 (0.35–1.55) 2 0.17 (0.04–0.74)
11–20% 58–59 63 5 0.31 (0.12–0.84) 6 0.48 (0.19–1.22)
21–30% 60–61 67 9 0.53 (0.24–1.17) 4 0.30 (0.10–0.89)
31–40% 62 33 6 0.72 (0.28–1.85) 8 1.21 (0.50–2.92)
41–60% 63–65 130 33 Reference 26 Reference
61–70% 66 40 16 1.58 (0.79–3.16) 13 1.62 (0.76–3.45)
71–80% 67–69 84 34 1.60 (0.92–2.77) 27 1.61 (0.88–2.94)
81–90% 70–71 50 23 1.81 (0.97–3.38) 22 2.20 (1.14–4.23)
91–100% �72 61 32 2.07 (1.17–3.67) 43 3.52 (1.99–6.26)

SPC, sporadic prostate cancer; HPC, hereditary prostate cancer; OR, odds ratio; CI, confidence interval.
Percentile categories were based on the risk allele distribution in the referents with complete genotype data. The ORs and 95%CIs were
calculated in logistic regression analyses, as compared to the reference population median (i.e., the 41–60% percentile), which was 63–
65 carried risk alleles.
A separate logistic regression analysis using the genetic risk score as a continuous variable resulted in a per-allele OR of 1.09 (95%CI
1.05–1.12) for SPC and 1.14 (95%CI 1.10–1.18) for HPC.

TABLE III. Discriminative Value of Genetic Risk Models for SPC and HPC Versus Male Referents, Calculated as the
Area Under the Receiver Operating Characteristic Curve

Referents SPC HPC

n n AUC (95% CI) n AUC (95% CI)

Model 1: risk score (complete genotype data) 587 169 0.63 (0.59–0.68) 151 0.70 (0.66–0.75)
Model 2: risk score (missings imputed) 890 609 0.64 (0.62–0.67) 282 0.73 (0.69–0.76)

SPC, sporadic prostate cancer; HPC, hereditary prostate cancer; AUC, area under the receiver operating characteristic curve; CI,
confidence interval.

Role of Prostate Cancer SNPs in HPC 481

The Prostate



CONCLUSIONS

The results of this study suggest a large overlap
between SPC and HPC with respect to low-pene-
trance susceptibility SNPs, indicating a similarity in
genetic etiology. For a considerable part, nowadays,
HPC most probably is merely an accumulation of
SPCs. This warrants a discussion about the current
value of the definition of “HPC,” as our results
suggest that there might not be a strong reason to
pursue PSA screening in all HPC families, as such
screening is not advocated in the general population.
Genetic risk scores could play a role in better risk
stratification, if they are incorporated into risk calcu-
lators.
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