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Abstract
In 2013, we published a comparative analysis of mutation and gene expression
profiles and drug sensitivity measurements for 15 drugs characterized in the
471 cancer cell lines screened in the Genomics of Drug Sensitivity in Cancer
(GDSC) and Cancer Cell Line Encyclopedia (CCLE). While we found good
concordance in gene expression profiles, there was substantial inconsistency
in the drug responses reported by the GDSC and CCLE projects. We received
extensive feedback on the comparisons that we performed. This feedback,
along with the release of new data, prompted us to revisit our initial analysis.
We present a new analysis using these expanded data, where we address the
most significant suggestions for improvements on our published analysis —
that targeted therapies and broad cytotoxic drugs should have been treated
differently in assessing consistency, that consistency of both molecular profiles
and drug sensitivity measurements should be compared across cell lines, and
that the software analysis tools provided should have been easier to run,
particularly as the GDSC and CCLE released additional data.

Our re-analysis supports our previous finding that gene expression data are
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Discuss this article

 (0)Comments

Our re-analysis supports our previous finding that gene expression data are
significantly more consistent than drug sensitivity measurements. Using new
statistics to assess data consistency allowed identification of two broad effect
drugs and three targeted drugs with moderate to good consistency in drug
sensitivity data between GDSC and CCLE. For three other targeted drugs,
there were not enough sensitive cell lines to assess the consistency of the
pharmacological profiles. We found evidence of inconsistencies in
pharmacological phenotypes for the remaining eight drugs.
 
Overall, our findings suggest that the drug sensitivity data in GDSC and CCLE
continue to present challenges for robust biomarker discovery. This re-analysis
provides additional support for the argument that experimental standardization
and validation of pharmacogenomic response will be necessary to advance the
broad use of large pharmacogenomic screens.
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Box 1. Summary box

In 2013 we reported inconsistency in the drug sensitivity phenotypes measured by the Genomics of Drug Sensitivity in Cancer (GDSC) and the 
Cancer Cell Lines Encyclopedia (CCLE) studies. Here we revisit that analysis and address a number of potential concerns raised about our 
initial methodology:

•   Different drugs should be compared based on the observed pattern of response. To address this concern, we considered drugs falling 
into three classes: (1) drugs with no observed activity in any of the cell lines; (2) drugs with sensitivity observed for only a small subset of 
cell lines; and (3) drugs producing a response in a large number of cell lines. For each class, we assessed the correlation in drug response 
between studies using a variety of metrics, selecting the metric that performed best in each individual comparison. While no metric 
identified any substantial consistency for the first class (sorafenib, erlotinib, and PHA−665752) due to no activity, judicious choice of metric 
found high consistency for three of eight highly targeted therapies in the second class (nilotinib, crizotinib, and PLX4720), but no metric 
found better than moderate correlation for two of four broad effect drugs in the third class (PD−0332901 and 17-AAG).

•   Measure of consistency for targeted drugs. Beyond considering drug response profiles, targeted drugs should be treated differently 
when assessing consistency. We used six different statistics to test consistency, using both continuous and discretized drug sensitivity data. 
We confirmed that Spearman rank correlation, used in our 2013 study, does not detect consistency for the three targeted therapies profiled 
by GDSC and CCLE. Other statistics, such as Somers’ Dxy or Matthews correlation coefficient, yielded moderate to high consistency for 
specific drugs, but there was no single metric that found good consistency for each of the targeted drugs.

•   Consistency of molecular profiles across cell lines. In our initial published analysis, we reported correlations based on comparing drug 
response “across cell lines” while gene expression levels were compared “between cell lines.” It has been suggested it would be more 
appropriate to compute correlations “across cell lines” for both molecular and pharmacological data. Here we report a number of statistical 
measures of consistency for both gene expression and drug response compared across cell lines and confirm our initial finding that gene 
expression is significantly more consistent than the reported drug phenotypes.

•   Some published biomarkers are reproducible between studies. In our initial comparative study we found that the majority of known 
biomarkers predictive of drugs response are reproducible across studies. We extended the list of known biomarkers and found that seven 
out of 11 are significant in GDSC and CCLE. While one can find such anecdotal examples, they do not lead to a general process for 
discovering a new biomarker in one study that can be applied to another study.

•   Research reproducibility. The code we provided with our original paper was incompatible with updated releases of the GDSC and CCLE 
datasets. We developed PharmacoGx, which is a flexible, open-source software package based on the statistical language R, and used it 
to derive the results reported here.

      Amendments from Version 2

The paragraph reporting the limitations of the study has been updated to reflect the fact that, although it’s challenging, determining drug-specific 
thresholds to discretize sensitivity data is possible and may affect consistency estimation.

The Discussion and Conclusion sections have been updated to reflect the fact that the noise within assays must be assessed and accounted for, 
and importantly, the complementarity across assays offer new opportunities to develop more robust biomarkers.

See referee reports

REVISED

Introduction
The goal of precision medicine is the identification of the best 
therapy for each patient and their own unique manifestation of a 
disease. This is particularly important in oncology where multiple 
cytotoxic and targeted drugs are available, but their therapeutic ben-
efits are often insufficient or limited to a subset of cancer patients. 
Large-scale pharmacogenomics studies in which experimental 
and approved drugs are screened against panels of molecularly  
characterized cancer cell lines, have been proposed as a means  
for identifying drugs effective against specific cancers and for 
developing genomic biomarkers predictive of drug response. The 
Genomics of Drug Sensitivity in Cancer project (GDSC, referred 
to as the Cancer Genome Project [CGP] in our initial study)1, and  
the Cancer Cell Line Encyclopedia (CCLE)2 have each reported 
results of such screens, providing data on drug sensitivities and 
molecular profiles for collections of representative cancer cell 
lines.

Presented with these two large studies, our hope was that we  
could use the data to identify new molecular biomarkers of drug 
response in one study that would predict response in the second. 
We3 and others4–6 reported difficulties in building and validat-
ing biomarkers of response using the GDSC and CCLE datasets,  
even when the analysis was limited to the drugs and cell lines 
screened in both studies. To understand the cause of this failure, we 
compared the gene expression profiles and the drug response data 
reported by the GDSC and CCLE7,8. We found that, although the 
gene expression data showed reasonable consistency between the 
two studies, the drug sensitivity measurements were surprisingly 
inconsistent. This inconsistency can be clearly seen by plotting 
drug response reported for each of the 15 drugs provided in both 
GDSC and CCLE for the 471 cell lines assayed by both studies7–10. 
Since the publication of our comparative analysis, we received a 
great deal of constructive feedback from the scientific community 
regarding multiple aspects of the analysis we reported, including  
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suggestions for analytical methods that might uncover greater  
consistency between the studies. Moreover, both GDSC and  
CCLE have released new drug sensitivity and molecular profiling 
data, allowing us not only to revisit our initial analysis, but also to 
extend it using these new data.

To begin, we investigated alternative statistics to assess the  
inter-study consistency for drugs exhibiting different patterns of 
response across the collection of cell lines common to both studies. 
We then considered statistical methods for targeted drugs expected 
to be sensitive only in a subset of cell lines. We compared consist-
ency estimates between continuous and discretized molecular fea-
tures (gene expression, copy number variations and mutations) and 
drug sensitivity data, and importantly, assessed how potential dis-
cordance may affect the discovery of molecular features (biomar-
kers) predictive of drug response. We also revisited our analysis 
of consistency of molecular data between studies and evaluated 
“known biomarkers” of response expected to be predictive in these 
studies.

This extensive reanalysis found that by selecting specific statisti-
cal measures on a case-by-case basis, one can identify moderate  
to good consistency for two broad effect and three targeted  
therapies. However, overall, our results support our initial  
observations that drug sensitivity data in GDSC and CCLE are 
inconsistent for the majority of the drugs, even when consid-
ering metrics yielding the highest consistency for individual 
drugs. Our present analysis adds further evidence supporting the  
need for robust and standardized experimental pipelines to assure 
generation of comparable, biologically relevant measures of drug 
response as well as unbiased statistical and machine learning meth-
ods to better predict response. Failure to do so will continue to 
limit the potential for use of large-scale pharmacogenomic screens  
in reliable drug development and precision medicine applications.

Results
The overall analysis design of our study is represented in Figure 1.

Intersection between GDSC and CCLE
To identify the largest set of cell lines and drugs profiled by  
both GDSC and CCLE, we used the PharmacoGx computational 
platform11 that is able to store, analyze, and compare curated  
pharmacogenomic datasets. We created curated datasets for the 
new releases of the GDSC (July 2015) and CCLE (February 2015) 
projects. The improved curation of new data using PharmacoGx11 
identified 15 drugs in common between GDSC and CCLE as well 
698 cell lines, originating from 23 tissue types (Figure 2). This is 
the same number of shared drugs but the updated datasets contains 
a larger number of common cell lines than the 471 reported in our 
previous analysis7.

Comparing single nucleotide polymorphism (SNP) 
fingerprints
To check the accuracy of cell line name matching, we com-
pared single nucleotide polymorphism (SNP) fingerprints using 
data released in both studies. We first controlled for the qual-
ity of the SNP arrays and excluded 11 of 1,396 profiles due to 
low quality (see Methods). We then compared SNP fingerprints 

of cell lines with identical name using > 80% as threshold for  
concordance12,13. Consistent with the results reported by the CCLE2, 
the vast majority of cell lines had highly concordant fingerprints 
(462 out of 470 cell lines with SNP profiles available in both  
GDSC and CCLE; Dataset 1). We found eight cell lines with same 
identifier but different SNP identity (Figure 3); these were removed 
from our subsequent analyses to avoid discrepancies due to the  
use of possibly mislabeled or contaminated cell lines.

Estimation and filtering of drug dose-response curves
We used the viability measures for each drug concentration in 
GDSC and CCLE to fit dose-response curves and assess their  
quality. An important factor influencing the fitting of drug dose-
response curves is the range of concentration used for each cell 
line/drug combination. In CCLE, all dose-response curves were 
measured at eight concentrations: 2.5×10-3, 8×10-3, 2.5×10-2, 8×10-2,  
2.5×10-1, 8×10-1, 2.5, and 8 μM. However, in GDSC response 
was measured at a different set of concentrations for each drug.  
The minimum concentrations for different drugs range from 
3.125×10-5 to 15.625 μM. In each case, the concentrations tested 
by GDSC form a geometric sequence of nine terms with a com-
mon ratio of two between successive concentrations. Thus, the  
maximum concentration tested for each drug is 256 times the  
minimum concentration for that drug and ranges from 8×10-3 to 
4000 μM.

To properly fit drug dose-response curves, one must make  
multiple assumptions regarding the cell viability measurements 
generated by the pharmacological platform used in a given study. 
For instance, one assumes that viability ranges between 0% and 
100% after data normalization and that consecutive viability 
measurements remain stable or decrease monotonically reflecting 
response to the drug being tested. Quality controls were imple-
mented to flag dose-response curves that strongly violate these 
assumptions (Supplementary Methods). We identified 2315 (2.9%) 
and 123 (1%) dose-response curves that failed to pass in GDSC 
and CCLE, respectively, as depicted in Figure 4 (all noisy curves 
are provided in Supplementary File 1. We excluded these cases to  
avoid erroneous curve fitting.

We used least squares optimization to fit a three-parameter sigmoid 
model (Methods) for the drug dose-response curves in GDSC and 
CCLE (Supplementary File 2). For each fitted curve, we computed 
the most widely used drug activity metrics, that are the area under 
the curve (AUC) and the drug concentration required to inhibit 50% 
of cell viability (IC

50
).

Consistency of drug sensitivity data
We began by computing the area between the two drug dose-
response curves (ABC) to assess consistency of cell viability 
data for each cell line combination screened in both GDSC and 
CCLE using the common concentration range. ABC measures the 
difference between two drug-dose response curves by estimating 
the absolute area between these curves, which ranges from 0%  
(perfect consistency) to 100% (perfect inconsistency). The ABC  
statistic identified highly consistent (Figure 5A, B) and highly  
inconsistent (Figure 5C, D) dose-response curves between  
GDSC and CCLE. The mean of the ABC estimates for all drug-cell  
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Figure 1. Analysis design. GDSC: Genomics of Drug Sensitivity in Cancer; AE: ArrayExpress; Cosmic: Catalogue of Somatic Mutations in 
Cancer; CGHub: Cancer Genomics Hub; CCLE: Cancer Cell Line Encyclopedia.

line combinations was 10% (Supplementary Figure 1A), with  
paclitaxel yielding the highest discrepancies (Supplementary  
Figure 1B).

We compared biological replicates in GDSC, which were  
performed independently at the Massachusetts General Hospital 
(MGH) and the Wellcome Trust Sanger Institute (WTSI). These 
experiments are comprised of 577 cell lines treated with AZD6482, 
a PI3Kβ inhibitor screened in GDSC (Supplementary File 3). We 
computed the ABC of these biological replicates and observed 
both highly consistent and inconsistent cases (Supplementary  
Figure 2). We then computed the median ABC values for each 
pair of drugs in GDSC and used these as a distance metric for 
complete linkage hierarchical clustering. We found that the 
MGH- and WTSI-administered AZD6482 experiments clustered 
together, suggesting that the differences between dose-response 

curves of biological replicates were smaller than the differences 
observed between different drugs (Supplementary Figure 3A). We  
performed the same clustering analysis by computing the  
ABC-based distance between all the drugs in GDSC and CCLE 
and observed that only three out of the 15 common drugs clus-
tered tightly (17-AAG, lapatinib, and PHA−665752; Supplementary  
Figure 3B). Despite the small number of cell lines exhibiting  
sensitivity to PHA−665752 and lapatinib, these drugs closely  
clustered between GDSC and CCLE; however this was not the  
case for other targeted therapies, such as AZD0530, nilotinib,  
crizotinib and TAE684 Supplementary Figure 3B).

Although the ABC values provide a measure of the degree of con-
sistency between studies, it is the AUC and IC

50
 estimates, and their 

correlation with molecular features (such as mutational status and 
gene expression) that are commonly used to assess drug response. 
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Therefore we revisited our comparative analysis of the drug sen-
sitivity data using the expanded data and the standardized meth-
ods implemented in our PharmacoGx platform. Using the same  
three-parameter sigmoid model to fit drug dose-response curves in 
GDSC and CCLE (see Methods), we recomputed AUC and IC

50
 

values and observed very high correlation between published and 
recomputed drug sensitivity values for each study individually 
(Spearman > 0.93; Figure 6; Dataset 2).

It has been suggested that some of the observed inconsisten-
cies between the GDSC and CCLE may be due to the nature of  
targeted therapies, which are expected to have selective activity 
against some cell lines10,14,15. This is a reasonable assumption as the 
measured response in insensitive cell lines may represent random 
technical noise that one should not expect to be correlated between 
experiments. We therefore decided to clearly discriminate between 
targeted drugs with narrow growth inhibition effects and drugs 
with broader effects. We used the full GDSC and CCLE datasets 
to compare the variation of the drug sensitivity data of known tar-
geted and cytotoxic therapies as classified in the original studies  
(Supplementary Figure 4). We observed that drugs can be classified 
in these two categories based on median absolute deviation (MAD) 

of the estimated AUC values (Youden’s optimal cutoff16 of AUC 
MAD > 0.13 for cytotoxic drugs). We then used this cutoff on the 
common drug-cell line combinations in GDSC and CCLE to define 
three classes of drugs (Supplementary Figure 5):

•  No/little effect: Drugs with minimal observed activity 
(typically active in less than five sensitive cell lines with 
AUC > 0.2 or IC

50
 < 1 μM in either study). This class 

includes sorafenib, erlotinib and PHA−665752.

•  Narrow effect: Targeted drugs with activity observed 
for only a small subset of cell lines (AUC MAD  
≤ 0.13). This group includes nilotinib, lapatinib, nutlin-3,  
PLX4720, crizotinib, PD-0332991, AZD0530, and 
TAE684.

•  Broad effect: Drugs producing a response in a large 
number of cell lines (AUC MAD > 0.13). This includes 
AZD6244, PD-0325901, 17-AAG and paclitaxel.

We then compared the AUC (Figure 7, Supplementary Figure 6  
and Supplementary Figure 7 for published AUC, recomputed  
AUC and AUC computed over the common concentration range, 

Figure 2. Intersection between GDSC and CCLE. Overlap of (A) drugs, (B) cell lines and (C) tissue types.
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Figure 3. SNP fingerprinting between cancer cell lines screened in GDSC and CCLE.

respectively) and IC
50

 (Supplementary Figure 8 and Supplementary  
Figure 9) values and calculated the consistency of drug sensi-
tivity data between studies using all common cases and only 
those that the data suggested were sensitive in at least one study 
(Figure 8 and Supplementary Figure 10 for AUC and IC

50
, 

respectively, and Dataset 3). Given that no single metric can  
capture all forms of consistency, we extended our previous study 
by using the Pearson correlation17, Spearman18, and Somers’  
Dxy19 rank correlation coefficients to quantify the consistency 
of continuous drug sensitivity measurements across studies (see  
Methods).

As expected, no consistency was observed for drugs with “no effect” 
(Figure 8A). For AUC of drugs with narrow and broad effects,  
Somers’ Dxy was the most stringent, with consistency estimated to 
be < 0.4 except for two drugs (PD-0325901 and 17-AAG), which 
were also the two drugs identified as the most consistent using  
Spearman correlation (ρ ~ 0.6; Figure 8A). However, these sta-
tistics did not capture potential consistency for the most targeted 
therapies, nilotinib, crizotinib, and PLX4720, for which the  
Pearson correlation coefficient gave the best evidence of concord-
ance, as this statistics is strongly influenced by a small number of 
highly sensitive cell lines (Figure 7). Our results concur with the  
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Figure 4. Examples of noisy drug dose-response curves identified during the filtering process in GDSC and CCLE. The grey area 
represents the common concentration range between studies. (A) JNS-62 cell line treated with 17-AAG; (B) LS-513 treated with nutlin-3; 
(C) HCC70 cell lines treated with PD-0332991; and (D) EFM-19 cell line treated with PD-0325901. Parameters have been set to ϵ = 25 and  
ρ = 0.80 (Supplementary methods). Red curve in (A) is the noisy due to violation of constraint 2, redcurve in (B) due to violation of constraint 1,  
blue curve in (C) is the noisy due to violation of constraint 2, blue curve in (B) due to violation of constraint 1 (Supplementary methods).
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Figure 5.  Examples of (A,B) consistent and (C,D) inconsistent drug dose-response curves in GDSC and CCLE. The grey area represents 
the common concentration range between studies. (A) COLO-320-HSR cell line treated with AZD6244; (B) HT-29 treated with PLX4720;  
(C) CAL-85-1 cell lines treated with 17-AAG; and (D) HT-1080 cell line treated with PD-0332991.

recent comparative study published by the GDSC and CCLE  
investigators15.

We then restricted our analysis to the cell lines identified as sensitive 
in at least one study and computed the same consistency measures 
(Figure 8B). To our surprise, eliminating the insensitive cell lines 
resulted in decreased consistency for most drugs, which suggests a 
high level of inconsistency across sensitive cell lines, with the only 
exceptions of the targeted drugs nilotinib and crizotinib.

To test whether discretization of drug sensitivity data into binary 
calls (“insensitive” vs. “sensitive”; see Methods) improves  
consistency across studies, we used three association statistics, 
the Matthews correlation coefficient20, Cramer’s V21, and the  
informedness22 statistics (Figure 8C). These statistics are designed 
for use with imbalanced classes, which is particularly relevant in 
large pharmacogenomic datasets where, for targeted therapies, 
there are often many more insensitive cell lines than sensitive 
ones. As expected, some of the targeted therapies, nilotinib and 
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Figure 6. Comparison between published and recomputed drug sensitivity values between GDSC and CCLE. (A) AUC in GDSC;  
(B) AUC in CCLE; (C) IC50 in GDSC; and (D) IC50 in CCLE. SCC stands for Spearman correlation coefficient.

PLX4720 (and nutlin-3 using informedness), yielded high level of  
consistency, but this was not the case for the other targeted  
therapies. We also found that the drug sensitivity calls for  
drugs with broader inhibitory effects were also poorly correlated 
between studies (Figure 8C).

We performed the same analysis using IC
50

 values truncated to the 
maximum concentration used for each drug in each study separately. 

We observed similar patterns with nilotinib and crizotinib yield-
ing moderate to high consistency across studies (Supplementary  
Figure 10). Note that Somers’ Dxy rank correlation is biased in the 
presence of many repeated values in the datasets being analyzed, 
which is the case for truncated IC

50 
— pairs of cell line with identical 

IC
50

 values in one dataset but not in the other will not be taken into 
account as evidence of inconsistency — which explains the artifac-
tual perfect consistency it suggests for both nilotinib and crizotinib.
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Figure 7. Comparison of AUC values as published in GDSC and CCLE. Cell lines with AUC >0.2 were considered as sensitive  
(AUC >0.4 for paclitaxel). In case of perfect consistency, all points would lie on the grey diagonal. The drugs are ranked based on their 
category: broad effect (AZD6244, PD–0325901, 17-AAG and paclitaxel), narrow effect (nilotinib, lapatinib, nutlin-3, PLX4720, crizotinib,  
PD-0332991, AZD0530, and TAE684) and no/little effect (sorafenib, erlotinib and PHA–665752).

Page 12 of 46

F1000Research 2017, 5:2333 Last updated: 21 AUG 2017



Figure 8. Consistency of AUC values as published and recomputed within PharmacoGx, with AUC* being computed using the  
common concentration range between GDSC and CCLE. The consistency is computed across cell lines, i.e., for each drug, a vector of 
drug sensitivity measures (AUC, IC50,...) is extracted from GDSC and CCLE and compared. (A) Consistency assessed using the full set of 
cancer cell lines screened in both studies. (B) Consistency assessed using only sensitive cell lines (AUC > 0.2 and AUC > 0.4 for targeted 
and cytotoxic drugs, respectively). (C) Consistently assessed by discretizing the drug sensitivity data using the aforementioned cutoffs for 
AUC. PCC: Pearson correlation coefficient; SCC: Spearman rank-based correlation coefficient; DXY: Somers’ Dxy rank correlation; MCC: 
Matthews correlation coefficient; CRAMERV: Cramer’s V statistic; INFORM: Informedness. The symbol ’*’ indicates whether the consistency 
is statistically significant (p<0.05).
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Consistency of molecular profiles across cell lines
Discovering new biomarkers predictive of drug response requires 
both robust pharmacological data and molecular profiles. In our 
original study, we showed that the gene expression profiles for each 
cell line profiled by both GDSC and CCLE were highly consistent. 
However, we found that mutation profiles were only moderately 
consistent, a result that was later confirmed by Hudson et al.23.

There have been questions as to whether the measures of consist-
ency we reported for drug response should be compared to those we 
reported for gene expression. Specifically, we reported correlations 
based on comparing drug response “across cell lines,” meaning that 
we examined the correlation of response of each cell line to a par-
ticular drug reported by the GDSC with the response of the same 
cell line to the same drug reported by the CCLE. In contrast we 
reported correlation of gene expression levels “between cell lines,” 
meaning that we compared the expression of all genes within each 
cell line in the GDSC to the expression of all genes in the same 
cell line in the CCLE (see Supplementary Methods). It has been 
suggested that a more valid comparison would be to compare both 
drug response and gene expression across cell lines. We report the 
results of such an “across cell lines” analysis of gene expression 
here, computed using techniques analogous to those we used to 
compare drug response.

We began by comparing the distribution of gene expression  
measurements generated using the microarray Affymetrix  
HG-U219 platform in GDSC, the microarray Affymetrix  
HG-U133PLUS2 platform and the new Illumina RNA-seq data in 
CCLE (Supplementary Figure 11). We observed similar bimodal  
distributions, suggesting the presence of a natural cutoff to dis-
criminate between lowly vs. highly expressed genes. We therefore 
fit a mixture of two gaussians and identified an expression cutoff  
for each platform separately (Supplementary Figure 11). We then  
compared the consistency of continuous and discretized gene 
expression values between (i) the microarray Affymetrix HG-
U133PLUS2 and Illumina RNA-seq platforms within CCLE 
(intra-lab consistency); (ii) the microarray Affymetrix HG-U219 
and HG-U133PLUS2 platforms used in GDSC and CCLE, respec-
tively (microarray, inter-lab consistency); and (iii) the microarray  
Affymetrix HG-U219 and Illumina RNA-seq platforms used in 
GDSC and CCLE, respectively (inter-lab consistency). We per-
formed a similar analysis for CNV log-ratios and observed high 
consistency across cell lines (Figure 9A). Supporting our previous 
observations, we found that CNV and gene expression measure-
ments are significantly more consistent than drug sensitivity values 
when using all cell lines (Wilcoxon rank sum test p-value < 0.05; 
Figure 9A; Supplementary Figure 12A).

Similarly to the filtering we performed for drug sensitivity data, 
we subsequently restricted our analysis to the cell lines showing 
high expression of a given gene/cell line combination in at least one 
study. Again, CNV and gene expression measurements were sig-
nificantly more consistent than drug sensitivity values in this case 

(Wilcoxon rank sum test p-value < 0.05; Figure 9B; Supplementary 
Figure 12B). When dichotomizing data into lowly/highly express-
ing, amplifications/deletions, and wild type/mutated cell lines and 
insensitive/sensitive cell lines, the CNV and gene expression data 
were still more consistent (Figure 9C) although the difference was 
not always significant (Supplementary Figure 12C). Concurring 
with the report of Hudson et al.23, we observed low consistency for 
mutation calls across cell lines (Figure 9C).

Consistency of gene-drug associations
The primary goal of the GDSC and CCLE studies was to identify 
new genomic predictors of drug response for both targeted and 
cytotoxic therapies. We therefore evaluated whether the good con-
sistency in drug sensitivity data observed for nilotinib, PLX4720 
and crizotinib, and the moderate consistency observed for 17-AAG 
and PD-0332901 would translate in reproducible biomarkers. We 
estimated gene–drug associations by fitting, for each gene and 
drug, a linear regression model including gene expression, CNV 
and mutations as predictors of drug sensitivity, adjusted for tissue 
source (see Methods). As illustrated in Figure 1, we used the molec-
ular and pharmacological data generated independently in GDSC 
and CCLE to identify and compare gene-drug associations. This 
approach prevents any information leak between the two datasets, 
which may lead to overoptimistic consistency between the stud-
ies, as in the recent comparative study published by the GDSC and 
CCLE investigators9. Given the high correlation between the pub-
lished and recomputed AUC values in each study (Figure 6) and 
their similar consistency (Figure 9), all gene-drug associations were 
computed using published AUC for clarity.

We first computed the strength and significance of each gene  
in both datasets separately. Similarly to our initial study7, the 
strength of a given gene-drug association is provided by the stand-
ardized coefficient associated to the corresponding gene profile in 
the linear model and its significance is provided by the p-value of 
this coefficient (see Methods). We then identified gene-drug asso-
ciations that were reproducible in both datasets (same sign and 
False Discovery Rate [FDR] < 5%) or that were dataset-specific 
(different sign or significant in only one dataset) using continuous 
(Supplementary Figure 13 and Supplementary Figure 14 for com-
mon and all cell lines, respectively) and discretized (Supplementary 
Figure 15 and Supplementary Figure 15 for common and all cell 
lines, respectively) published AUC values as drug sensitivity data. 
We assessed the overlap of gene-drug associations discovered in 
both datasets using the Jaccard index24. All Jaccard indices were 
low, with nilotinib yielded the largest overlap of gene-drug associa-
tions (32%), followed by PD-0325901 and erlotinib (almost 20%), 
while the other drugs yielded less than 15% overlap (Supplementary  
Figure 17). Our results further indicate that larger overlap exists 
for gene-drug associations identified using the continuous drug 
sensitivity data compared with associations using discretized drug 
sensitivity calls (Wilcoxon signed rank test p-value of 4×10-2 and  
2×10-3 for the common set and the full set of cell lines, respectively). 
We therefore focused our analyses on the gene-drug associations  
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Figure 9. Consistency of molecular profiles (gene expression, copy number variation and mutation) and drug sensitivity data  
between GDSC and CCLE using multiple consistency measures. (A) Consistency assessed using the full set of cancer cell lines  
screened in both studies. (B) Consistency assessed using only sensitive cell lines (AUC >0.2 / IC50 <1 µM and AUC >0.4 / IC50 <10 µM for 
targeted and cytotoxic drugs, respectively). (C) Consistently assessed by discretizing the molecular and drug sensitivity data. GE.CCLE.
ARRAY.RNASEQ: Consistency between gene expression data generated using Affymetrix HG-U133PLUS2 microarray and Illumina  
RNA-seq platforms within CCLE; GE.ARRAYS: Consistency between gene expression data generated using Affymetrix HG-U133A and 
HG-U133PLUS2 microarray platforms in GDSC and CCLE, respectively; GE.ARRAY.RNASEQ: Consistency between gene expression data 
generated using Affymetrix HG-U133A microarray and Illumina RNA-seq platforms in GDSC and CCLE, respectively; CNV: Consistency of 
copy number variation data in CCLE and GDSC, respectively; MUTATION: Consistency of mutation profiles in CCLE and GDSC, respectively. 
PCC: Pearson correlation coefficient; SCC: Spearman rank-based correlation coefficient; DXY: Somers’ Dxy rank correlation; MCC: Matthews 
correlation coefficient; CRAMERV: Cramer’s V statistic; INFORM: Informedness.
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identified using continuous published AUC values. The number 
(and identity) of gene-drug associations computed using continu-
ous published AUC values are provided in Supplementary Table 1 
and Supplementary Table 2 (Dataset 5 and Dataset 6) for common 
and all cell lines, respectively.

Given that simply intersecting significant gene-drug associations 
identified in each dataset separately yielded poor reproducibility for 
all drugs, we sought to more closely mimic the biomarker discovery 
and validation process. We therefore used one dataset to discover 
significant gene-drug associations and test whether this subset of 
markers validated in an independent dataset. Using the discovery 
dataset, gene-drug associations are first ranked by nominal p-values 
and their FDR is computed. An association is selected if it is part 
of the top 100 markers and its FDR is less than 5%. This proce-
dure ensure to control for both significance and number of selected 
biomarkers, which can vary with respect to the cell line panel used 
for the analysis (larger panels enable the identification of more  
significant biomarkers due to increased statistical power). A gene-
drug association is validated in an independent dataset if its nomi-
nal p-value is less than 0.05 and its “direction”, that is whether the 
marker is associated with sensitivity or resistance, is identical to the 
one estimated during the discovery process.

We computed the proportions of validated gene-drug associations 
for each drug using all available genomic molecular data profiles in 
GDSC as discovery set and CCLE as validation set, and vice versa 
(Figure 10). Overall, we found that biomarkers for PD-0325901, 
PLX4720 and nilotinib yielded a high validation rate (> 80%) 
with either dataset as discovery set using the common cell lines 
screened in GDSC and CCLE (Figure 10A). When using the entire 
cell line panels used in each study, two more drugs -- lapatinib and  
erlotinib -- yielded high validation rate (Figure 10B). 17-AAG, and 
TAE684 yielded validation rate between 60% and 80%, while the 
other drugs yielded a validation rate around 50% or lower. For ten 
out of the fifteen drugs, using the entire panel of cell lines screened 
in each study (Figure 10B) improved the validation rate compared  
to limiting the analysis to common cell lines (Figure 10A).  
However, validation rate decreased for three drugs, suggesting 
that using large, but different panels of cell lines may increase 
statistical power but could also introduce biases in the biomarker  
discovery process.

We then investigated whether higher validation rates would be 
obtained by using more stringent significance threshold and relax-
ing the constraint on the number of significant associations in 
the discovery set (Supplementary Figure 18 and Supplementary  
Figure 19). Using common cell lines, we found that proportion of 
validated gene-drug association monotonically increases with FDR 
stringency for six drugs, with very high validation rate for the most 
stringent FDR cutoff (validation rate > 80% for FDR < 0.1%) for 
17-AAG, PD-0325901, PLX4720 and nilotinib using either dataset  
as discovery set (Supplementary Figure 18). Using the entire panel 
of cell lines in each study actually improved validation rate for six 
drugs, AZD6244, TAE684, AZD0530, lapatinib — and erlotinib  

and sorafenib, for which insufficient number of sensitive cell 
lines were screened in both GDSC and CCLE (Supplementary  
Figure 19). However, validation rate decreased for 17-AAG, crizo-
tinib and PLX4720, which suggests again that large, but different 
panels of cell lines might introduce selection bias for some drugs.

Known biomarkers
As reported in the original GDSC (1) and CCLE (2) publications 
and in recent reports10,14,15, several known biomarkers for targeted 
therapies have been shown to be predictive in both GDSC and 
CCLE. In our initial comparative study we also found the following 
known gene-drug associations:

• BRAF mutations were significantly associated with 
sensitivity to MEK inhibitors (AZD6244 and PD-
0325901) and BRAFV600E inhibitor (PLX4720) with 
nominal p-values < 0.01; see Supplementary File 10–
Supplementary File 13 of our initial study.

• ERBB2 expression was significantly associated with 
sensitivity to lapatinib with nominal p-value = 0.04 
and 8.4×10-15 for GDSC and CCLE, respectively; see 
Supplementary File 4 and Supplementary File 5 of our 
initial study.

• NQ01 expression was significantly associated with 
sensitivity to 17-AAG with nominal p-value = 2.4×10-13  
and 6.2×10-14 for GDSC and CCLE, respectively; see 
Supplementary File 4 and Supplementary File 5 of our 
initial study.

• MDM2 expression was significantly associated with 
sensitivity to Nutlin-3 with nominal p-value = 7.7×10-18  
and 7×10-8 for GDSC and CCLE, respectively; see 
Supplementary File 4 and Supplementary File 5 of our 
initial study.

• ALK expression was significantly associated with 
sensitivity to TAE684 with nominal p-value = 1.6×10-9  
and 1.7×10-9 or GDSC and CCLE, respectively; see 
Supplementary File 4 and Supplementary File 5 of our 
initial study.

We revisited our biomarker analysis using the new data released 
by GDSC and CCLE to test whether additional known biomarkers  
can be identified. We recomputed all gene-drug associations based 
on expression, mutation, gene-fusion and amplification data using 
the common cell lines between studies Dataset 5, and entire panel 
of cell lines in each study (Dataset 6). We confirmed the repro-
ducibility of the known associations reported in our initial study, 
but we were not able to find reproducible associations for EGFR  
mutations with response to AZD0530 and erlotinib, and HGF 
expression with response to crizotinib (Table 1). The reproducibility  
of the majority of these previously known associations attests to 
the relevance of the GDSC and CCLE datasets although our results 
demonstrated that the noise and inconsistency in drug sensitivity 
data render discovery of new biomarkers difficult for the majority 
of the drugs.
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Figure 10. Proportion of gene-drug associations identified in a discovery set (top 100 gene-drug associations as ranked by p-values 
and FDR < 5%) and validated in an independent validation dataset. In blue and red are the gene-drug associations identified in GDSC and 
CCLE, respectively. Associations are identified using molecular profiles including gene expression, mutation and copy number variation data 
as input and (A) continuous published AUC values as output in a linear model using only common cell lines or (B) all cell lines. The number of 
selected gene-drugs associations in each datasets is provided in parentheses. The symbol ’*’ represents the significance of the proportion of 
validated gene-drug associations, computed as the frequency of 1000 random subsets of markers of the same size having equal or greater 
validation rate compared to the observed rate.
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Table 1. List of known gene-drug associations with their effect size and significance in GDSC and 
CCLE. Gene-drug associations were estimated using the full panel of cell lines and AUC as measure of drug 
sensitivity.

Drug Gene Type GDSC 
effect size

GDSC 
pvalue

CCLE 
effect size

CCLE 
pvalue Reproducible

Nilotinib BCR_ABL fusion 6.13 1.10E-51 5.84 2.60E-28 YES

17-AAG

NQO1 expression 0.55 5.30E-39 0.6 4.70E-29 YES

HSP90AA1 expression 0 9.00E-01 0.02 6.40E-01 NS

HSP90AB1 expression 0.01 7.40E-01 0 9.40E-01 NS

PD-0325901

BRAF mutation 0.83 6.40E-09 0.82 8.10E-10 YES

MAP2K1 expression -0.07 7.10E-02 -0.02 6.70E-01 NS

MAP2K2 expression 0.02 5.60E-01 0.03 5.10E-01 NS

AZD6244

BRAF mutation 0.93 6.10E-10 0.86 3.70E-10 YES

MAP2K1 expression -0.04 2.80E-01 -0.06 1.90E-01 NS

MAP2K2 expression 0.01 8.40E-01 0.01 7.70E-01 NS

TAE684 ALK expression 0.28 2.20E-07 0.26 1.10E-08 YES

AZD0530

EGFR mutation 0.03 9.50E-01 0.51 8.20E-03 NO

BCR_ABL fusion 3.87 2.60E-18 3.35 3.50E-09 YES

SRC expression 0.07 2.80E-01 0.07 1.60E-01 NS

PD-0332991
CDK4 expression 0.03 5.10E-01 0 9.50E-01 NS

CDK6 expression 0.08 7.50E-02 -0.02 6.60E-01 NS

Crizotinib

HGF expression -0.03 6.50E-01 0.28 1.30E-09 NO

MET amplification 0.1 8.10E-02 0.29 3.80E-09 NO

ALK expression 0.58 3.90E-33 0.13 6.80E-03 YES

PLX4720 BRAF mutation 1.75 8.60E-46 1.38 2.20E-27 YES

Nutlin-3 MDM2 expression 0.39 2.00E-25 0.31 8.40E-12 YES

lapatinib
ERBB2

expression 0.42 1.10E-12 0.53 3.40E-33 YES

amplification 0.24 8.40E-06 0.39 4.20E-19 YES

EGFR expression 0.26 1.20E-04 0.16 7.20E-03 YES

PHA-665752
HGF expression 0.04 4.90E-01 0.06 2.00E-01 NS

MET amplification 0.22 2.20E-04 0.02 6.80E-01 NO

Erlotinib EGFR mutation 0.71 1.90E-01 1.27 2.40E-12 NO

Sorafenib

PDGFRA expression 0.06 3.90E-01 0.13 7.90E-03 NO

KDR expression 0.01 8.70E-01 -0.02 6.90E-01 NS

KIT
mutation 0.11 6.30E-01

expression 0.06 3.50E-01 -0.01 7.70E-01 NS

FLT1 expression -0.04 5.20E-01 0.01 8.30E-01 NS

FLT3 expression 0.32 4.80E-08 0.33 1.10E-13 YES

FLT4 expression 0.12 4.30E-02 -0.02 6.40E-01 NO

RAF1 expression 0.03 6.40E-01 0.06 2.30E-01 NS

BRAF mutation -0.34 1.70E-01 0.14 3.80E-01 NS

BRAF expression -0.11 9.30E-02 0.02 7.40E-01 NS
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Discussion
Our original motivation in analyzing the GDSC and CCLE data 
was to discover predictive genomic biomarkers of drug response. 
When we applied a number of methods using one study to select 
genomic features and to train a classifier, and then applied it to pre-
dict reported drug response in the second study, our predictive mod-
els failed to validate for half of the drugs tested3. Indeed, out of nine 
predictors yielding concordance index25 ≥0.65 in cross-validation in 
the training set (GDSC), only four were validated in identical cell 
lines treated with the same drugs in the validation set (CCLE)3.

As we explored the reasons for this failure, we first checked  
whether cell lines could have drifted and consequently exhibited 
different transcriptional profiles between GDSC and CCLE. We 
found that any genome-wide molecular profile in one study would 
almost always identify “itself” (its purported biological replica) as 
being most similar among the cell lines in the other study. In a way 
this is not surprising. When gene expression studies were in their 
infancy, there were many reports that compared the results from 
studies and found that they were inconsistent and unreproducible 
in new studies — as demonstrated by the countless microarray  
signatures that fail to reproduce beyond their initial publication.  
As a result, scientists involved in gene expression studies “circled 
the wagons” and developed both much more standardized labo-
ratory protocols and “best practices” for reproducible analysis, 
including data normalization and batch corrections, that now mean 
that independent measurements from different laboratories are  
far more often consistent and so can be used for signature develop-
ment and validation26,27.

Unexpectedly, when we compared phenotypic measures of drug 
response that were released by the GDSC and CCLE projects, we 
found discrepancies in growth inhibition effects of multiple anti-
cancer agents. What that means in practice is that, for some drugs, 
a molecular biomarker of drug response learned from one study 
would not likely be predictive of the reported response in the other. 
And consequently, neither of the studies might be useful in pre-
dicting response in patients as many had hoped when these large 
pharmacogenomic screens were published.

The feedback from the scientific community on our analysis, the 
availability of new data from the GDSC and CCLE, as well as 
improvements in the PharmacoGx software platform we devel-
oped to support this type of analyses11, prompted us to revisit the 
question of consistency in these studies to see if we could find a 
principled way to identify correlated drug response phenotypes. By 
testing a variety of methods of classifying the data, and choosing 
the metric which gave the best consistency for each drug, we were 
able to find moderate to good consistency of sensitivity data for 
two broad effect and three targeted drugs. We also confirmed the  
overall lack of consistency between the studies for eight drugs, 
while there were not enough sensitive cell lines that had been 
screened by both GDSC and CCLE to properly assess consistency 
for the remaining three drugs. The summary box included with this 
paper briefly describes the most significant issues that people have 

raised in discussing our previous findings with us and summarizes 
what we have found in our reanalysis.

Some have suggested that one way to improve correlation would 
have been to compare the studies and throw out the most discord-
ant data as noise and then compare the remaining concordant data. 
While this would certainly find concordance in the remaining 
data, the approach is equivalent to fitting data to a desired result, 
which is bad practice and certainly could not be extended to other 
data sets or to the classification of patient tumors as responsive or  
nonresponsive to a particular therapy. There is, however, merit 
in the suggestion that one would not expect to see correlation in 
noise. And noise is precisely what one would expect to see in drug 
response data from cell lines that are resistant to a particular drug 
or nonresponsive across the range of doses tested. As reported here, 
filtering the data in each study independently to classify cell lines 
in a binary fashion, and then comparing the binary classification 
between studies using a variety of metrics developed to handle the 
intricacies of this sort of response data, also failed to find simple 
correlations in the data, except for three of the targeted therapies, 
nilotinib, PLX4720 and crizotinib. What this ultimately means is 
that the most and the least sensitive cell lines would not appear to 
be the same when comparing the two studies.

There are many reasons for potential differences in measured  
phenotypes reported by the GDSC and CCLE, including substantial 
differences in doses used for each drug and in the methods used  
to both assay cell viability and to estimate drug response  
parameters. By comparing GDSC and CCLE with an independ-
ent pharmacogenomic dataset published by GlaxoSmithKline  
(GSK), we showed that higher consistency is achieved when the 
same pharmacological assay is used (GSK and CCLE used the 
CellTiter-Glo assay, while GDSC used Syto60)7,8. Genentech also 
used the CellTiter-Glo assay and observed higher consistency  
of drug sensitivity data with CCLE compared to GDSC10. The  
authors elegantly evaluated the impact of cell viability readout, 
growth medium, and seeding density. They observed only weak 
impact of the choice of pharmacological assay as their follow-up 
screen with the Syto60 assay clustered closer to their own Cell-
Titer-Glo screen than GDSC,  suggesting that other parameters 
might have driven the inconsistency observed with GDSC10. They 
further showed that increased  fetal bovine serum and seeding cell 
density had a systematic effect on mean cell viability. Pozdeyev et al. 
showed that restricting the computation of AUC to the concentra-
tion range shared between GDSC and CCLE, the equivalent of our 
AUC* drug sensitivity measure, yielded a small, but statistically 
significant improvement in consistent of pharmacological profiles28.  
Ultimately what our analysis and these recent reports suggest is  
that not only drug sensitivity measurements must be carefully 
and appropriately compared, but also that there is a pressing need 
for more robust pharmacological assays and standardized com-
putational methods for modeling drug response. However, in the 
absence of a “gold standard” screening platform demonstrated to 
accurately recapitulate drug response in vivo, the use of multiple 
assays is critical to probe different biological aspects of growth 
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inhibition. Given that GDSC and CCLE used different pharma-
cological assays, it makes the release of these pharmacogenomic  
data even more valuable.

The primary goal of the GDSC and CCLE studies was to link 
molecular features of a large panel of cancer cell lines to their 
sensitivity to cytotoxic and targeted drugs. The reproducibility of 
most of the known gene-drug associations provides evidence that 
these large pharmacogenomic datasets are biologically relevant. 
When we investigated whether we could find significant gene-drug 
associations discovered in one dataset that validate in the other 
independent dataset, we observed over 75% validation rate for 
the most significant molecular biomarkers for eight of 15 drugs, 
which is a major improvement over our initial comparative study.  
However, this does not suggest that one can use these studies to 
find new, reproducible gene-drug associations for the rest of the 
drugs, as the majority of associations can be found in only one  
dataset but not in both. However, GDSC and CCLE could be 
jointly analyzed to identify biomarkers that are robust to the use of  
different biological assays, and are therefore more likely to work in 
new biological contexts29.

This study has several potential limitations. First, while the raw 
drug sensitivity data are publicly available for GDSC, these data 
have not been released within the CCLE study. We could not fit 
the drug dose-response curves using the technical triplicates but 
rather relied on the published median sensitivity values. The lack 
of technical replicates in CCLE also prevented us to assess the 
level of noise of the drug sensitivity measurements. Second, we  
discretized drug sensitivity values by selecting a common threshold 
to discriminate between insensitive (AUC ≤ 0.2 and IC

50
 ≥ 1 μM) 

and the rest of the cell lines for all the targeted agents. However, 
it is clear that such a threshold could be optimized for each drug, 
which might have an impact on the consistency of drug pheno-
types and gene-drug associations based on binary sensitivity calls,  
as was done in breast cancer30 and in our response to the critic of 
Geeleher et al.31,32. Lastly, the current set of mutations assessed 
in both study is small (64 mutations), which drastically limits the 
search for mutation-based and other genomic aberrations associ-
ated with drug response. The exome-sequencing data available 
within the new GDSC1000 dataset will enable to better explore  
the genomic space of biomarkers in cancer cell lines, and their 
reproducibility across studies.

Conclusion
As is true of many scientists working in genomics and oncology,  
we were excited when the GDSC and CCLE released their ini-
tial data sets and were hopeful that these projects would help to 
accelerate drug discovery and further the development of preci-
sion medicine in oncology. However, what we found initially, and 
what the reanalysis presented here further indicates, is that there 
are inconsistencies between the measured phenotypic response 
to drugs in these studies. Even in our reanalysis, where we used  
methods specific to individual drugs and the response charac-
teristics of the cell lines tested, we were only able to find new  
biomarkers consistently predictive of response for around half of 
the drugs screened in both studies. Consequently, it is challenging 
to use the data from these studies to develop general purpose clas-
sification rules for all drugs.

Our finding that molecular profiles are significantly more  
consistent than drug sensitivity data, indicates that the main barrier 
to biomarker development using these data is the discrepancy in the 
reported response phenotypes for many drugs. The experimental 
protocols and pharmacological assays used in the GDSC and CCLE 
studies are the state-of-the-art for high-throughput drug screening 
projects. Even though technical and biological replicates are neces-
sary to assess and account for noise in drug sensitivity measure-
ments, it is clear that the assays used in GDSC and CCLE probe 
different aspects of the biology underlying drug-induced growth 
inhibition. Without knowing which assay is more relevant for  
in vivo drug response, more research will be required to best lever-
age these complementary assays for robust biomarker discovery.

From having worked in large-scale genomic analyses, we recog-
nize the challenges involved in planning and executing such studies 
and commend the GDSC and CCLE for their work and for making 
all the data available. However, we strongly encourage the GDSC, 
the CCLE, the pharmacogenomics and bioinformatics communities 
as a whole, to invest the necessary time and effort to account for 
the noise in drug response measurements and the complementary 
nature of different assays in order to assure that these studies are 
relevant for predicting response in patients. The recent report from 
Genentech is a significant step in this direction. Ultimately, that 
effort will help to assure that mammoth undertakings in drug char-
acterization can deliver on their promise to identify better therapies 
and biomarkers predictive of response.

Methods
The PharmacoGx platform
The lack of standardization of cell line and drug identifiers hinders 
comparison of molecular and pharmacological data between large-
scale pharmacogenomic studies, such as the GDSC and CCLE. To 
address this issue we developed PharmacoGx, a computational 
platform enabling users to download and interrogate large pharma-
cogenomic datasets that were extensively curated to ensure maxi-
mum overlap and consistency11. PharmacoGx provides (i) a new 
object class, called PharmacoSet, that acts as a container for the 
high-throughput pharmacological and molecular data generated 
in large pharmacogenomics studies (detailed structure provided in 
Supplementary Methods); and (ii) a set of parallelized functions to 
assess the reproducibility of pharmacological and molecular data 
and to identify molecular features associated with drug effects. The 
PharmacoGx package is open-source and publicly available on 
Bioconductor.

The GDSC (formerly CGP) dataset
Drug sensitivity data. We used the data release 5 (June 2014) with 
6,734 new IC

50
 values for a total of 79,903 drug dose-response 

curves for 139 different drugs tested on a panel of up to 672  
unique cell lines. The data are accessible from ftp://ftp.sanger.
ac.uk/pub4/cancerrxgene/releases/release-5.0/.

Molecular profiles. Gene expression data were downloaded from 
ArrayExpress, accession number E-MTAB-3610. These new data 
were generated using Affymetrix HG-U219 microarray platform. 
We processed and normalized the CEL files using RMA33 with 
BrainArray34 chip description file based on Ensembl gene identifiers 
(version 19). This resulted in a matrix of normalized expression 
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for 17,616 unique Ensembl gene ids. SNP array data for the  
Genome-Wide Human SNP Array 6.0 platform were downloaded 
from GEO with the accession number GSE36139. We processed 
the raw CEL data using Affymetrix Power Tools (APT) v1.16.1. 
Copy number segments were generated using HAPSEG v1.1.135 
based on RMA-normalized signal intensities and Birdseed v2-
called genotypes. These segments were further refined using  
ABSOLUTE v1.0.636 to identify allele-specificity within each 
segment. Mutation and gene fusion calls were downloaded from 
the GDSC website and processed as in our initial study7.

The CCLE dataset
Drug sensitivity data. We used the drug sensitivity data available 
from the CCLE website (https://portals.broadinstitute.org/ccle/ 
data/browseData) and updated on February 2015 with a total 
number of 11,670 dose-response curves for 24 drugs tested in a 
panel of up to 504 cell lines.

Molecular profiles. Gene expression data were downloaded from  
the CCLE website and CGHub37 for the Affymetrix HG-
U133PLUS2 and Illumina HiSeq 2500 platforms, respectively. SNP 
array data were downloaded from EMBL-EBI with the accession 
number EGAD00010000644. Normalization of microarray data  
(1036 cell lines) and SNP array data (1190 cell lines) was performed 
the same way than for GDSC. RNA-seq data (935 cell lines)  
were downloaded as BAM files previously aligned using TopHat38 
and the quantification of gene expression was performed using 
Cufflinks38 based on Ensembl GrCh37 human reference genome. 
Mutation data were retrieved from the CCLE website and processed 
as in our initial study7.

Curation of drug and cell line identifiers
The lack of standardization for cell line names and drug identifiers 
represents a major barrier for performing comparative analyses of 
large pharmacogenomics studies, such as GDSC and CCLE. We 
therefore curated these datasets to maximize the overlap in cell 
lines and drugs by assigning a unique identifier to each cell line 
and drug. Entities with the same unique identifier were matched. 
Manual search was then applied to match any remaining cell 
lines or drugs which were not matched based on string similarity;  
annotations were consistently extracted from Cellosaurus39. The 
cell line curation was validated by ensuring that the cell lines with 
matched name had a similar SNP fingerprint (see below). The drug 
curation was validated by examining the extended fingerprint of 
each of their SMILES strings40 and ensuring that the Tanimoto  
similarity41 between two drugs called as the same, as determined by 
this fingerprint, was above 0.95. 

Cell line identity using SNP fingerprinting
To assess the identity of cell lines from GDSC and CCLE, data of 
low quality were first excluded from our analysis panel (detailed 
procedure described in Supplementary Methods). Of the 973 CEL 
files from GDSC, only 66 fell below the 0.4 threshold (6.88%) for 
contrast QC scores, indicating issues in resolving base calls. Addi-
tionally, five of the 1,190 CEL files from CCLE had an absolute 
difference between contrast QC scores for Nsp and Sty fragments 
greater than 2, thus indicating some issues with the efficacy of one 

enzyme set during sample preparation. CEL files with contrast QC 
scores indicative of some sort of issue with the assay that would 
affect the genotype call rate or birdseed accuracy were removed 
and genotype calling was conducted on the remaining CEL files 
using Birdseed version 2. The resulting files were then filtered to 
keep only the 1006 SNP fingerprints that originated from CEL files 
that had a common cell line annotation between GDSC and CCLE 
(503 CEL files from each). Finally, pairwise concordances of all 
SNP fingerprints were generated according to the method outlined 
by Hong et al.12.

Drug dose-response curves
To identify artefactual drug dose-response curves due to experi-
mental or normalization issues, we developed simple quality con-
trols (QC; details in Supplementary Methods). Briefly, we checked 
whether normalized viability measurements range between 0% and 
100% and that drug-response curve is monotically non-increasing 
as expected. The drug dose-response curves which did not pass 
these simple QC were flagged and removed from subsequent analy-
ses as the curve fitting would have yielded erroneous results.

All dose-response curves were fitted to the equation

                                 50
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where y = 0 denotes death of all infected cells, y = y(0) = 1  
denotes no effect of the drug dose, ECinf is the viability observed 
in the presence of an arbitrarily large concentration of drug, EC

50
 

is the concentration at which viability is reduced by half as much 
as it is in the presence of an arbitrarily large concentration of drug, 
and HS is a parameter describing the cooperativity of binding.  
HS < 1 denotes negative binding cooperativity, HS = 1 denotes  
noncooperative binding, and HS > 1 denotes positive binding  
cooperativity. The parameters of the curves were fitted using the 
least squares optimization framework. Comparison of our dose-
response curve model with those used in the GDSC and CCLE  
publications is provided in Supplementary Methods.

Discretization of pharmacogenomic data
Drug sensitivity data. To discretize the drug sensitivity data, we 
used AUC ≤ 0.2 (IC

50
 ≥ 1 μM) and AUC ≤ 0.4 (IC

50
 ≥ 10 μM) to 

identify the “insensitive” cell lines for targeted and cytotoxic 
drugs, respectively, while the rest of the cell lines are classified as 
“sensitive”. These reasonable, although somewhat arbitrary, cutoffs 
enabled to explore the potential of such binary drug sensitivity 
calls as new drug phenotypic measures to find consistency in drug 
sensitivity data and gene-drug associations.

Gene expression data. To discretize the drug sensitivity data into 
lowly vs. highly expressed genes, we fit a mixture of two Gaussians 
of unequal variance using the full distribution of expression values 
of the 17,401 genes in common between GDSC and CCLE datasets. 
We defined the expression threshold as the expression value for 
which the posterior probability of belonging to the left tail of the 
highly expression distribution is 10%.
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Mutation data. Similarly to the GDSC and CCLE publications, 
we transformed the original mutation data into binary values that 
represent the absence (0) or presence (1) of any missense mutations 
in a given gene in a given cell line.

Gene-drug associations
We assessed the association, across cell lines, between a molecular 
feature and response to a given drug, referred to as gene-drug asso-
ciation, using a linear regression model adjusted for tissue source:

                                       Y = β
0
 + β

i
G

i
 + β

t
T

where Y denotes the drug sensitivity variable, G
i
 and T denote the 

expression of gene i and the tissue source respectively, and βs are 
the regression coefficients. The strength of gene-drug association 
is quantified by β

i
, above and beyond the relationship between 

drug sensitivity and tissue source. The variables Y and G are 
scaled (standard deviation equals to 1) to estimate standardized 
coefficients from the linear model. Significance of the gene-drug  
association is estimated by the statistical significance of β

i
 (two-sided  

t test). When applicable, p-values were corrected for multiple  
testing using the FDR approach42.

As we recognized that continuous drug sensitivity is not normally 
distributed, which violates one of the assumption of the linear 
regression model described above, we also assessed the consistency 
of gene-drug association using discretized (binary) drug sensitivity 
calls as the response variable in a logistic regression model adjusted 
for tissue source, similarly to the linear regression model.

Measure of consistency
Area between curves (ABC). To quantify the difference between 
two dose-response curves, we computed the area between curves 
(ABC). ABC is calculated by taking the unsigned area between  
the two curves over the intersection of the concentration  
range tested in the two experiments of interest, and normalizing  
that area by the length of the intersection interval. In the present 
study, we compared the curves fitted for the same drug-cell line 
combinations tested both in GDSC and CCLE. Further details are 
provided in Supplementary Methods.

Pearson correlation coefficient (PCC). PCC is a measure of the 
linear correlation between two variables, giving a value between 
+1 and −1 inclusive, where 1 represents total positive correlation,  
0 represents no correlation, and −1 represents total negative  
correlation17. PCC is sensitive to the presence of outliers, like a few 
sensitive cell lines in the case of drug sensitivity data measured for 
targeted therapies or genes rarely expressed.

Spearman rank correlation coefficient (SCC). SCC is a nonpara-
metric measure of statistical dependence between two variables and 
is defined as the Pearson correlation coefficient between the ranked 
variables18. It assesses how well the relationship between two vari-
ables can be described using a monotonic function. If there are no 
repeated data values, a perfect Spearman correlation of +1 or −1 
occurs when each of the variables is a perfect monotone function of 
the other. Contrary to PCC, SCC can capture non linear relationship 
between variables but is insensitive to outliers, which is frequent 

for drug sensitivity data measured for targeted therapies or genes 
rarely expressed.

Somers’ Dxy rank correlation (DXY). DXY is a non-parametric 
measure of association equivalent to (C - 0.5) * 2 where C rep-
resents the concordance index25 that is the probability that two  
variables will rank a random pair of samples the same way19.

Matthews correlation coefficient (MCC). MCC20 is used 
in machine learning as a measure of the quality of classification  
predictions. It takes into account true and false positives and nega-
tives, acting as a balanced measure which can be used when the 
classes are of different sizes. MCC is in essence a correlation coeffi-
cient between two binary classifications; it returns a value between 
−1 (perfect opposite classification) and +1 (identical classifications), 
with 0 representing association no better than random chance.

Cramer’s V (CRAMERV). CRAMERV is a measure of association 
between two nominal variables, based on Pearson’s chi-squared 
statistic, giving a value between 0 (no association) and +1 (perfect 
association)21. In the case of 2×2 contingency table, such as binary 
drug sensitivity or gene expression measurements, CRAMERV is 
equivalent to the Phi coefficient.

Informedness (INFORM). For a 2×2 contingency table comparing 
two binary classifications, INFORM can be defined as Specificity 
+ Sensitivity - 1, which is equivalent to true positive rate - false 
positive rate22. The magnitude of INFORM gives the probability of 
an informed decision between the two classes, where INFORM > 0 
represents appropriate use of information, 0 represents chance-level 
decision, < 0 represents perverse use of information.

Data and software availability
Open Science Framework: Dataset: Revisiting inconsistency in 
large pharmacogenomics studies, doi 10.17605/osf.io/xxxx43

Data: The list of all the pharmacogenomic datasets available  
through the PharmacoGx platform can be obtained from R using 
the availablePSets() function from the R/Bioconductor library 
PharmacoGx.

The GDSC and CCLE PharmacoSets used in this study are  
available from pmgenomics.ca/bhklab/sites/default/files/down-
loads/ using the downloadPset() function.

Code: The R code necessary to replicate all the results presented in 
this article is available from the cdrug2 GitHub repository.
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Supplementary methods. 
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Supplementary Datasets

Dataset 1. SNP fingerprints of all the cell lines profiled with SNP arrays in GDSC and CCLE. Data used to generate Figure 3.

Click here to access the data.

Dataset 2. AUC and IC50 values as published and recomputed using PharmacoGx. Data used to generate Figure 6.

Click here to access the data.

Dataset 3. Consistency measures for AUC, AUC* (STAR) and IC50 values as published and recomputed using PharmacoGx, across cell 
lines. Data used to generate Figure 8.

Click here to access the data.

Dataset 4. Consistency measures for molecular profiles across cell lines. GE.CCLE.ARRAY.RNASEQ: Consistency between gene expres-
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Version 3
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doi:10.5256/f1000research.13399.r24961

 Michael T. Hallett
Centre for Structural and Functional Genomics, Department of Biology, Concordia University, Montréal,
QC, Canada

My concerns have been addressed, and the quality of the presentation is now more than sufficient to
understand the details of their methodology.

It is an important article, and the findings here contribute to (hopefully) a larger, quantitative discussion
regarding pharmacogenomic studies. Differences (both technical and biological in nature) in
methodologies between studies cause differences in results (eg which compounds are identified as
affective). The methodological differences might be important: although they can "deflate" reproducibility,
they also serve to probe a larger search space (that is, each assay may be exploring a subtly different part
of a huge space of compounds with specific bioactivity). 

Regardless, it is important to have the tools to have a quantitative discussion about whether two assays
disagree due to "nuisances", or whether they disagree because they are fundamentally testing different
hypothesis. This manuscript, and the software developed here, provide the community with important
components to facilitate such discussions.

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Version 2

 26 July 2017Referee Report

doi:10.5256/f1000research.13143.r24479

 Paul T. Spellman
Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR,
USA

"Our finding that molecular profiles are significantly more consistent than drug sensitivity data, indicates
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"Our finding that molecular profiles are significantly more consistent than drug sensitivity data, indicates
that the main barrier to biomarker development using these data is the unreliability in the reported
response phenotypes for many drugs. For studies such as these to realize their full potential, additional
work must be done to develop robust and reproducible experimental and analytical protocols so that the
same compound, tested on the same set of cell lines by different groups, yields consistent and
comparable results. Barring this, a predictive biomarker of response developed from one study is unlikely
to be able to reliably validated on another, and consequently, is unlikely to be useful in predicting patient
response."

Again, I think the concern here is wrong for the same reasons I describe above. The main barrier is *not*
the differences in quality between assays. The author's response to my initial concern shifts it to variability
within an assay, but that is obvious -- if an assay doesn't work it can't be informative. Bad assays should
be excluded. Period. The original premise of the work was that differences in results between assays was
problematic but that is not the problem. Its that specific assays do not produce the high quality data
necessary. 

My further points remain. I agree it may be hard, but it is possible.

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

Reader Comment 07 Aug 2017
, Benjamin Haibe-Kains

We have now updated the discussion and conclusion to reflect the fact that the noise within assays
must be assessed and accounted for, and the complementarity across assays offer new
opportunities to develop more robust biomarkers. Updated parts are underlined and in italic.

“Our finding that molecular profiles are significantly more consistent than drug sensitivity data,
indicates that the main barrier to biomarker development using these data is the discrepancy in the
reported response phenotypes for many drugs. The experimental protocols and pharmacological
assays used in the GDSC and CCLE studies are the state-of-the-art for high-throughput drug
screening projects. Even though technical and biological replicates are necessary to assess and
account for noise in drug sensitivity measurements, it is clear that the assays used in GDSC and
CCLE probe different aspects of the biology underlying drug-induced growth inhibition. Without
knowing which assay is more relevant for in vivo drug response, more research will be required to
best leverage these complementary assays for robust biomarker discovery.

From having worked in large-scale genomic analyses, we recognize the challenges involved in
planning and executing such studies and commend the GDSC and CCLE for their work and for
making all the data available. However, we strongly encourage the GDSC, the CCLE, the
pharmacogenomics and bioinformatics communities as a whole, to invest the necessary time and
effort to account for the noise in drug response measurements and the complementary nature of
different assays in order to assure that these studies are relevant for predicting response in

The recent report from Genentech is a significant step in this direction. Ultimately, thatpatients. 
effort will help to assure that mammoth undertakings in drug characterization can deliver on their
promise to identify better therapies and biomarkers predictive of response.”
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promise to identify better therapies and biomarkers predictive of response.”

We agree with the reviewer regarding the reviewer's comments on drug-specific cutoffs, and have
updated the paragraph about the limitations of our study to reflect this important point. 

 NoneCompeting Interests:

Version 1

 10 May 2017Referee Report

doi:10.5256/f1000research.10354.r22599

 David G. Covell
Screening Technologies Branch, Developmental Therapeutics Program, National Cancer Institute,
Frederick, MD, USA

The paper under review, 'Revisiting inconsistency in large pharmacogenomics studies' by Zhaleh
Safikhani, Petr Smirnov, Mark Freeman, Nehme El-Hachem, Adrian She, Quevedo Rene, Anna
Goldenberg, Nicolai J. Birkbak, Christos Hatzis, Leming Shi, Andrew H. Beck, Hugo J.W.L. Aerts, John
Quackenbush, Benjamin Haibe-Kains, reports an updated analysis of results from two previously
published systematic drug screening projects[1,2]. As explained in their introductory material, this report
is motivated in part by the expansion of data from these earlier studies, and as a means to document
alternative data analysis strategies that have been proposed for improving the original publication[3].
 
The authors address two highly important areas in basic and clinical research: data reproducibility and
predictive (gene expression) biomarkers based on drug sensitivity data. The former issue represents a
hallmark of basic science research; where results derived from different labs and measurement
techniques serve to establish strong confidence in a proposed experimental protocol. The latter issue
pertains best to highly confident (e.g. reproducible or consistent) experimental measurements; while data
inconsistencies foreshadow a Pandora’s Box of alternatives in the search for the origins of these
differences.
 
With respect to the issue of data reproducibility, I find no fault in the new manuscript. All of the results
reported in the original 2013 paper and current paper under review can be obtained from their
Supplementary R code. With a bit of diligence and tenacity, sequentially stepping through their R-code
will yield the reported figures and tables. Towards that end, the original R-code is tedious, but their
addition of an open-source R-package, PharmacoGx, relieves much of the tedium. In fact, the authors
must be applauded for making their analysis completely reproducible, a feat rarely achieved with
biological results.
 
Notwithstanding, the results remain largely the same; inconsistencies remain in the drug sensitivity
profiles between the GCSC[2] and CCLE[1] groups. Data analysis based on alternative methods appear
to be constructed around the arguments proposed in the pair of Brief Communications Arising from the
original paper[4,5]. The general idea of this alternative data analysis is based on the limited role of weakly
responsive tumor cells, and thus a failure to contribute to meaningful statistics. While segregating the data
into three classes (drugs with no observed tumor cell activity, activity in a few tumor cells and activity in a
large number of tumor cells) improves the statistics, the differences largely remain.
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large number of tumor cells) improves the statistics, the differences largely remain.
 
Speculations about the differences between the two datasets focus, naturally, on each measurement
platform. The current manuscript’s proposal of internal standardization may help identify the origin(s) of
these differences, but this alone may not be sufficient. In this regard, I would recommend the
Supplementary Information (all 47 pages) from the original article[3]. Specifically, Section 3, Comparison
of experimental protocols, and the included Comparative table. The details of this section identify a
number of platform differences that may underlie their measurement differences. Although not within the
scope of the current article, a future study focused on these differences, combined with standardization,
rather than looking for answers by segregating the data into three response classes, would be highly
informative.
An alternative speculation regarding data inconsistencies considers the ‘dated’ possibility that each tumor
cell’s drug sensitivity and underlying phenotypic architecture (expression, mutation, snp, etc.) exemplifies
a ‘snowflake’ phenomenon. Each tumor cell represents a unique circumstance, which can be modulated
by any sort of environmental condition. Thus a drug response, even for the same tumor cell, may exhibit
variation. Under these circumstances, the functional pathways, represented by groups of genes and their
concordant expressions, become the focus, and derivation of pathway-based scoring schemes may
significantly overcome inconsistencies between experimental groups. Clearly an appropriate pathway
fitness scoring scheme has yet to be devised. 
 
In summary, the analysis is sound, the results are clear, and the analyses of inconsistent data, as a
means to obtain predictive biomarkers, remains a significant challenge.
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Author Response 07 Jul 2017
, Benjamin Haibe-Kains

We thank Dr Covell for his constructive comments regarding our study. We are glad to hear
that our PharmacoGx package is useful to reproduce our analysis results. The hope is that our
package will enable other research groups to analyze and compare their own data with published
large-scale pharmacogenomic datasets. 

We agree with the reviewer that more investigation is required to better assess the technical vs
biological variations for each of the pharmacological assays. Then biological variations could be
leveraged, at the pathway level as the reviewer suggested, to define more robust biomarkers. 

 NoneCompeting Interests:

 21 December 2016Referee Report
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 Paul T. Spellman
Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR,
USA
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Safikhani   have updated their previous analysis of two of the largest systematic drug screeninget al.
projects linked to genomics data. The previous findings indicated that there is a lack of concordance
between the two datasets that makes finding biomarkers of response difficult. Updating these studies with
a wider array of methods in response to comments about the original article leaves largely the same
result. Drug sensitivity profiles show significant variation between the two groups, likely due to differences
in assay condition.

Safikhani   follow this analysis up with a discussion on how to improve the situation and here I haveet al.
some significant issues. The base argument is that the differences in platform are creating biases in the
results and therefore the platforms need to be standardized. I think this is completely wrong. This makes
sense if one platform were known to recapitulate   response more accurately, but that is not true. Wein vivo
do not know if one platform is more physiologically relevant than another so the lack of standardization
actually tells you something, it tells you when a predictor result is robust against biological context and is
therefore more likely to work in new biological contexts. I would argue we need *more* variability in
assays and platforms to broaden the scope of biological systems, not less.

Similarly, the statement is made that there is a 75% validation rate for eight drugs but that "this does not
suggest that one can use these studies to find new, reproducible gene-drug associations...", I actually
think it does, but perhaps I am missing a subtlety.

Finally, I think it is possible to set drug specific thresholds for each dataset. We have done this, I believe
successfully, with datasets far smaller.

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

Author Response 12 Jul 2017
, Benjamin Haibe-Kains

We thank the reviewer for his constructive comments. We agree with the reviewer that we need to
update the discussion to reflect this important point. In the absence of “gold standard” screening
platform, the best biomarkers are likely those that are robust to the use of different assays, as
these assays assess different biological aspects of growth inhibition. However one must clearly
distinguish between technical and biological variations. While biological variations might be
interesting for biomarker discovery, assay variation must be kept as low as possible. Looking at the
replicates performed for AZD6482 in GDSC, we found that drug sensitivity data lack consistency
even when the same assay is used (see new Supplementary Figure 2E). In this setting, one cannot
claim that the inconsistencies observed between GDSC and CCLE are solely due to differences in
the type of assay used for drug screening. Even if we agree with the reviewer, we believe there is
still work to be done to improve the robustness of each pharmacological assay. We have updated
the discussion section of our manuscript accordingly.

Similarly, the statement is made that there is a 75% validation rate for eight drugs but that
"this does not suggest that one can use these studies to find new, reproducible gene-drug
associations...", I actually think it does, but perhaps I am missing a subtlety.
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Although our new analysis revealed reasonable consistency for biomarker discovery for 8 out of 15
drugs, we could not get such a validation rate for the rest of the drugs where the biomarkers are
only significant in one study but not the other. 

Finally, I think it is possible to set drug specific thresholds for each dataset. We have
done this, I believe successfully, with datasets far smaller.

Like this reviewer, we too tried to identify drug-specific cutoff that would allow us to binarize the
drug sensitivity while optimising the consistency across datasets. Our best efforts were not
successful though, except for Nilotinib (see Safikhani et al, Nature 2016; PMID: 27905430). Not to
say that it is not feasible but we found it very challenging to define a cutoff within a dataset that

 would yield good concordance across datasets.

 NoneCompeting Interests:

 03 November 2016Referee Report

doi:10.5256/f1000research.10354.r16370

 Michael T. Hallett
Centre for Structural and Functional Genomics, Department of Biology, Concordia University, Montréal,
QC, Canada

This manuscript seeks to compare two large pharmacogenomics datasets (several hundred cancer cell
lines screened against 15 common drugs) and evaluate their level of agreement via (1) the drug sensitivity
values and (2) gene expression profiles of the cell lines. Broadly speaking, the value of these profiles is
the discovery of (gene) biomarkers that could predict response of cells to the drugs. Previous efforts,
including the authors' previous attempts, have had trouble with reproducibility. The authors have
previously given harsh critiques regarding the reproducibility of the two datasets.

This manuscript is very important, and it has the potential to dissect sources of both agreement and
disagreement that can be amplified or minimized in the future respectively. The reviewer also has little
doubt that there is in fact disagreement between these two datasets and, moreover, it is significant
enough as to interfere with the discovery of biomarkers. The reviewer also agrees with the authors that
this is important to point out and understand, and the "call to arms" in the Discussion (the best written part
of the manuscript) should certainly be listened to.

However, because this manuscript is very important , the cornerstones of the comparative analysis must
be correct. The Supplemental Methods are near impossible to decipher and are littered with undefined
terms, confusion in mathematical notation, poor equation formatting non-intuitive statements that do not
assist the reader with understanding the numerous design choices (from throwing out poor quality data, to
model fitting, to different measures of consistency). The Results section is not sufficient methodical to
follow the argument of what does or does not represent ***statistically significant*** disagreement. Almost
every paragraph until the conclusion presented serious challenges to this referee. They are included
below.

This is an important effort and the authors should return with an improved manuscript. Many of the
co-authors are skilled mathematicians and they are strongly recommended to revisit every line of this

Page 32 of 46

F1000Research 2017, 5:2333 Last updated: 21 AUG 2017

http://dx.doi.org/10.5256/f1000research.10354.r16370


 

co-authors are skilled mathematicians and they are strongly recommended to revisit every line of this
manuscript to ensure correctness and to present with craftmanship. This is especially true in the
Supplementary Methods that actually provide the "meat" of the methodology: this I believe must have
been an oversight with this submission. 

This manuscript needs to be published and I believe there are important lessons to be learnt here but
there has to be a more focused, tighter argument to establish where there is disagreement and
hypotheses as to why (in the Discussion) and what can be done about it. But the main issue here is that
the basics of the paper are not solid, or at least they cannot be evaluated. The authors should be
commended for the effort to be reproducible (in the sense they give the list of R packages used and their
code) but that is only one aspect. The mathematics and statistics requires clarity and correctness. Terms
such as "metric" should be used properly, and novel equations that are derived (e.g their "E" parameter)
must be done so in a careful correct manner, with attempts made to justify these parameters (e.g \epsilon,
\rho, 2*\epsilon, the $E$ parameter from the modified fit etc.

I would be happy to view a revised version of the manuscript and I hope that my comments aid in this
important project.

pg5: What is “Dataset 1”? The link here doesn’t lead anywhere that I can tell.

Figure 3. I’m not really sure what the value is in plotting the density functions for the mismatched and
matched cell lines. First, wouldn’t one density function suffice with a threshold I guess? Second, do you
really need it at all?

In the Methods “Cell line identity….”, it is stated that 66 samples fell below threshold with a reference to
the Supplementary methods. However I don’t see anything in the supplementary methods that discusses
this. Moreover in the text, it seems that you threw 8 cases away. This is confusing.

pg 5. I’m not sure what you mean by “remain stable or decrease monotonically”? 
Do you just mean “monotonically non-increasing”?

Please see comment regarding “Filtering of drug dose-response curves” form Supp Methods below. I
think this really needs to be reworked, and I have to trust you guys here that you are doing the right thing.

“as exemplified…” depicted?

In Figure 4, is it possible to relate this back to the choice of \rho, \epsilon and 2 \cdot \epsilon from the
Supp Methods, or perhaps integration a version of this figure (but annotated) into the Supp Methods. 
In panel A, the grey area is a bit non-intuitive no? I would say that post 0.03, it’s looking pretty good, and
it’s not measured in GDSC after that. However the first points are off.

I don’t know what \epsilon or \rho are so it’s hard to relate what is depicted in Figure 4 back to your model.

When I look through Supplemental Figure 1 (all the excluded comparisons), it seems like your criterion for
excluding a comparison boils down cases where at least one of the curves has high variance, and the
cutoff 2\epsilon I think  is a constant independent of the distribution of points for either curve. I don’t see in
your equations how you encode that the sequence is monotonically non-increasing, or how “order” along
the left to right sweep is incorporated.
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Supp Methods Filtering of drug dose-response curves  

i +1^{st} -> (i+1)^{st}

It seems like there is a formatting problem here. In my pdf there is something like I”A squiggle after “in
some large fraction ??? of the cases (1).” I guess that’s supposed to be \rho right?

I’m not sure I understand this sentence “Our quality control …” Are you saying that \Delta_{i, i+1} <
\epsilon in some fraction \phi of the cases?

equation #2 below:
I also have never seen set notation such as \{ \Delta_{i,i+1} | \Delta_{i,i+1} < \epsilon \}.
Are you trying to say “given all the \Deltas that are less than \epsilon?
So the vertical | means cardinality here right?
But then the denominator has the cardinality of a value, or do you mean absolute value?
What is \rho? It’s undefined.

“Unfortunately …”  The english is a bit rough - could be rephrased in terms of specificity and sensitive, I
guess.

I don’t understand the significance of the sentence “Consider, for instance, …” But in the main text, you
say that it remains stable or decreases monotonically. Here it increases monotonically for many
successive points, so this violates your model, no? 

I think that this subsection wants simply to spell out mathematically the thresholds and also provide some
rationale for the parameters. I think the text doesn’t really do a good job of establishing this rationale and
needs work. Perhaps define the parameters precisely and then phrase the exposition in standard
terms e.g. specific and sensitivity for different \epislon, etc. 

Your equation (2) is inconsistent. In the text you specify \Sigma_{\forall i,j} \Delta_{i,j} but below your
criterion seems to change to (the correct) $i < j$.  It is also sufficient to write \Sigma{ i < j } \Delta_{i,j} and
avoid the double summation.

You should probably define D_i in the text and not make the reader deduce it from the figure below

The comments here w.r.t. the Supplementary Methods also apply to the associated subsection of the
Methods. The mathematical correctness of some comments needs attention. For example, it is not quite
correct to say that the “curve fitting would have yielded erroneous results”. The curve fitting is just that,
curve fitting. It’s not really an error. Then in the Methods, you claim to use this equation but this is
inconsistent with the discussion in the Supplemental Methods (where you have an equation with this
undefined parameter $E$). 

The least-squares method using a three-parameter sigmoid model. I understand the intuition for this, but
when I look through Supplementary File 2, I think there are a lot cases where this is perhaps not the
correct pattern to assume (e.g. straight lines). Moreover, there are some very strange fits, for example,
AZD6244:G−361
AZD6244:SK−MM−2

PLX4720:MDA−MB−175−VII
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PLX4720:MDA−MB−175−VII
In some cases the curve is always above all of the observations. 
Perhaps this is because the measurements of viability > 100%? In your model you have removed the
$E_0$ from Barretina   for different reasons. et al.

Supp Methods - Fitting of drug dose-response curves

I’m a bit lost with your choice of notation here. For example, you define y as an equation, not a function,
and then write y(0) which I assume is supposed to be something like y(x). Ok but then you have y=0 and y
= y(0) = 1. I’m not sure this is correct mathematically.  (I think you mean to say that y(x ) = … *where* y(0)
=1. 

“viability is reduced to half … concentration of the drug”… so the “Top”, E_\infinity … I find this a bit wordy.

“The dose response equation now becomes …”

So I deduce that E is the new parameter?!?!  Where has E_\infinity gone?!?! 

(But then down below E is constrained to be in [0,1] and seems to related to the fitness of neoplastic
cells.  I’m not sure I understand this.)

There is no derivation of this formula whatsoever. In fact, I don’t see how this could be correct any longer.
Couldn’t this be expressed as mixture of two cell types, and y would be then a sort of weighted average?

I really don’t see how this was derived. This is a very central part of your paper (since the manuscript is
measuring agreement) and therefore it needs to be bulletproof.

Please define “extant drug”. Also HS is allowed to vary apparently but I don’t see where it is then
optimized in your analysis later on. This is confusing.

Consistency of Drug Sensitivity Data

Is the ABC method standard? Are there citations for this? You should probably define properly what you
mean by the “insertion of the concentration range”. Elsewhere it seems that you are referring to this as
“common concentration range” e.g. SFig 2
More generally, isn’t this a sort of (non-statistical) version of the Kolmogorov-Smirnoff test?

Figure 5A: Actually there are many such cases in your Supplementary Figures. Doesn’t this just mean that
the range of concentrations are not sufficient in both datasets?

pg 7 “We then computed the median …” I don’t understand what your distance metric is here. If I
understand correctly, you could the ABC for each pair of drugs in the GDSC dataset. From that I can
imagine a distance matrix D where D_ij i the ABC between drugs i and j. But you said you take the median
ABC? median over what? cell lines? repeats? Whatever the case, are you sure it’s a distance metric?! Is it
really true that distances derived from ABCs are metrics? I think this should be shown in the
Supplemental Methods. Also as a minor comment, the caption in Supp Figure 3 says that you are using
the mean ABC value but elsewhere it says median.
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p8. I am not sure what the significance of Supplementary Figure 3 is: are any of these clusters significant?
Why are two drugs coloured red in panel A? On page 8 it is claimed that the samples split by hospital
(MGH vs WTSI) but I don’t see how this is represented in Supplemental Figure 3. 

pg 8. I have a very hard time estimating the significance of a statement like “…3 out of  15 common drugs
clustered tightly”. I am not sure what tight means here. 
When I look at Supp Figure 3 there has been no effort to annotate the clusters with their reproducibility
e.g. pvclust or measure their significance in some other way. 
When I look at the figure I think there appears to be a lot of co-clustering of the drugs, at least given that
the median ABC across a diverse collection of cell lines might not be such a great “distance” measure. 

pg 9. What do you mean by “highly targeted therapies”?

pg 9. paragraph “Although the ABC values …”  I think the ABC is interesting but it takes a very prominent
role in your paper when there are other standard techniques already like AUC and IC_50. Perhaps the
manuscript should have comments about why have chosen this approach that is not standard. Also I think
you would need to make precise what the differences are between how GDSC and CCLE computed the
AUC and IC_50 that are different than how PharmacoGX does. This is a very central concept in your
comparison so it would have to have a very solid definition and analysis. Supplemental Figure 4 suggests
in a round-about way that the only difference in in the number of cell lines (figure caption). This is a bit
confusing.

Again, I am not sure what “Dataset 2” refers to. Perhaps the manuscript would benefit from the addition of
some interpretation as to what you believe  Supp Figure 4 means.

I don’t understand the definition of your three classes of drugs (no effect (AUC > 0.2); narrow effect AUC
\leq 0.13 or broad affect AUC > 0.13). I don’t see how this definition clearly delineates between “no effect”
and “narrow effect”. 

The bottom paragraph of the first column is one sentence that spans 8.5 lines. It references 2 main figures
of the paper and 5 supplementary figures. To be honest, this is very frustrating. I have gone through the
Supplemental Methods very closely and I don’t see anywhere where the authors have distinguished
between “recomputed AUC” and “AUC computed based on the common concentration range”. Then
“IC_50 (figure figure) values” ?? 

I’m not sure what to interpret re: Figure 7 for example. To me it looks like there is excellent agreement
except for perhaps the first row. Only paclitaxel fits into this “cyotoxic drug’ category but for the life of me, I
don’t see where this is defined. The authors just defined three types of drugs (no effect, narrow effect and
broad effect) but that’s not what they are using here. I don’t understand this. To me it simply seems to be
that at low AUCs there is high variance in the last 3 distributions of the first line (17-AAG PD-0325901 and
AZD6244), but actually they look like they pretty well agree at higher AUCs. I’m not sure what that means 

“and calculated the consistency of drug sensitivity data between studies using all common cases and only
those that the data suggested were sensitive in at least on study.

Maybe a table would help, especially if each of these different objects were properly defined in the
Methods/Supp Methods. 

“Given that no single metric can capture all forms of consistency, …” So you add three more. I don’t see
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“Given that no single metric can capture all forms of consistency, …” So you add three more. I don’t see
the point here. Why these three? and how is something like pearson \rho applied here. What is the
vector? I would guess that Supp Figures should show the distribution of correlations for all three
distributions so that we can look the different moments of these distributions (e.g. skew). In Figure 8, there
is a use of a * but how where these p-values estimated? Are these empirical estimations of the p-value?! 

I am totally confused here. You say in Figure 8 that panel A is “full data”. But panel B is “sensitive cell
lines”. Where is this defined? the parentheses beside this in the figure caption? But why did you introduce
this “broad, narrow, no effect” definitions only to redefine something else here?

I’m not sure I understand Supplemental Figure 11. Is this just all probe groups for the Affy arrays, or how
were features chosen? 
What is an “RNA-seq expression value”? how is this formed? rpm? Most importantly, I just don’t know
what the message is here, and if there is any statistics
to support that statement.

I’m not sure I understand Figure 9 or what the take home message should be. I have a hard time
understanding the labels along the x-axis in these figure. I just don’t really know statistically how one can
conclude that gene expression is more “consistent” than the drug sensitivity values. There could be a
million things going on in those arrays. There are so many more datapoint and you have literally a
hundred thousand probes that probably don’t have an IQR > 1.5 on those arrays that “pump up” the
correlation values, I would guess. What does this analysis mean?

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to state that I
do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Author Response 12 Jul 2017
, Benjamin Haibe-Kains

We thank the reviewer for his constructive comments. We too believe it is important for the
community to be aware of the challenges for biomarker discovery stemming from the lack of
consistency across large-scale pharmacogenomic datasets. We have addressed most of the
reviewer’s comments, as detailed below.

pg5: What is “Dataset 1”? The link here doesn’t lead anywhere that I can tell.

We have updated the manuscript to add a description of each “Dataset”. 

Figure 3. I’m not really sure what the value is in plotting the density functions for the
mismatched and matched cell lines. First, wouldn’t one density function suffice with a
threshold I guess? Second, do you really need it at all?

The representation of both mismatched and matched cell line density functions serves to illustrates
two main points: to give context to the concordance scores, and to show that the mismatched cell
lines have a concordance score that is distinct and separate from the matched cell lines.  By
representing only a single density function, a reader may not be able to appreciate the bimodal
nature of matched/mismatched concordances, and that the distance between the two functions is
large enough to allow for a robust classification scheme. 
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large enough to allow for a robust classification scheme. 

In the Methods “Cell line identity….”, it is stated that 66 samples fell below threshold with
a reference to the Supplementary methods. However I don’t see anything in the
supplementary methods that discusses this. Moreover in the text, it seems that you threw
8 cases away. This is confusing.

We analyzed the SNP array profiles of all 973 and 1190 CEL files available for GDSC and CCLE
respectively. From these samples 66 and 5 with low quality SNP arrays in GDSC and CCLE have
been removed from SNP fingerprinting pipeline. We continued the SNP fingerprinting pipeline with
503 cell lines with high quality SNP profiles available in common between CCLE and GDSC.

We compared the genotype concordance score for 503 out of 698 cell lines in common between
CCLE and GDSC. We confirm that we removed 8 of 503 cell lines from analyses because their
genotype concordance scores fell below the 0.8 threshold, as well as within the range of genotype
concordances for cell lines with discordant genotypes.  As such, we concluded that despite having
the same annotations, these cell lines may have been contaminated or mislabelled in one of the
two studies and further analysis on drug sensitivity cannot be compared between them. We have
reported the quality scores and concordance scores in Dataset 1.

pg 5. I’m not sure what you mean by “remain stable or decrease monotonically”? 
Do you just mean “monotonically non-increasing”?

That is correct. We changed the manuscript accordingly.

Please see comment regarding “Filtering of drug dose-response curves” form Supp
Methods below. I think this really needs to be reworked, and I have to trust you guys here
that you are doing the right thing.

“as exemplified…” depicted?

We agree and updated the manuscript accordingly.

In Figure 4, is it possible to relate this back to the choice of \rho, \epsilon and 2 \cdot
\epsilon from the Supp Methods, or perhaps integration a version of this figure (but
annotated) into the Supp Methods. 

Figure 4 legend is updated with the explanation of why these curves are identified as noisy.

In panel A, the grey area is a bit non-intuitive no? I would say that post 0.03, it’s looking
pretty good, and it’s not measured in GDSC after that. However the first points are off.

In this panel the problematic curve is CCLE  While the curve is monotonically decreasing for just
62% of points (5 out of 8) it is expected to be for at least 80% (the value considered for the \rho
parameter) of points. However, GDSC curve is consistently decreasing monotonically for all points
except for one. So we think it is a good example of how the constraints we considered are useful in
identifying noisy curves like CCLE curve in this panel.

I don’t know what \epsilon or \rho are so it’s hard to relate what is depicted in Figure 4

back to your model.
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back to your model.

Figure 4 legend is updated with the default values of \epsilon and \rho which have been used to
flag noisy curves in our study.

When I look through Supplemental Figure 1 (all the excluded comparisons), it seems like
your criterion for excluding a comparison boils down cases where at least one of the
curves has high variance, and the cutoff 2\epsilon I think  is a constant independent of the
distribution of points for either curve. I don’t see in your equations how you encode that
the sequence is monotonically non-increasing, or how “order” along the left to right
sweep is incorporated.

By definition, we expect to see two types of drug response curves. When the cell is resistant to the
drug it is expected that the viability fluctuates slightly around 100% and when the drug is sensitive
a monotonically decreasing manner is expected to be seen. However, noise is unavoidable in
these experiments. So we assumed that the viability of each point on the curve may get higher than
the viability of its immediate prior at most with the size of \epsilon. To filter the largely noisy
experiments and keep the slightly noisy ones at the same time, we consider this constraint to be
true for the majority of points which is defined by \rho. Applying these simple constraints will result
in omitting all the curves in which viability is increasing monotonically or if it is fluctuating largely. 

Supp Methods Filtering of drug dose-response curves  

i +1^{st} -> (i+1)^{st}

Thanks for pointing this out, we corrected this in the revised manuscript.

It seems like there is a formatting problem here. In my pdf there is something like I”A
squiggle after “in some large fraction ??? of the cases (1).” I guess that’s supposed to be
\rho right?

Thanks for pointing it out. You are right and we corrected this.

I’m not sure I understand this sentence “Our quality control …” Are you saying that
\Delta_{i, i+1} < \epsilon in some fraction \phi of the cases?

You are correct and more explanation is presented in our previous comment.

equation #2 below:
I also have never seen set notation such as \{ \Delta_{i,i+1} | \Delta_{i,i+1} < \epsilon \}.
Are you trying to say “given all the \Deltas that are less than \epsilon?
So the vertical | means cardinality here right?
But then the denominator has the cardinality of a value, or do you mean absolute value?

Vertical bars are used as cardinality notation in both numerator and denominator of that equation.
What is \rho? It’s undefined.

“Unfortunately …”  The english is a bit rough - could be rephrased in terms of specificity
and sensitivity, I guess.
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We updated the manuscript accordingly.

I don’t understand the significance of the sentence “Consider, for instance, …” But in the
main text, you say that it remains stable or decreases monotonically. Here it increases
monotonically for many successive points, so this violates your model, no? 

Apply only equation (1) will not filter all the noisy cases and the curve explained in this sentence is
one of those cases. Hence we also applied equations (2) and (3) to filter these remaining noisy
curves. We clarified this in the revised manuscript.

I think that this subsection wants simply to spell out mathematically the thresholds and
also provide some rationale for the parameters. I think the text doesn’t really do a good
job of establishing this rationale and needs work. Perhaps define the parameters
precisely and then phrase the exposition in standard terms e.g. specific and sensitivity for
different \epislon, etc. 

We thank the reviewer for his suggestion. We improved the clarity of our equations and clearly
state the parameters we used. We agree that the selection of the parameter value is arbitrarily,
although reasonable. It would be possible to create a set of manually curated curves as a gold
standard set and tune our parameters accordingly. Although the idea is appealing, it would require
a large set of curators as manual classification tends to be unstable too. Such an analysis is
definitely of interest and we will pursue this in future studies.

Your equation (2) is inconsistent. In the text you specify \Sigma_{\forall i,j} \Delta_{i,j} but
below your criterion seems to change to (the correct) $i < j$.  It is also sufficient to write
\Sigma{ i < j } \Delta_{i,j} and avoid the double summation.

Corrected.

You should probably define D_i in the text and not make the reader deduce it from the
figure below

Corrected.

The comments here w.r.t. the Supplementary Methods also apply to the associated
subsection of the Methods. The mathematical correctness of some comments needs
attention. For example, it is not quite correct to say that the “curve fitting would have
yielded erroneous results”. The curve fitting is just that, curve fitting. It’s not really an
error. Then in the Methods, you claim to use this equation but this is inconsistent with the
discussion in the Supplemental Methods (where you have an equation with this undefined
parameter $E$). 

We agree with the reviewer and updated the manuscript accordingly.

The least-squares method using a three-parameter sigmoid model. I understand the
intuition for this, but when I look through Supplementary File 2, I think there are a lot
cases where this is perhaps not the correct pattern to assume (e.g. straight lines).
Moreover, there are some very strange fits, for example,

AZD6244:G−361
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AZD6244:G−361
AZD6244:SK−MM−2
PLX4720:MDA−MB−175−VII
In somecases the curve is always above all of the observations. 
Perhaps this isbecause the measurements of viability > 100%? In your model you have
removed the $E_0$ from Barretina et al. for different reasons.

Data points where the measured viability exceeds 100% always lie above their respective curves
of best fit, since the functional form of the equation forces predicted viability to lie between 0 and
100% for all drug concentrations. The three-parameter sigmoid model’s intuition and flexibility 
makes it an attractive choice for the majority of cases, and for ease and uniformity of analysis, we
felt it prudent to choose the same model to fit all curves, even if it may not have fit well in a few
anomalous cases.

Supp Methods - Fitting of drug dose-response curves

I’m a bit lost with your choice of notation here. For example, you define y as an equation,
not a function, and then write y(0) which I assume is supposed to be something like y(x).
Ok but then you have y=0 and y = y(0) = 1. I’m not sure this is correct mathematically.  (I
think you mean to say that y(x ) = … *where* y(0) =1. 

“viability is reduced to half … concentration of the drug”… so the “Top”, E_\infinity … I
find this a bit wordy.

“The dose response equation now becomes …”

So I deduce that E is the new parameter?!?!  Where has E_\infinity gone?!?! 

(But then down below E is constrained to be in [0,1] and seems to related to the fitness of
neoplastic cells.  I’m not sure I understand this.)

There is no derivation of this formula whatsoever. In fact, I don’t see how this could be
correct any longer. Couldn’t this be expressed asmixture of two cell types, and y would be
then a sort of weighted average?

I really don’t see how this was derived. This is a very central part of your paper (since the
manuscript is measuring agreement) and therefore it needs to be bulletproof.

Please define “extant drug”.Also HS is allowed to vary apparently but I don’t see where it
is then optimized in your analysis later on. This is confusing.

We thank the reviewer for his comments and we apologise for the lack of clarity of our
Supplementary Methods. We have now rewritten this section to improve clarity and address all the
reviewer’s comments.

Consistency of Drug Sensitivity Data

Is the ABC method standard? Are there citations for this? You should probably define
properly what you mean by the “insertion of the concentration range”. Elsewhere it seems

that you are referring to this as “common concentration range” e.g. SFig 2
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that you are referring to this as “common concentration range” e.g. SFig 2

More generally, isn’t this a sort of (non-statistical) version of the Kolmogorov-Smirnoff
test?

We created and used the ABC method as a convenient and intuitive way of quantifying the
agreement of analogous dose-response curves in different datasets over the intersection of the
concentration ranges tested by them (henceforth referred to as their “common concentration
range”). This method is inspired from two recent publications where the authors restricted the
analysis to the common concentration range between datasets (Pozdeyev et al, Oncotarget 2016)
and compared two curves directly (Yadav et al, Scientific Reports 2014). 

While ABC does have some similarities to Kolmogoroff-Smirnoff, it evaluates the area between
curves rather than the maximum vertical linear distance between them. Furthermore, it takes into
account the behaviour of the fitted dose-response curves over their common concentration range
only, rather than across their entire domains. Since the behaviour of fitted dose-response curves at
concentrations far outside the concentration ranges over which they were fitted tends not to be
robust to noise, we felt that ABC was a more appropriate test than Kolmogorov-Smirnoff for
assessing accordance of dose-response curves in this study.

We updated the manuscript wit these references and clarifications.

Figure 5A: Actually there are many such cases in your Supplementary Figures. Doesn’t
this just mean that the range of concentrations are not sufficient in both datasets?

Given the limited concentration range tested in high-throughput in vitro drug screening studies,
such as GDSC nd CCLE, it is not possible to rule out that drug yielding no effect on cell viability
could actually yield substantial effect at higher dose. However, these higher doses are likely to be
clinically irrelevant.

pg 7 “We then computed the median …” I don’t understand what your distance metric is
here. If I understand correctly, you could the ABC for each pair of drugs in the GDSC
dataset. From that I can imagine a distance matrix D where D_ij i the ABC between drugs i
and j. But you said you take the median ABC? median over what? cell lines? repeats?
Whatever the case, are you sure it’s a distance metric?! Is it really true that distances
derived from ABCs are metrics? I think this should be shown in the Supplemental
Methods.

The ABC is computed for each cell lines and the median of ABC values was used as a measure of
“distance” between two drugs. 

Also as a minor comment, the caption in Supp Figure 3 says that you are using the mean
ABC value but elsewhere it says median.

The caption has been corrected to read ‘median’ rather than ‘mean’.

p8. I am not sure what the significance of Supplementary Figure 3 is: are any of these
clusters significant? Why are two drugs coloured red in panel A? On page 8 it is claimed
that the samples split by hospital (MGH vs WTSI) but I don’t see how this is represented in

Supplemental Figure 3. 
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Supplemental Figure 3. 

As described in the manuscript, GDSC drug sensitivity experiments have been performed in two 
centers (MGH and MSTI) separately. The only drug has been tested by both centres is AZD6482
(the ones in red in panel A of Supplementary figure 3). The aim of that figure is to illustrate how well
the biological replicates have been clustered together. However the other drugs are not expected
to cluster according to their corresponding center thus there is not such a labeling in this figure.

pg 8. I have a very hard time estimating the significance of a statement like “…3 out of  15
common drugs clustered tightly”. I am not sure what tight means here. 
When I look at Supp Figure 3 there has been no effort to annotate the clusters with their
reproducibility e.g.pvclust or measure their significance in some other way. 
When I look at the figure I think there appears to be a lot of co-clustering of the drugs, at
least given that the median ABC across a diverse collection of cell lines might not be such
a great “distance” measure. 

We refer to the closest neighbor for each drug. We agree with the reviewer that our statement
should be more quantitative. We therefore compared the ABC values between common drugs and
different drugs and observed a significant differences (one-sided Wilcoxon test p-value = 0.004).
We agree that median ABC might not be the best distance measure, this is why we updated
Supplementary Figure 3 with other distance measures for completeness. 

pg 9. What do you mean by “highly targeted therapies”?

It meant drugs for which there is a few sensitive cell lines in the CCLE and GDSC (narrow effect).
However, we changed it to targeted to avoid any confusion.

pg 9. paragraph “Although the ABC values …”  I think the ABC is interesting but it takes a
very prominent role in your paper when there are other standard techniques already like
AUC and IC_50. Perhaps the manuscript should have comments about why have chosen
this approach that is not standard. Also I think you would need to make precise what the
differences are between how GDSC and CCLE computed the AUC and IC_50 that are
different than how PharmacoGX does. 

GDSC and CCLE fit a different family of curves to their dose-response data, as described in Haibe
-Kains et al, Nature 2013. To eliminate this source of heterogeneity, we fitted the same
three-parameter model for all the CCLE and GDSC curves, as implemented in PharmacoGx does.
Once the curve is fitted, GDSC, CCLE, and PharmacoGx agree on how to calculate its AUC and
IC_50.

This is a very central concept in your comparison so it would have to have a very solid
definition and analysis. Supplemental Figure 4 suggests in a round-about way that the
only difference in in the number of cell lines (figure caption). This is a bit confusing.
Again, I am not sure what “Dataset 2” refers to. Perhaps the manuscript would benefit
from the addition of some interpretation as to what you believe  Supp Figure 4 means.

We have updated the manuscript with a clear interpretation of Suppl Figure 4, which shows that
drugs listed as targeted therapies exhibit less variation (as estimated by the median absolute
deviation) in drug sensitivity (AUC) than cytotoxic therapies. Although expected, these results

allowed us to define a cutoff fro MAD(AUC) to classify drug into broad vs narrow effect, as
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allowed us to define a cutoff fro MAD(AUC) to classify drug into broad vs narrow effect, as
described in the manuscript.

We have also updated the manuscript to add a description of each “Dataset”, a denomination
required by F1000Research formatting guidelines.

I don’t understand the definition of your three classes of drugs (no effect (AUC > 0.2);
narrow effect AUC \leq 0.13 or broad affect AUC > 0.13). I don’t see how this definition
clearly delineates between “no effect” and “narrow effect”. 

We apologize for the confusion. We corrected the manuscript with the following definitions. Drugs
with “no effect”: all AUC values < 0.2 (no sensitive cell lines); “narrow effect”: MAD(AUC) <= 0.13
(see Suppl Figure 4); “broad effect”: MAD(AUC) > 0.13 (see Supp Figure 4).

The bottom paragraph of the first column is one sentence that spans 8.5 lines. It
references 2 main figures of the paper and 5 supplementary figures. To be honest, this is
very frustrating. I have gone through the Supplemental Methods very closely and I don’t
see anywhere where the authors have distinguished between “recomputed AUC” and
“AUC computed based on the common concentration range”. Then “IC_50 (figure figure)
values” ?? 

We have now clearly stated these definitions in the manuscript. AUC recomputed and AUC
computed based on common concentration range both are computed by our PharmacoGx
package by fitting the sigmoid model described in the Supplemental Methods. The only difference
between these metrics is that the former is computed over the whole concentration range for each
study while the former one is computed over the common concentration range between CCLE and
GDSC. We updated the manuscript to reflect the fact that recomputed IC_50 values have been
used in Supplementary Figure 8. Recomputed IC_50 values are inferred from the sigmoid model
fitted to the data by the aim of PharmacoGx package.

I’m not sure what to interpret re: Figure 7 for example. To me it looks like there is excellent
agreement except for perhaps the first row. Only paclitaxel fits into this “cyotoxic drug’
category but for the life of me, I don’t see where this is defined. The authors just defined
three types of drugs (no effect, narrow effect and broad effect) but that’s not what they are
using here. I don’t understand this. To me it simply seems to be that at low AUCs there is
high variance in the last 3 distributions of the first line (17-AAG PD-0325901 and
AZD6244), but actually they look like they pretty well agree at higher AUCs. 

We agree with the reviewer that we have not been consistent in our definition of drugs with no,
narrow and broad effect. This is now fixed in the updated manuscript. In Figure 7 (and all other
figures) we have ordered the drugs by their “status” (no, narrow and broad effect). For the ease of
interpretation, we also choose to color each AUC based on a standard cutoff for sensitivity of AUC
> 0.2 (and therefore cell lines with AUC <= 0.2 are called “insensitive”). Although paclitaxel is the
only drugs that is referred to as cytotoxic in the literature, we observed that 17-AAG, PD-0325901,
and AZD6244 decreases cell viability for a large number of cell lines. As their MAD(AUC) > 0.13
(Supp Figure 4), we classified these drugs as “broad effect”. In this case, the consistency of drug
sensitivity data (AUC) seems to be poor, with CCLE having much more sensitive cell lines than
GDSC. Drugs with narrow effect (MAD(AUC) <= 0.13) (2 middle rows) yield better consistency for
some drugs (e.g., crizotinib, PLX4720, lapatinib, lapatinib) but there are still cell lines with AUC >

0.2 (“sensitive”) that are far off the diagonal. The last row include all the drugs with “no effect”, i.e.,
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0.2 (“sensitive”) that are far off the diagonal. The last row include all the drugs with “no effect”, i.e.,
the vast majority of cell lines yielded AUC <= 0.2, where no consistency is expected due to low 
signal / noise ratio.

I’m not sure what that means “and calculated the consistency of drug sensitivity data
between studies using all common cases and only those that the data suggested were
sensitive in at least on study.

The consistency of drug sensitivity data was performed twice. First using all the cell lines in
common between the two studies. Second, using only the cell lines that are “sensitive” (AUC > 0.2)
in at least one dataset. The second analysis aims to address a criticism we received from the
community that only sensitive cell lines should be compared. We rephrased this part in the updated
version of the manuscript.

Maybe a table would help, especially if each of these different objectswere properly
defined in the Methods/Supp Methods. 

We enriched the “acronym table” in Supplementary Methods to add definitions of the additional
objects and concepts used in our paper.

“Given that no single metric can capture all forms of consistency, …” So you add three
more. I don’t see the point here. Why these three? and how is something likepearson \rho
applied here. What is the vector? I would guess that Supp Figures should show the
distribution of correlations for all three distributions so that we can look the different
moments of these distributions (e.g. skew). In Figure 8, there is a use of a * but how where
these p-values estimated? Are these empirical estimations of the p-value?! 

In the absence of gold standard measure of consistency for drug sensitivity data, we decided to
include other measures that could be used as alternative to Pearson and Spearman correlation
already used in previous publications. The consistency measures are computed across cell lines.
For each drug, a vector of drug sensitivity measurements (AUC’ IC_50,...) is extracted from GDSC
and CCLE and then compared. P-values were computed analytically, as described in the updated
Supplemental Methods. We updated the caption of Figure 8 to state these important points.

I am totally confused here. You say in Figure 8 that panel A is “full data”. But panel B is
“sensitive cell lines”. Where is this defined? the parentheses beside this in the figure
caption? But why did you introduce this “broad, narrow, no effect” definitions only to
redefine something else here?

We apologise for the lack of definition and inconsistency. We have updated the figure to use a
consistent classification of drugs and now clearly define the restriction to “sensitive data” (now
renamed as “sensitive cell lines” for clarity).

I’m not sure I understand Supplemental Figure 11. Is this just all probe groups for the Affy
arrays, or how were features chosen? 
What is an “RNA-seq expression value”? how is this formed? rpm? Most importantly, I
just don’t know what the message is here, and if there is any statistics
to support that statement.

Brainarray probe gene mapping cdf files have been used to quantify the expression value for each
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Brainarray probe gene mapping cdf files have been used to quantify the expression value for each
gene represented on the Affymetrix arrays. FPKM values for genes annotated by Gencode V.19
annotation were normalized by transforming them using log2(FPKM+1). The aim of Supplementary
Figure 11 is to show the distribution of expression data for each platform and how well a mixture of
2 gaussians could help define a cutoff to binarize the data. The caption has been updated to clearly
state how the cutoffs have been determined.

I’m not sure I understand Figure 9 or what the take home message should be. I have a
hard time understanding the labels along the x-axis in these figure. I just don’t really know
statistically how one can conclude that gene expression is more “consistent” than the
drug sensitivity values. There could be a million things going on in those arrays. There are
so many more datapoint and you have literally a hundred thousand probes that probably
don’t have an IQR > 1.5 on those arrays that “pump up” the correlation values, I would
guess. What does this analysis mean?

We have now clearly defined the labels of the x-axis in the caption. We agree with the reviewer that
sensitivity data and gene expression data have very different properties. However, as we looked at
univariate biomarkers, one gene at a time, we sought to assess whether expression of each
individual gene suffers from the same level of inconsistency than drug sensitivity data across cell

 lines. We have added a word of caution in the text to reflect on the limitation of this analysis.

 NoneCompeting Interests:
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