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Abstract

Graphene Oxide (GO) has recently attracted substantial attention in biomedical field as an

effective platform for biological sensing, tissue scaffolds and in vitro fluorescence imaging.

However, the targeting modality and the capability of its in vivo detection have not been

explored. To enhance the functionality of GO, we combine it with superparamagnetic iron

oxide nanoparticles (Fe3O4 NPs) serving as a biocompatible magnetic drug delivery

addends and magnetic resonance contrast agent for MRI. Synthesized GO-Fe3O4 conju-

gates have an average size of 260 nm and show low cytotoxicity comparable to that of GO.

Fe3O4 nanoparticles provide superparamagnetic properties for magnetic targeted drug

delivery allowing simple manipulation by the magnetic field and magnetic resonance imag-

ing with high r2/r1 relaxivity ratios of ~10.7. GO-Fe3O4 retains pH-sensing capabilities of GO

used in this work to detect cancer versus healthy environments in vitro and exhibits fluores-

cence in the visible for bioimaging. As a drug delivery platform GO-Fe3O4 shows successful

fluorescence-tracked transport of hydrophobic doxorubicin non-covalently conjugated to

GO with substantial loading and 2.5-fold improved efficacy. As a result, we propose GO-

Fe3O4 nanoparticles as a novel multifunctional magnetic targeted platform for high efficacy

drug delivery traced in vitro by GO fluorescence and in vivo via MRI capable of optical can-

cer detection.

Introduction

Graphene is a gapless semiconductor that is now actively used in microelectronics and materi-

als science.[1, 2] Due to complexity of scalable fabrication, its functional derivatives provide

higher benefit for some of the applications. For instance graphene oxide (GO) due to its ease

in production, water solubility and optical properties offers an advantageous alternative for

applications in biomedicine and optoelectronics.[3–6] Graphitic surface in GO is derivatized

with epoxy, hydroxyl and carboxyl groups, that allow it to form water suspensions stabilized

by hydrogen bonds.[7–9] These functional groups perturb graphitic structure resulting into
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~2eV band gaps enabling GO fluorescence in the visible.[10, 11] Additionally, GO has a high

surface area available for functionalization and superior mechanical properties,[12, 13] which

altogether makes it attractive for optoelectronics (LED devices and solar cells), tissue engineer-

ing and drug delivery.[14–18] GO is utilized as a basis for nanoscale sensors serving for the

detection of small molecules such as NO2 in automovite emissions,[19] proteins,[20] influenza

viral strains [21] and fluorescence-based pH-sensing that can be used to detect cancerous envi-

ronments.[22] GO exhibits efficient internalization and stable fluorescence emission inside the

cells, and has low cytotoxicity at the concentrations used in imaging.[22–24]. This makes GO a

potential candidate for drug delivery and imaging in vitro or ex vivo concomitantly allowing

for the cancer detection. However, the lack of targeting capabilities and the inability of in vivo
tracking hampers the utilization of GO as an effective drug delivery system in vivo.

Here we develop and explore the properties of GO-Fe3O4 conjugates additionally allowing

for magnetic targeted delivery and magnetic resonance imaging. This nanohybrid is intended

to address the afore mentioned deficiencies of GO platform and altogether provide a novel

multifunctional theranostic system. Superparamagnetic iron oxide nanoparticles (Fe3O4 NPs)

have applications in biosensing, hypertermina, magnetic-assisted drug delivery and magnetic

resonance imaging (MRI).[25–28] They exhibit very low cytotoxicity and are highly biocom-

patible in the iron-rich bloodstream.[29] MRI contrast agents based on Gd3+ or Mn2+ are well-

studied and commercially available but show substantial toxic response. As an example, Gd3+

shows competitive inhibition of biological processes requiring Ca2+ which can result in heart

failure. After utilizing Gd-based contrast agents, high deposition of Gd3+ have been found in

skin, kidneys and brain.[30–32] Nephrogenic systemic fibrosis has been also linked to Gd3+ in

patients with kidney diseases.[33, 34] Iron Oxide nanoparticles showing substantially higher

biocompatibility and no toxic response in mice with low accumulation in liver and kidneys

and clearance from plasma within 24 hrs, provide significant advantage over conventional

contrast agents.[35, 36] The application of Fe3O4 as MRI contrast agent is mainly based on

shortening T2 relaxation times of water molecules[37] which attributes it to the category of

negative contrast agents. Several parameters can further affect relaxation times T1 or T2 in

MRI contrast agents such as nanoparticle environments, surface coating, nanoparticle size and

synergistic effects.[38–41] Thus, conjugation of Fe3O4 and GO holds a promise for the altered

and potentially improved MRI capabilities of iron oxide.

GO-Fe3O4 conjugates synthesized to date are mainly utilized for the applications of remov-

ing pollutants such as heavy metals or organic molecules by magnetic separation or in lithium

ion batteries.[42–45] Few studies suggest GO-Fe3O4 conjugates as a potential agent for mag-

netic resonance imaging, however only reporting T2 values rather than r2/r1 ratio, which is not

enough for their assessment as MRI contrast agents.[46, 47] Several studies also report the use

of GO-Fe3O4 conjugates for molecular imaging via attaching an external fluorophore and

ligand-based targeted drug delivery.[48, 49] Here we propose a novel approach utilizing intrin-

sic GO emission for both imaging and optical cancer sensing as well as proposing iron oxide

for both MRI imaging and magnetic targeting. Such synergistic multifunctional application of

the components of GO-Fe3O4 conjugates provides an advantage of simplified structure (no

extra targeting or fluorophores are needed to be attached) and potential for decreased toxic

profile by avoiding additional toxicity derived from external molecular fluorophores.[50] Most

importantly, this work combines MRI/fluorescence imaging, and targeted drug delivery in one

molecular platform with a novel capability of optical cancer detection. Such multimodal agents

can provide complementary data to diagnose diseases as well as allowing for better spatial reso-

lution in vivo studies. In this work, we synthesize the afore mentioned GO-Fe3O4 conjugates

and test their imaging, cancer detection and anticancer drug delivery capabilities in vitro in

HeLa, MCF-7 and HEK-293 cells.

Graphene oxide/iron oxide for drug delivery, magnetic resonance/fluorescence imaging and cancer sensing
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Experimental reagents and instruments

Materials

5 nm Fe3O4 were obtained from Cytodiagnostics, Graphene oxide (GO) from Goographene,

Doxorubicin was obtained from Selleckchem, 3-Aminopropyltriethoxysilane (APTES) from

Gelest Inc. The next chemicals were obtained from Sigma-Aldrich: N-(3-Dimethylaminopro-

pyl)-N0-ethylcarbodiimide hydrochloride (EDC), N-Hydroxysuccinimide (NHS), Hydrochlo-

ric acid (HCl), Sodium hydroxide (NaOH), Ammonium acetate, Ferrozine, Iron chloride

(FeCl2), Hydroxylammonium chloride (HONH2HCl), Toluene.

Preparation of graphene oxide–iron oxide nanocomposite

5nm Fe3O4 staring material was first activated for 4 hrs with APTES dissolved at 1% w/v in tol-

uene. Activated Fe3O4 NPs were washed with toluene to remove free APTES, sedimented via

centrifugation and finally dispersed in water. APTES-functionalized iron oxide was further

coupled with graphene oxide (GO). Graphene Oxide was dispersed in DI water at 450 μg/mL

and ultrasonically treated for 30 to 60 min at 3W to decrease the size of GO flakes down to 250

nm for effective cell internalization. Treated GO and Fe3O4 NPs were coupled in a conjugation

reaction using 1mmol (EDC) and 1mmol of (NHS). After 6 hrs, samples were centrifugally

washed with DI water three times to purify the product sedimented during the centrifugation.

Acidity (pH 6.4) of GO suspension allows to run the coupling reaction with EDC in water

without the presence of the buffer. It is reported that the reaction is less effective at higher pH,

however in the pH range of 4.5 to 7.2 reaction was shown to take place.[51]. There are also

some reports of this type of conjugation without buffer at pH 7. [52]

Characterization

Synthesized GO-Fe3O4 conjugates were further characterized with Transmission Electron

Microscopy (TEM JEOL JEM-2100) at 200 kV to assess the morphology, crystallinity and lat-

tice spacing. Capacity of GO-Fe3O4 as an MRI contrast agent was assessed via measuring relax-

ation times T1 and T2 with Bruker (Minispec mq60) Relaxometer at 1.41 T at 37˚C. This

material took 18 seconds to bring all the material to the cube side by using a magnet. Fluores-

cence spectra of the nanoconjugates were measured with Horiba Scientific, SPEX NanoLog

Spectrafluorometer with 400 nm excitation and the emission in the range of 420 to 762 nm.

This emission was assessed at different pH conditions that were achieved by adding microliter

aliquots of NaOH or HCl to yield pH in the range of 6 to 8.4.

Ferrozine assay was used to determine the iron concentration in this composite. In this

assay 500 μL of aqueous GO-Fe3O4 suspension was mixed with 500 μL of 12M HCl to dissolve

Fe3O4 NPs, 500 μL of 12M of NaOH to neutralize the solution and then with 120 uL of 2.8 M

HONH2HCl in 4 M HCl, 50 μL of 10M Ammonium Acetate and 300 μL of 10 mM Ferrozine

in 0.1M Ammonium Acetate to allow for the assessment of the iron content. Absorbance was

measured at 562 nm using Agilent Technologies Cary 60 UV-Vis and compared with previ-

ously measured calibration curve constructed with FeCl2 as a standard.

Doxorubicin complexation

Doxorubicin was complexed with GO-Fe3O4 noncovalently at a concentration of 25.5 μg/mL

by overnight coincubation with prior vortexing. Bound DOX-GO-Fe3O4 nanocomposites

were separated from uncomplexed drug with a magnetic field. Absorption spectra of the

uncomplexed drug were used to find the concentration of that (16.5 μg/ml) and assess the per-

centage of the drug that got complexed representing loading efficiency. Starting with DOX

Graphene oxide/iron oxide for drug delivery, magnetic resonance/fluorescence imaging and cancer sensing
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concentration of 42 μg/ml therefore allows to load 25.5 μg/ml or 60.7% of the free DOX on

GO-Fe3O4. Provided the stock GO-Fe3O4 concentration of 127 μg/ml used for complexion

and assessed via GO characteristic absorption, the loading of DOX onto GO-Fe3O4 was calcu-

lated to reach 20 wt%.

Cellular uptake and imaging

In vitro imaging was performed in three different cell types: HEK-293 (Human embryonic kid-

ney fibroblast), HeLa (Human cervical carcinoma) and MCF-7 (Human breast cancer).

GO-Fe3O4 or DOX-GO-Fe3O4 formulations were introduced to cells at concentration of

15 μg/mL and analyzed at several time points ranging from 30 min to 27h. Internalization

study was performed in HeLa cells washed PBS and fixed with 4% paraformaldehyde at 30

min, 1, 3, 12, 24- and 27-hours. For the pH-based detection of cancer versus healthy cells,

HEK-293, MCF-7 and HeLa cells were treated with 15 μg/mL of GO-Fe3O4, the concentration

was measured using freeze-drying and verified via absorption measurements. Although the

conjugates themselves were not sterilized, however all other materials (solvents and glassware)

used were sterile. The location of each formulation was assessed using the intrinsic GO-Fe3O4

fluorescence emission in the visible. Images were taken with Olympus IX73 microscope cou-

pled to photometrics camera PRIM 958. For internalization studies 480nm excitation and

535nm emission filters were used to selectively image GO-Fe3O4 conjugates whereas for cancer

detection study we utilized 480nm excitation for 535 nm green emission and 550nm excitation

for 635 nm red emission. Location of GO inside the cells is not considered during the calcula-

tion of intracellular green/red ratios, rather, the signal from all inside the cell is accumulated.

Over 100 cells were analyzed to yield the aforementioned green/red ratios representing pH-

sensing by the GO. Extracellular emission from GO was collected only from the samples that

were not fixed and the medium was not replaced leaving all extracellular GO intact.

Cytotoxicity assays

MTT cytotoxicity assays were performed with 3 formulations: GO-Fe3O4, DOX-GO-Fe3O4

and free DOX at the same concentrations of DOX derived from loading on DOX-GO-Fe3O4

and up to 15 μg/mL–imaging concentration of GO-Fe3O4. This assay was used to detect meta-

bolic activity in cells based in a colorimetric probe. MTT assay test is based on the ability of liv-

ing cells to reduce tetrazole (yellow) to formazan (purple) with the mitochondrial reductase;

cell survival rates care calculated based on the absorbance with the formazan formed. For each

concentration tested in MTT assay we used four replicas to calculate the error bars. Two tech-

nical replicas were performed in each MTT assay. Two cancer cell lines (HeLa–Human cervi-

cal carcinoma, and MCF-7 –Human breast cancer) were used in this work, as well as one non-

cancer cell line (HEK-293, Human embryonic kidney fibroblast). Cells were obtained from

ATCC and maintained in a Thermo-Scientific Midi 40 CO2 Incubator at 37.1˚C with 5% car-

bon dioxide, 95% air.

Results and discussion

Structural characterization

The formation of GO-Fe3O4 hybrids is achieved by a straightforward coupling reaction

between superparamagnetic APTES-Fe3O4 NPs and GO in the presence of coupling reagents

EDC and NHS (Fig 1) Prior to coupling, GO flakes are ultrasonically processed to reduce flake

size for effective cellular internalization.[22] After 30 minutes of ultrasonic treatment GO

flakes are reduced from micron-sized structures to an average size of 569 ± 310 nm (S1 Fig)

Graphene oxide/iron oxide for drug delivery, magnetic resonance/fluorescence imaging and cancer sensing
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and after 1 hour of treatment—to 257 ± 120 nm (Fig 2B). Although to fully predict the capabil-

ity of intracellular transport the charge and hydrophobicity of GO need to be taken in account,

the smaller ~250 nm nanoparticle sizes are expected to be more suitable for cellular internali-

zation.[53–55] Fe3O4 nanoparticles coated with oleic acid used for coupling with GO show a

uniform distribution and good dispersion with an average size of 5.8 nm (Figs 2A and S5A).

As determined by HRTEM these nanoparticles have a lattice spacing of d = 0.29 nm (S5C Fig)

corresponding to the spacing between (220) planes in magnetite. Coupling of Fe3O4 NPs with

GO is achieved by functionalizing those with APTES that has an amino group reacting with

carboxylic groups of GO in the presence of EDC/HNS. APTES replaces the oleic acid coating

of Fe3O4 by ligand exchange. APTES is more stable than oleic acid due to a covalent bond

between APTES and Fe3O4, whereas oleic acid is bonded by a noncovalent interaction The

TEM of the final product, GO-Fe3O4 conjugates shows a randomly distributed Fe3O4 NPs

across GO flakes (Fig 2C) while the Ferrozine assay complementary confirms the presence of

iron. This verifies the success of the coupling reaction. Although we do not expect coupling to

significantly affect GO flake sizes, dynamic light scattering (DLS) of GO-Fe3O4 conjugates (S7

Fig), yields mean size of 76 nm, as due to planar geometry of GO flakes DLS may not provide

an accurate measurement of the flake dimensions. Thus, we verify the conjugate sizes with

TEM statistical measurements of over 500 flakes yielding a mean size of 265 nm (S1C Fig).

Zeta-potential of -3.18 ± 1.07 mV (S8 Fig), confirm that GO-Fe3O4 a negative charge of the

conjugates as suspended particles. No precipitation of GO-Fe3O4 is observed in over a day in

several media such as water, PBS, cell medium and serum (S6 Fig) indicating suspension sta-

bility of the conjugates. Following one-month shelf life the suspension of GO-Fe3O4 conju-

gates in water appeared stable with no observable precipitation. In 6 months, minimal amount

of precipitate formed and was redispersed by 2 s of ultrasonic tip processing.

In this work we evaluate the capacity of synthesized GO-Fe3O4 conjugates for biomedical

applications. We explore their ability to be manipulated by magnetic field for magnetic tar-

geted therapy, their role as MRI contrast agents, fluorescence imaging capacity, the capability

of cancer detection via optical pH-sensing and anticancer drug delivery.

Fig 1. Representative schematic of GO-Fe3O4 conjugates formation.

https://doi.org/10.1371/journal.pone.0217072.g001
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Magnetic targeting and MRI contrast agent capabilities

As synthesized hybrids show pronounced magnetic behavior and can be manipulated in sus-

pension via a regular magnet (Fig 2D). This indicates a potential for magnetic targeting to the

organs that require increased uptake of the delivered therapeutic. Although magnetic delivery

to animal models was not explored, this is likely to take place due to high responsiveness of the

Fig 2. TEM of a) superparamagnetic Fe3O4 NPs, b) graphene oxide, c) GO-Fe3O4 conjugates and d) image of GO-Fe3O4 conjugates manipulated in solution by the of a

magnetic field.

https://doi.org/10.1371/journal.pone.0217072.g002
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nanoconjugates to the magnetic field (shown in Fig 2D), and may be object of future investiga-

tions. For the specific application of magnetic resonance imaging, the quality of an MRI con-

trast agent is more precisely evaluated by the relaxivity parameters r1 or r2, which describe the

ability of a contrast agent to shorten the T1 or T2 relaxation times of water, rather than by T1

and T2 themselves. Thus, for GO-Fe3O4 conjugates we evaluate longitudinal r1 and transverse

r2 relaxivity. These values are calculated through the dependence between the inverse proton

relaxation times and the iron concentration:

1

Ti;obs
¼

1

Ti;0
þ ri½Fe� ð1Þ

In this equation, 1/Ti,obs (i = 1,2) is the inverse relaxation time measured experimentally in

the presence of iron oxide nanoparticles and 1/Ti,0 is the inverse relaxation time of pure

water in the absence of the contrast agent (GO-Fe3O4). ri (i = 1,2) here is the longitudinal or

transverse relaxivity and [Fe] is the iron concentration in GO-Fe3O4 nanoparticles.[56] The

plot of relaxation rates 1/T1 and 1/T2 versus Fe concentration allows obtaining r1 = 6.6 mM-

1s-1 and r2 = 71.1 mM-1s-1, with a ratio r2/r1 = 10.7 for GO-Fe3O4 (Fig 3) versus r1 = 15.7

mM-1s-1 and r2 = 36.2 mM-1s-1 and a ratio of r2/r1 = 2.3 for free Fe3O4 NPs control (S3 Fig).

This is indicative of significant improvement for GO-Fe3O4 conjugates over uncomplexed

Fe3O4 with the relaxivity ratio of r2/r1>2, placing them in the category of negative contrast

agents. As compared to individual Fe3O4-based nanoparticles with reported highest r2/r1

ratios of 6.58[57] and 5.3[58] Fe3O4 conjugated to GO shows in this work a substantially

higher potential for MRI imaging. A decreased r1 value for GO-Fe3O4 conjugates can be dic-

tated by decreased access of water molecules to Fe3O4 partially obstructed by the GO,

whereas the higher r2 value can be explained either by the similar interactions with GO or

by formation of Fe3O4 NPs clusters on GO surface observed previously for free-standing

Fe3O4 nanoparticles.[59–63] These NPs show minimal coercivity (Hc~ 50 Oe) at T = 300 K

Fig 3. a) 1/T1 vs iron concentration [Fe] of GO-Fe3O4 conjugates and b) 1/T2 vs [Fe] of GO-Fe3O4 conjugates, the bars represent the standard deviation.

https://doi.org/10.1371/journal.pone.0217072.g003
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being far above TB, which means that no magnetic remanence is present and thus the mag-

netization of the samples vanishes if the applied magnetic field is switched off.[64, 65]

Fluorescence imaging and pH-sensing

GO fluorescence emission detected in red/near-IR for the starting material[66] (Fig 4A) has

experienced a substantial spectral change upon functionalization with Fe3O4 showing a nar-

rower feature centered at 500nm with a broad shoulder in the red/near-IR. Notably the emis-

sion intensity was not affected by the functionalization still suggesting GO-Fe3O4 conjugates

as effective candidates for in vitro fluorescence imaging. The emission is stable over several

weeks and does not exhibit photobleaching or aggregation-related broadening.

As well as GO,[67] GO-Fe3O4 conjugates exhibit pH response in their emission. However,

unlike GO, the increase in pH from 6 to 8 here results into quenching of the 500nm feature

with subsequent slight enhancement in the red/near-IR shoulder and an isosbestic point at

600nm. This is indicative of the spectraphotometric titration behavior that in GO[67] was

attributed to protonation/deprotonation of functional groups affecting electronic environ-

ments surrounding those. The ratios of green/red (500nm/650nm) GO-Fe3O4 emission inten-

sities are calculated to be unique for each pH (S1 Table) providing the capability of pH-sensing

on the nanoscale via an optical non-destructive method. This is highly applicable to cancer

detection as cancerous environments are expected to have lower pH due to overexcretion of

lactic acid by several cancer cell types.[68]

In vitro imaging and cancer detection

GO-Fe3O4 introduced to HeLa cells exhibits observable green (532 nm) emission, at 30 min, 1,

3, 12, 24 and 27 hours post transfection (Fig 5A). At each time point the emission intensity is

significantly above the autofluorescence background in control samples and can be detected

intracellularly. Extracellular GO-Fe3O4 is removed by repeated replacement when the cells are

fixed with paraformaldehyde. In order to assess the optimal internalization time, we analyze

over 100 cells at each time point for average emission intensity per unit emissive area. Intracel-

lular emission is maximized at 3h post transfection (Fig 5B) indicating the optimal

Fig 4. a) Fluorescence spectra of GO and GO-Fe3O4 conjugates b) pH fluorescence dependence of GO-Fe3O4 conjugates.

https://doi.org/10.1371/journal.pone.0217072.g004
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internalization timeline with the following decline. As GO shows no appreciable degradation

or emission quenching over these time periods in cellular media (S4 Fig), we attribute intracel-

lular emission decrease (Fig 5B) to slow excretion of GO-Fe3O4 conjugates over time down to

47% of the maximum in 27h. thus a high number of cells (100) per time point was used for

internalization analysis.

We further utilize pH-dependence of GO-Fe3O4 emission to assess its cancer detection

capability for cancer (HeLa and MCF-7) versus healthy (HEK-293) cellular environments in
vitro. In order to account for potential variation of pH in different cancer cell environments

we use two types of cancer cells and integrate the emission intensities in over a 100 fluores-

cence images to calculate average emission intensity per unit area at two different wavelengths

in green and red. We anticipate that the number of cancer cells producing lactic acid would

affect the capability of pH sensing by GO due to accessibility of all GO flakes to the acidic envi-

ronments. Thus, we analyze over hundreds of cells to average out the response from those that

may not be in equivalent environments within the imaging areas. Additionally, for our imag-

ing experiments we estimate the cell density of 625 cells/mm2 that is within the standard cell

density range used for in vitro work,[69, 70] indicating that pH sensing can be conducted

using GO-Fe3O4 conjugates in regular in vitro experiments. Unlike in the internalization

study, here we refrain from replacing the medium and focus mostly on extracellular emission

of GO-Fe3O4 due to more complex pH environments inside the cells often subject to intracel-

lular pH buffering. For pH sensing cells are not fixed thus allowing for GO to be present extra-

cellularly. GO-Fe3O4 emission in red (635 nm) and green (535 nm) recorded in every cancer

and healthy cell line with the spectrally-filtered microscopy imaging system providing charac-

teristic green/red intensity ratios for pH assessment. These green/red emission intensity ratios

show observable differences for cancer versus healthy cells (Fig 6A) which is confirmed by sta-

tistical measurements over the ensemble of cells (Fig 6B). Here higher ratios are observed for

more acidic cancer cell environments as expected from the spectral dependence (Fig 4B). The

very magnitudes of the intracellular emission-derived ratios can differ from the ones calculated

from spectral pH behavior, since emission in microscopy images is recorded within the range

of spectral filters. However, the general trend of higher green/red ratios for acidic environ-

ments of cancer cells prevails with 4–5 fold difference between cancer and healthy cells. Such

Fig 5. a) Images of GO-Fe3O4 fluorescence in HeLa cells at different transfection times and b) GO internalization over time assessed by average normalized intensity per

unit emissive area of GO-Fe3O4 fluorescence in HeLa cells.

https://doi.org/10.1371/journal.pone.0217072.g005
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significant detection ratio suggests a promising potential of GO-Fe3O4 as optical pH-sensors

of cancerous environments.

Drug delivery

The primary purpose of dual fluorescence/MRI imaging and pH-sensing capabilities of

GO-Fe3O4 conjugates is to track anticancer drug delivery and image therapeutics in

Fig 6. a) Images of GO-Fe3O4 emission in green (550 nm) and red (635 nm) in healthy HEK-293 versus cancer HeLa and MCF-7 cells b)

Comparison of intracellular vs extracellular green/red ratios in healthy vs cancer cells.

https://doi.org/10.1371/journal.pone.0217072.g006
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biological cells and tissues while allowing for concomitant cancer detection. We assess the

drug transport properties of GO-Fe3O4 via the delivery of Doxorubicin non-covalently

attached to GO surface. Doxorubicin (DOX) is an established chemotherapeutic that due to

poor water solubility[71] has a need for nanocarrier delivery.[72, 73] Its hydrophobic struc-

ture advantageously allows DOX to complex non-covalently with several drug delivery

vehicles including carbon nanotubes and polymeric micelles.[74–76] Non-covalent func-

tionalization may facilitate improved drug release and is known to preserve optical/elec-

tronic properties of the nanocarrier essential for imaging.[74] To achieve non-covalent

DOX loading on GO-Fe3O4, DOX is vortexed and incubated with GO-Fe3O4 conjugates

overnight with no additional agitation necessary. conjugates are then separated from an

unbound DOX with a strong magnet. The absorption spectra of unbound DOX remaining

in the solution is used to calculate the efficiency of DOX loading (% of free DOX loaded) on

GO-Fe3O4 and the loading capacity (weight percent of loaded DOX to GO-Fe3O4). Such

optical approach yields high loading efficiency of 61.42% and a loading capacity of 0.2 mg

of DOX per 1 mg of GO-Fe3O4 resulting in 20 wt% loading. Several works centered on

DOX delivery by graphene oxide report lower or similar loading, however, show no

improvement in DOX efficacy when complexed to GO.[77–79] Some can achieve substan-

tially higher loading[80], however, do not report efficacy and in order to maintain that

loading utilize GO flakes of larger sizes that may complicate cellular internalization. DOX-

GO-Fe3O4 conjugates utilized in the current study in addition to drug delivery also provide

the capacities for cancer detection, imaging and MRI sensing which makes the DOX-GO-

Fe3O4 formulation more advantageous for theragnostic. In order to fully assess the efficacy

of DOX-GO-Fe3O4 complexes we investigate both cellular internalization and cell viability

in the presence of DOX-GO-Fe3O4 against DOX only control.

Introduced to HeLa cells DOX-GO-Fe3O4 formulation shows effective internalization

within the cytoplasm similarly to that of GO-Fe3O4 carriers at the 3h time point (Fig 7B).

Fig 7. a) Cell viability of HeLa cells subject to: GO-Fe3O4 (black squares), DOX-GO-Fe3O4 (blue squares) and DOX (red squares) and b) GO-Fe3O4 internalization

fluorescence imaging in HeLa cells.

https://doi.org/10.1371/journal.pone.0217072.g007
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Fluorescence emission from GO-Fe3O4 platform does not exhibit significant changes due to

non-covalent complexation, thus, we expect only negligible fluorescence contribution from

DOX likely quenched by GO platform.

As compared to free DOX, DOX-GO-Fe3O4 conjugates provide significantly higher effi-

cacy at lower concentrations derived from cancer cell apoptotic response (Fig 7) evaluated

using an MTT assay in HeLa cells. DOX-GO-Fe3O4 offers 2.5-fold decrease in cell viability

down to 37% with respect to a free drug at only ~0.3 μg/mL dose of DOX and ~2μg/mL

concentration of GO-Fe3O4. The GO-Fe3O4 concentration used here is that of the whole

platform. To achieve a similar response unbound DOX requires ~8-fold higher concentra-

tions. A higher toxicity exhibited by DOX when delivered by GO-Fe3O4 can be likely

explained by the improved transport and internalization with the nanomaterial delivery

vehicle that is generally known to enhance the efficacy of delivered therapeutics[81–83]

GO-Fe3O4 on its own exhibits only mild cytotoxicity, comparable to that of GO, which can-

not account for the substantially enhanced therapeutic effect of the combined DOX-GO--

Fe3O4 formulation. DOX delivery and imaging so far did not incorporate magnetic

targeting that in the tissues via targeted delivery approach expected to produce higher accu-

mulation and, therefore, further improved efficacy. This response verifies the improved

GO-Fe3O4-mediated intracellular transport. An advantage of substantial loading capacity

also allows to select a broad treatment range with only a small dose of nanoparticles.

Although implausible in the present in vitro work we intend to further utilize the magnetic

targeting for significantly improved delivery and efficacy[84] in the further in vivo studies.

Conclusions

In this work we have successfully synthesized and tested the feasibility of multifunctional

GO-Fe3O4 conjugates with capabilities of dual magnetic resonance/fluorescence imaging,

magnetic manipulation for targeting, optical pH sensing and drug delivery. These novel

nanoparticles have an average size of 250nm suitable for cellular internalization and show

comparable to GO low cytotoxicity at imaging concentrations of 15 μg/mL. The relaxation

properties of GO-Fe3O4 conjugates are comparable to existing free nanoparticle analogs,

GO-Fe3O4 conjugates have potential of as negative MRI contrast agents. GO-Fe3O4 conju-

gates can be effectively manipulated by a magnet in suspension which allows for direct

magnetic targeted accumulation in a specific therapeutic site. The GO surface contains a

variety of functional groups for covalent attachment of molecular therapeutics or a sub-

stantial hydrophobic graphene platform for non-covalent functionalization with aromatic-

based drugs with poor water solubility. In our work GO-Fe3O4 conjugates show efficient

intracellular delivery of non-covalently attached Doxorubicin with considerable drug load-

ing and over 2.5-fold improvement in its efficacy over free drug at low concentrations.

This in turn allows using 8 times lower dose of Doxorubicin to achieve the same therapeu-

tic effect of ~62% cancer cell death. The therapeutic delivery is tracked by the intrinsic

green fluorescence of GO-Fe3O4 complex that indicates efficient internalization at 3 hours

post transfection with further excretion from the cells. The pH-dependence of this emis-

sion allows using the ratios of emission intensity in green (535 nm) to red (635 nm) to dif-

ferentiate between cancer (MCF-7 and HeLa) and healthy (HEK-293) extracellular

environments with a substantial 4 to 5-fold difference. As a result, we propose GO-Fe3O4

as a unique multifunctional nanomaterial for magnetic-targeted drug delivery, dual in
vitro fluorescence and in vivo MRI imaging and optical detection of cancerous

environments.
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Supporting information

S1 Table. Green/red ratios of spectral intensities for GO-Fe3O4 at different pH environ-

ments.

(TIF)

S1 Fig. TEM of a) GO before ultrasonic treatment: flakes sizes are in the micrometer range

and b) GO after 30 tip ultrasonic treatment; average flake size is 570 nm. Right panel–histo-

gram of GO flakes sizes after 30 min of ultrasonic treatment and c) GO- Fe3O4 size distribu-

tion with mean size of 265 nm.

(TIF)

S2 Fig. UV-Vis absorption spectrum of doxorubicin (DOX). Black–spectrum of as-prepared

sample with the initial concentration of DOX in water of 42 μg/mL. Red–spectrum of free

DOX separated after complexation with with GO-Fe3O4.

(TIF)

S3 Fig. a) 1/T1 vs iron concentration of free Fe3O4 NPs and b) 1/T2 versus iron concentration

of free Fe3O4 NPs.

(TIF)

S4 Fig. TEM images of GO before (a) and after (b) introduced to cell media at 37˚C for 2

weeks.

(TIF)

S5 Fig. (a) Size distribution of Fe3O4 NPs with an average size 5.8 ± 0.9 nm, (b) TEM image

of Fe3O4 NPs and (c) HRTEM of Fe3O4 NPs.

(TIF)

S6 Fig. Stability of GO-Fe3O4 in water, PBS, cell media and serum.

(TIF)

S7 Fig. A) DLS of GO-Fe3O4 NPs.

(TIF)

S8 Fig. A) Zeta Potential GO-Fe3O4 NPs.

(TIF)
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