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Abstract An account is given of how a sensitive bioassay
system for measurement of the neurotransmitter acetylcho-
line serendipitously led to the identification of adenosine
triphosphate (ATP) released in vitro from active skeletal
muscle. Subsequent application of the identification proce-
dures to exercising human muscle in vivo, cardiac muscle
cells in vitro, and human erythrocytes exposed to hypoxia
gave rise to the general concept of ATP as a molecule that
could influence cell function from the extracellular direc-
tion. Mechanisms of ATP release from cells in terms of
“trigger” events such as mechanical distortion of the
membrane, depolarization of the membrane, and exposure
to hypoxia are discussed. Potential therapeutic uses of
extracellular ATP in cancer therapy, radiation therapy, and a
possible influence upon aging are discussed. Possible roles
(distant and local) of extracellular ATP released from
muscle during whole body exercise are discussed.
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Introduction

In 1961 Boyd and Eadie [5] developed a highly sensitive
bioassay for acetylcholine using an in situ perfusion
technique of frog heart. Based on the great sensitivity of

the frog heart to acetylcholine (Fig. 1) a project was
suggested by B. Katz to I. A. Boyd; they thought it possible
that the amounts of acetylcholine released from stimulated
motor nerve endings in frog skeletal muscle could be
directly measured. The skeletal muscle to be used was the
frog sartorius, about which a lot was known regarding the
distribution and population of the motor nerve terminals. At
that time the association of miniature end-plate potentials
(MEPPs) with the release of acetylcholine in packets
(“quanta”) together with the anatomical existence of
synaptic vesicles at the motor nerve terminals was highly
plausible. Any accurate measurement of acetylcholine
release from motor nerve stimulation would provide
valuable evidence for (or against) the association and the
establishment of the “quantal” theory of neuromuscular
transmission. In essence the experimental approach mim-
icked the classic experiment of Otto Loewi, where fluid
perfusing a first frog heart was used to perfuse a second
heart. When the vagus nerve supplying the first heart was
stimulated cardiac arrest occurred, and shortly after this the
second heart also stopped beating. Loewi termed the vagal
inhibitory transmitter Vagusstoff. An isolated frog sartorius
was to be stimulated via the motor nerve in a bathing
solution and the solution then perfused through a frog heart.
When a stimulated muscle solution was perfused a
surprising stimulatory response was elicited, quite unlike
the anticipated inhibitory effect of acetylcholine (Fig. 1).
Clearly this response would preclude any accurate assay for
acetylcholine (as well as any successful conclusion to a
thesis project aimed at substantiating the quantal theory of
neuromuscular transmission!).

It was evident that for successful measurement of
acetylcholine, the identification of the interfering substance,
and its removal from the solution, had to be achieved. At
this stage the basic question became: what substance(s)

Purinergic Signalling (2008) 4:93–100
DOI 10.1007/s11302-007-9090-y

*Serendipity: the faculty of happening upon fortunate discoveries
when not in search of them. Aword coined by Horace Walpole (1754)
in The Three Princes of Serendip.

T. Forrester (*)
Department of Pharmacological and Physiological Sciences,
St. Louis University Medical Center,
St. Louis, MO 63104, USA
e-mail: FORRESMT@SLU.EDU



released from active skeletal muscle could possibly stimu-
late the frog heart? A “blunderbuss” approach was adopted,
by perfusing through the heart as many available sub-
stances, known to exist in muscle, to see if any of them
produced the stimulatory effect. The purine monophos-
phates and adenosine were eliminated since they did not
stimulate the heart. Electrolyte changes, including an
elevated potassium level, were also ruled out. Changes in

calcium levels were hardly detectable in the bathing
solution.

One obvious candidate as a stimulatory substance was
catecholamine material. However, when the frog heart
response to adrenaline was blocked by an ergot/pronethalol
perfusion, the stimulatory effect remained (Fig. 3).

Indirect versus direct muscle stimulation The distribution
of motor end plates in the sartorius muscle (there are no end
plate regions at the pelvic end of the frog sartorius) allowed
muscle fibers to be stimulated directly, without involvement
of the neuromuscular junction in the activation process.
Solutions bathing muscles stimulated directly produced the
same stimulatory effect as the solutions from muscles
stimulated via the motor nerve (indirect stimulation). This
indicated that it was highly unlikely that the stimulatory
substance had as its major source the activated motor nerve
terminal.

Identification procedures

Identification of the stimulatory substance was established
using three procedures: gel filtration, enzyme action of
apyrase, and firefly tail luminescence.

Gel filtration chromatography The use of a gel filtration
chromatography technique (Sephadex G-25, fine grade)
enabled removal of protein from the stimulated muscle
solution, allowing spectral absorbance analysis. An absor-
bance peak obtained at 265λ was the first hint that a purine
compound was present in the solution. The gel filtration
technique also established a molecular weight of the
stimulatory substance close to that of ATP.

In the face of prevailing dogma that ATP could not cross
cell membranes, perfusion with ATP was reluctantly
performed. A stimulatory effect was obtained—the author

Fig. 1 The response of a very sensitive frog heart to graded
concentrations of acetylcholine (g.ml−1). A concentration of 2.5×
10−13 g.ml−1 (1.54×10−12 mmol.ml−1) produced a threshold response
[19]

Fig. 2 Effect of graded
concentrations of ATP (g.ml−1)
perfused through a frog heart
[6]. Note that low concentra-
tions have a pure inotropic
effect, while a triphasic response
was produced by higher con-
centrations. Further analysis of
this triphasic response has since
been made [17]
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had become a citizen of the Republic of Serendip! A dose
response of the frog heart to ATP is shown in Fig. 2.

Incubation with apyrase In 1962 Traverso-Cori and Cori
[61] demonstrated that an enzyme purified from potatoes
(“apyrase”) could selectively cleave the terminal phosphate
of ATP. The stimulated muscle solution was incubated with
apyrase, as were the stimulatory fractions from the gel
filtration technique, and it was shown that the stimulatory
effect was abolished, indicating that a phosphorylated
compound was responsible for the stimulatory effect.

The luciferin/luciferase test for ATP As long ago as 1947
McElroy [38] showed that when a crude extract of lampyrid
beetles (Photinus pyralis) was exposed to ATP a light
signal was generated. When the stimulated muscle solution
was applied to luciferin extract a light signal was produced
(see [18]).

Procedures applied to perfused frog musculature

As this work developed the question “does ATP appear
extracellularly as a result of tissue damage?” was frequently
asked. Dissection damage to the sartorius muscle was
avoided by the use of the perfused hindlimb preparation of

the frog, where instrument trauma was limited to the
insertion of cannulae. The identification procedures for
ATP were applied to the perfusate from stimulated
(indirect) hindlimb musculature. Table 1 shows the rela-
tionship of ATP output to the frequency of motor nerve
impulses [23]. When these amounts (0.24–1.8 nmol 100 g−1

min−1) are compared to the amounts of ATP released from
isolated sartorius (50 nmol 100 g−1 min−1, [6]), it is seen
that there is a great reduction detected in the perfusate
sample, presumably as a result of exposure to greater ecto-
ATPase activity that was not encountered in solutions
bathing isolated muscles.

Procedures applied to human muscle in vivo

The appearance of ATP in the perfusate from active frog
hindlimb musculature raised the possibility that ATP might
be released from active muscle into the circulating blood in
vivo. The identification procedures were applied to human
plasma obtained from resting and exercising human
forearm muscle [20, 21]. Figure 4 gives an example of
the combined use of gel filtration chromatography, firefly
luciferase, and apyrase for the identification and quantifi-
cation of ATP in human plasma from exercising human
forearm muscle [22]. Estimates of plasma ATP levels can
only be approximate, since the accumulation in the blood is
continuously offset by ATPase activity of both plasma and
the surfaces of the erythrocyte and endothelial cells.

Sequelae

The present-day knowledge and extensive classification of
purine receptors (see review by [48]) has vindicated the
concept of an extracellular system of ATP action influenc-
ing many tissues of the body. However, the mode of ATP
release from cells remains a formidable challenge (see
review by [56]). In the cases of skeletal muscle, cardiac
muscle, and erythrocyte some specific circumstances
leading to ATP release, e.g. membrane depolarization,
hypoxia, and mechanical distortion [25], should be
addressed further.

Table 1 Relationship of ATP output to frequency of stimulation of
perfused frog limba

Hz pmol volley−1 100 g−1 pmol 100 g−1 min−1

1 4.0 240
2 1.5 180
5 1.4 420
10 3.0 1,800

a Data from Forrester and Hassan [23]

Fig. 3 Comparison of the stimulatory action of a stimulated muscle
solution (‘X’) on a frog heart before and after adrenergic blockade.
Vertical interrupted line, 2-h period during which heart was perfused
with pronethalol hydrochloride (10−6 g.ml−1) and ergotamine tartrate
(10−6 g.ml−1). The stimulatory action of the stimulated muscle
solution was unaffected by adrenergic blockade. Reproduced from
Boyd and Forrester [6], with permission of the Physiological Society
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Association of ATP release from depolarizing membrane In
1962 Abood et al. [1] assessed outflux of various phos-
phates during membrane depolarization of excitable tissues.
Prior to that Holton [32] detected ATP release from sensory
nerves stimulated antidromically. An elegant experiment by
Israel et al. [33] showed discrete release of ATP closely
related to membrane depolarization in the electric organ of
Torpedo. In 1973 Ohta et al. [40] studied and compared the
mode of action of several veratrum alkaloid compounds on
axonal membranes (squid giant axon). Some of them
exerted a highly specific action on the resting sodium
permeability, with veratridine having the most potent effect.
Two results led them to conclude that the depolarization
evoked by veratridine was caused by specifically increasing
the membrane permeability to sodium ions: (1) application
of tetrodotoxin (TTX), which specifically blocks sodium
channels, restored the resting membrane potential after
depolarization by veratridine and (2) removal of sodium
ions from both external and internal phases of the axon,
thus eliminating the sodium term from the Goldman-
Hodgkin-Katz constant field equation describing the mem-
brane potential [31], had the result that veratridine had no
depolarizing action after sodium removal. In 1977 White

[63] demonstrated ATP release from depolarizing isolated
synaptosomes prepared from rat brain. The synaptosomes
were suspended in a solution containing firefly extract.
Depolarization was achieved by (1) elevation of extracel-
lular potassium and (2) with application of veratridine. A
light signal was evoked in both circumstances. Prior
exposure of the synaptosomes to TTX, thus blocking the
sodium channels, also blocked the light signal evoked by
veratridine. This suggested that the release of ATP in
response to veratridine in the absence of TTX was due to
membrane depolarization following the opening of sodium
channels. A record of one such experiment by Tom White
is shown in a previous publication ([25] Fig. 16b).

Hypoxia The potency of hypoxia in evoking ATP release
from heart cells and erythrocytes has been demonstrated [4,
24]. In the case of human erythrocyte, ATP release in
response to hypoxia was very effectively blocked by the
nucleoside transport blocker nitrobenzylthioinosine (NBTI).
The nucleoside transporter has now been cloned [26] and is
thought to be a member of a group of unclassified integral
membrane proteins (see review by [8]). The connection
between blockade of a nucleoside transporter and inhibition
of nucleotide release (ATP) in response to hypoxia is
unclear.

Some headway has been made toward unraveling
oxygen-sensing mechanisms in certain oxygen-sensitive
cells. In 1988 Lopez-Barneo et al. [36], studying chemore-
ceptive carotid body cells, demonstrated that lowered
oxygen tension inhibited potassium channels, resulting in
cell depolarization. The presence of oxygen-sensing potas-
sium channels has been reported in many different cell
types, for example, in pulmonary vascular myocytes, which
constrict due to membrane depolarization following hyp-
oxia [44] and in rat pheochromocytoma cells [12]. Does
ATP release associated with membrane depolarization, as
reported above [63], occur in these cells? Perhaps release of
ATP from heart cells and erythrocytes in response to
hypoxia involves the presence of oxygen-sensitive potassi-
um channels, the sequence of events being hypoxia, leading
to inhibition of oxygen-sensitive channels, followed by
membrane depolarization and ATP release. To date, these
potassium channels have not been identified in heart cells
or erythrocytes.

Mechanical distortion A broad spectrum of mechanical
distortion exists, ranging from gross distortion of whole
cells to the impact of suction electrodes in the patch-clamp
techniques for recording of currents passing through single
ion channels in the membrane. There is little doubt that
mechanical distortion of the whole cell membrane can lead
to the release of ATP into the immediate environment.
Sprague et al. [59] showed a close relationship between the

Fig. 4 Elution of ATP and plasma samples from exercising human
forearm through a Sephadex column. Elution fractions were estimated
with firefly extract. a ATP, 10−6 g.ml−1. b Post-occlusion human
sample from a subject during forearm exercise. c Samples from
another subject exercising forearm muscle, fraction at 9 ml was
incubated with apyrase and retested on firefly extract. Fraction at
10 ml, incubation control. Reproduced from Forrester [22], with
permission of the Physiological Society
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extent of erythrocyte deformation and ATP release.
Increases in shear stress applied to endothelial cells have
been shown to liberate “vasoactive” substances from
vascular endothelial cells [10, 45, 47, 54]. ATP release into
the pulmonary vascular bed occurs within seconds after an
increase in flow rate [30]. Grygoczyk and Hanrahan [27]
clearly showed that minimum mechanical disturbance, such
as changing the solution bathing the preparation, enhanced
ATP release within seconds. Schwiebert [55] emphasized
that the degree of suction pressure in patch-clamp techni-
ques may determine the rate of ATP appearance. A further
factor complicating physical distortion of the cell mem-
brane is the possible involvement of the underlying
cytoskeletal system. Frequency of membrane channel
opening is influenced by exposure to cytochalasin B, which
disrupts the cytoskeleton [62]. A comprehensive review by
Morris [39] outlining the widespread occurrence of mecha-
nosensitive ion channels in a variety of tissues is highly
recommended.

Perspectives

Towards the search for an ATP channel in the plasma
membrane Braunstein et al. [7], investigating the mecha-
nism of cell volume regulation, showed that the cystic
fibrosis transmembrane conductance regulator (CFTR)
restored cell volume (following hypotonic challenge) by a
mechanism involving ATP release. This release could be
blocked by DIDS and gadolinium, suggesting that ATP
might be released through a channel separate from the
CFTR. Their working hypothesis was that cell volume is
sensed and transduced by an ABC transporter (ATP
binding cassette) enhancing ATP release through activa-
tion of a separate but associated ATP channel. The earlier
observation [4] that hypoxic-induced ATP release from
erythrocyte was associated with “band 3” membrane
prompted the speculation that band 3 could be equated
with the CFTR protein moiety. However, these proteins
have been cloned and sequenced and are quite dissimilar in
character [34, 52].

ATP passage across the inner mitochondrial membrane
has long been known. Thinnes et al. [60] have identified a
voltage–dependent anion channel (VDAC, “porin”) which
acts as a conduit for newly synthesized ATP in and out of
the mitochondrion. VDAC is present in a multitude of
tissue types, including human skeletal muscle [51] (Table 1).

Exercise and circulating purines An early example of the
appearance of purines in the circulating blood in response
to graduated whole body exercise was obtained by Peter

Parkinson [43]. It is known that a large proportion of
circulating ATP is degraded in passage through the lung
[15], perhaps, along with widespread ecto-ATPase activity,
minimizing the effect of widespread vasodilatation and
offsetting unwanted hypotension and collapse during
exercise! The products of purine degradation are probably
distributed generally, especially to tissues that cannot
synthesize the purine ring moiety (see “Discussion,” [11]).
This phenomenon could appropriately be included in the
concept of “ATP expansion” proposed by Abraham et al.

Fig. 5 Changes in body weight and muscle strength in advanced non-
small-cell lung cancer after ATP administration. a Weight change. b
Elbow flexor performance (top); knee extensor performance (bottom).
Reproduced from Agteresch et al. [3], with permission
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[2]. This begs the question: is one of the beneficial effects
of an exercise regime due to the intermittent “internal
transfusion” of purines, including ATP, from exercising
muscle to sustain “ATP expansion” in the tissues?

Use of ATP in cancer therapy Encouraging results have
been obtained in the field of cancer therapy using
extracellular ATP. A direct effect of ATP on tumor cells
was demonstrated by Rapaport and coworkers [49, 50]. It
was shown in various human cell lines that an increase in
cellular ATP pools resulted in inhibition of DNA replication
in the synthesis phase of the cell cycle, with subsequent
arrest of cell growth. Inhibition of cancer growth in Ehrlich
tumor cells by extracellular ATP has also been found [14,
35]. The dramatic weight loss seen in some forms of
advanced cancer (cachexia) can be slowed with a regime
of intravenous ATP [3]. As shown in Fig. 5 maintenance of
muscle strength was also a benefit.

Protective effect of ATP against ischemia Improved recov-
ery of ischemic liver, kidney, and myocardial tissues after
perfusion of ATP-MgCl has been shown [9, 37, 41, 58].

Protective effect of ATP in radiation therapy Impairment of
wound healing following radiation therapy has been shown
to be ameliorated with use of ATP-MgCl perfusion regimes
[57].

Although little understood, these protective effects may
be associated with general elevation of tissue ATP levels,
restoring the total “energy pool” of the body (see “ATP
expansion” in review by [2]).

Aging and extracellular ATP levels The release of ATP
from vascular endothelial cells in rat caudal artery is
reduced with advancing age. Both spontaneous ATP release
and release induced by methoxamine, an α-adrenoceptor
agonist, were reduced in aged vascular endothelium [28]. It
is interesting that enhanced release of adenyl purines from
these cells was invoked by hypotension induced by exercise
[29]. A clear example of the effect of age on the ATP
content of human erythrocytes is shown in Table 1 [46].

Aging has also been shown to diminish phosphorus
metabolites in left ventricular hypertrophy as measured by
31P magnetic resonance spectroscopy [42].

If aging is associated with lower tissue levels of ATP,
and applied exogenous ATP can replenish these levels
(“ATP expansion” see above), could aging reversal be
brought about by increasing the exogenous ATP levels? At
this juncture it should be noted that extracellular ATP can
act as a powerful trigger of programmed cell death
(apoptosis) in endothelial cells [13, 53]. Perhaps the
phenomenon of apoptosis is designed to prevent the
Malthusian nightmare of universal immortality!

Epilogos

And so what began as a project for the assessment of
quantal release of acetylcholine from motor nerve termi-
nals1 resulted in the finding that ATP was released from
active skeletal muscle, leading to the establishment of a
significant role for ATP in the hyperemia of exercising
skeletal and heart muscle, as well as an appreciation of the
widespread effects of extracellular ATP.

Intrinsic to the concept of serendipity in science is the
element of surprise, which, although conferring excitement
to investigators, only reveals our frailty of prediction in
scientific matters. Inspirata accident magis saepe quam
quae speres—What you do not expect happens more
frequently than what you do expect (Plautus).
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