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Osteoarthritis (OA) is a worldwide and disabling disease, which cause severe

pain and heavy socioeconomic burden. However, pharmacologic or surgical

therapies cannot mitigate OA progression. Mesenchymal stem cells (MSCs)

therapy has emerged as potential approach for OA treatment, while the

immunogenicity and ethical audit of cell therapy are unavoidable. Compared

with stem cell strategy, EVs induce less immunological rejection, and they are

more stable for storage and in vivo application. MSC-EVs-based therapy

possesses great potential in regulating inflammation and promoting cartilage

matrix reconstruction in OA treatment. To enhance the therapeutic effect,

delivery efficiency, tissue specificity and safety, EVs can be engineered via

different modification strategies. Here, the application of MSC-EVs in OA

treatment and the potential underlying mechanism were summarized.

Moreover, EV modification strategies including indirect MSC modification

and direct EV modification were reviewed.
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Introduction

Osteoarthritis (OA) is a worldwide and disabling disease, which cause severe pain and

heavy socioeconomic burden (Glyn-Jones et al., 2015). The pathogenic risk factors for OA

include trauma, aging, obesity, inheritance, etc. (Cisternas et al., 2016). OA is

characterized as synovitis, degrading cartilage, damaged menisci and ligaments, and

pathologically formed osteophytes (Loeser et al., 2012). Aging-related cell senescence,

metabolic disorder and aberrant mechanical load can lead to senescence-associated

secretory phenotype (SASP) release and local inflammation, which in turn aggravate

cell senescence and cartilage matrix degradation (Glyn-Jones et al., 2015; Appleton, 2018;
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Boulestreau et al., 2021). Existing therapies for OA are

symptomatic strategies like nonsteroidal anti-inflammatory

drugs (NSAIDs), and surgical strategies like joint replacement

(Tao et al., 2017). However, pharmacologic or surgical therapies

cannot mitigate OA progression, or enhance damaged cartilage

reconstruction. Recently, mesenchymal stem cells (MSCs)

therapy has emerged as potential approach for OA treatment,

while the immunogenicity and ethical audit of cell therapy are

unavoidable (Zhuang et al., 2022). Effective strategies for

inflammation regulation and cartilage regeneration are

urgently required.

Extracellular vesicles (EVs), serving as cell-cell

communication media, play a vital role in regulating tissue

homeostasis and biological process. EVs derived from MSCs

(MSCs-EVs) inherit the valuable characteristics of donor MSCs

(Liu A. et al., 2021; Liu L. et al., 2021; Zhang X. et al., 2022).

Compared with stem cell strategy, EVs induce less

immunological rejection, and they are more stable for storage

and in vivo application (Brennan et al., 2020). Multiple

components (including miRNAs, lipids, proteins) make EVs

potential candidates in promoting tissue regeneration and

modulating immunity (Yu et al., 2022). MSCs-EVs have been

reported to improve chondrocyte phenotype, attenuate cartilage

degradation in vitro and ameliorate OA progression in vivo

(Zhang S. et al., 2016; Tofiño-Vian et al., 2018; Woo et al.,

2020). To enhance the therapeutic effect, delivery efficiency,

tissue specificity and safety, EVs can be engineered via

different modification strategies.

EV-based therapy possesses great potential in regulating

inflammation and promoting cartilage matrix reconstruction

in OA treatment. In this review, we summarize the

application of MSC-EVs in OA treatment and the potential

underlying mechanism. Moreover, EV modification strategies

including indirect MSC modification and direct EV modification

were also reviewed (Figure 1).

The application of extracellular
vesicles in osteoarthritis treatment

There have been more and more studies indicating that

MSC-EVs are potential in controlling inflammation, inhibiting

cartilage matrix degradation, and promoting cartilage repair for

OA treatment. The applications of EVs derived from different

MSCs in OA treatment and the potential underlying mechanisms

are summarized here.

The therapeutic role of different MSC-
derived extracellular vesicles

The cargos of EVs may vary depending on their donor cells

and consist of multiple bioactive molecules including proteins,

lipids, and miRNAs, thus leading to specific characteristics of

different MSC-EVs (Mianehsaz et al., 2019). MSCs therapy has

been proved to attenuate inflammation, prevent cartilage matrix

degradation, and ameliorate pain in clinical trials (Toh et al.,

2017; Song et al., 2020). The mechanism underlying the MSCs

therapeutic effect might be secretion of bioactive molecules

(Eleuteri and Fierabracci, 2019), additionally, application of

EVs secreted from MSCs possess inherent advantages

compared to direct MSC therapy (lower immunogenicity,

tumorigenicity, etc.) (Ankrum et al., 2014; Fichtel et al., 2022).

Thus, EVs therapy has gainedmore andmore attention in disease

treatment and tissue reconstruction. EVs derived from different

MSCs source for OA treatment have been summarized here

(Table 1).

EVs derived from bone marrow mesenchymal stem cells

(BMSC-EVs) has been widely applied for OA treatment. BMSC-

EVs can play a role in promoting the proliferation and matrix

components secretion of chondrocytes, and improve the

framework of subchondral bone. He et al. (2020) treated OA

rats with BMSC-EVs, and the results indicated that BMSC-EVs

improved chondrocyte phenotype and alleviated pain via

ameliorating function of dorsal root ganglion (DRG).

Moreover, BMSC-EVs were reported to regulate inflammation

through restraining NF-κB pathway (Li et al., 2020), controlling

inflammation related factor Autotaxin-YAP (Wang Y. et al.,

2021), modulating macrophagocyte polarization (Zhang et al.,

2020), and prevent chondrocyte apoptosis (Chen et al., 2020;

Wang X. et al., 2021; Jin et al., 2021).

FIGURE 1
Schematic illustration for the application of MSC-EVs in OA
treatment.
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It has been reported that adipose mesenchymal stem cells

(ADSCs) also showed potential in protecting cartilage (ter

Huurne et al., 2012; Baharlou et al., 2017), and ADSC-EVs

could play a role in regulating inflammation. (Mortati et al.

(2020) utilized ADSC-EVs for OA treatment, and the results

indicated that ADSC-EVs effectively promoted M2 polarization,

inhibited inflammation and promoted cartilage matrix

deposition. Apart from chondrocytes, ADSC-EVs could target

TABLE 1 The therapeutic role of different MSC-EVs in OA treatment.

MSC
source

Cargo Model Delivery
strategies

Therapeutic effect References

BMSCs miR-92a-3p Collagenase induced mice OA model Local intra-
articular
injection

Promoting cartilage development and
maintaining homeostasis via miR-92a-3p/
pathway

Mao et al. (2018)

miR-320c Chondrocytes isolated from OA articular
cartilage samples

Co-culture Enhancing cartilage extracellular matrix
deposition (upregulate SOX9 and downregulate
MMP13)

Sun et al. (2019)

— Collagenase induced mice OA model Local intra-
articular
injection

Inhibiting inflammation, inducing expression of
matrix formation-related genes and preventing
OA progression

Cosenza et al.
(2017)

lncRNA MEG-3 Anterior cruciate ligament (ACL)
transection and medial meniscectomy
(MM) induced rat OA model

Local intra-
articular
injection

Reducing the senescence and apoptosis of
chondrocytes

Jin et al. (2021)

lncRNA LYRM4 IL-1β induced inflammatory chondrocyte Co-culture Reversing the carbolic changes of chondrocytes
induced by IL-1β via lncRNA LYRM4-AS1/
GRPR/miR-6515–5p pathway

Wang et al.
(2021a)

miR-136–5p Post-traumatic mice OA model Local intra-
articular
injection

Promoting collagen II, aggrecan, and
SOX9 expression of chondrocytes via miR-
136–5p/ELF3, and inhibiting post-traumatic OA
progression

Chen et al. (2020)

— Anterior cruciate ligament (ACL)
transection induced rat OA model

Local intra-
articular
injection

Alleviating OA via promoting M2 polarization of
synovial macrophages

Zhang et al.
(2020)

lncRNA NEAT1 Destabilization of the medial meniscus
(DMM) induced mice OA model

Local intra-
articular
injection

Activating the proliferation and autophagy of
chondrocytes via lncRNA NEAT1/miR-122–5p/
Sesn2/Nrf2 pathway

Zhang and Jin,
(2022)

ADSCs — IL-1β induced inflammatory chondrocyte Co-culture Inhibiting inflammation and protecting
chondrocytes via upregulating annexin A1 and
downregulating NF-κB

Tofiño-Vian
et al. (2018)

miR-199a, 125b,
221, 92a)

Destabilisation of the medial meniscus
(DMM) induced mice OA model

Local intra-
articular
injection

Enhancing cartilage matrix deposition and
protecting cartilage from degradation

Woo et al. (2020)

— IL-1β induced inflammatory chondrocyte Co-culture Attenuating inflammatory micro-environment
via inhibiting NF-κB pathway

Cavallo et al.
(2021)

EMSCs — MIA injection induced rat TMJ-OA Local intra-
articular
injection

Activating cartilage repair and restoring matrix
via activating adenosine receptor, and
phosphorylation of AKT, ERK and AMPK

Zhang et al.
(2019)

UMSCs miR-100–5p Chondrocytes isolated from OA articular
cartilage samples

Co-culture Inhibiting ROS production and cell apoptosis
through miR-100–5p/NOX4

Li et al. (2021d)

miR-122–5p, 148a-
3p, 486–5p, let-7a-
5p, 100–5p

Anterior cruciate ligament (ACL)
transection induced rat OA model

Local intra-
articular
injection

Enhancing M2 polarization through PI3K/AKT
pathway, and alleviating OA progression

Li et al. (2022)

miR-1208 Destabilisation of the medial meniscus
(DMM) induced mice OA model

Local intra-
articular
injection

Reducing osteophyte production, and
chondrocyte apoptosis via miR-1208/
METTL3 induced m6A level decrease of
NLRP3 mRNA

Zhou et al. (2022)

AFSCs TGF-β Monoiodoacetate-induced rat OA model Local intra-
articular
injection

Modulating macrophage polarization and
preventing cartilage damage

Zavatti et al.
(2020)

SMSCs miR-129–5p IL-1β induced inflammatory chondrocyte Co-culture Suppressing IL-1β-mediated OA via miR-
129–5p/HMGB1 pathway

Qiu et al. (2021)

miR-26a-5p IL-1β induced inflammatory chondrocyte Co-culture Inhibiting apoptosis and inflammation of
chondrocytes

Lu et al. (2021)
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synovial cells, modulating the synthetase, catabolic enzymes and

inflammatory cytokines secretion of synovial cells, and positively

improve the biological performance of EVs secreted by

endogenous synovial cells and chondrocytes (Cavallo et al.,

2021). Promoting autophagy of chondrocyte via mTOR

pathway could also be one of the mechanisms under the

therapeutic effect of ADSC-EVs in preventing OA process

(Wu et al., 2019).

Human perinatal stem cells, with outstanding self-renewal

capacity, are widely applied in OA treatment (Matas et al.,

2019). More and more studies indicated that EVs derived from

perinatal stem cells, maintaining the excellent traits of donor

cells, are ideal alternatives to MSCs in cartilage repair (Tang

et al., 2021; Zhang Q. et al., 2022; Zhang S. et al., 2022; Li et al.,

2022; Zhou et al., 2022). EVs derived from embryonic MSCs

(EMSCs) were proved to inhibit inflammation, reconstruct

cartilage matrix, and alleviate pain in OA model (Zhang S.

et al., 2016; Zhang et al., 2019). Umbilical cord MSCs (UMSCs)

also secreted EVs that were capable to control inflammation via

promoting M2 polarization and inhibiting m6A of NLRP3 in

macrophages, and enhance cartilage repair (Park et al., 2017; Li

X. et al., 2021; Zhang Q. et al., 2022; Li et al., 2022; Zhou et al.,

2022). It has been reported that EVs derived from amniotic

MSCs (AMSCs) (Silini et al., 2017; Ragni et al., 2021) and

amniotic fluid stem cells (AFSCs) (Maraldi et al., 2013; Zavatti

et al., 2020) are also potential in inflammation modulation and

OA treatment.

In addition, synovial mesenchymal stem cells (SMSCs)

showed stronger potential in chondrocyte differentiation. EVs

derived from SMSCs showed great potential in

immunomodulation and cartilage repair, and were applied

in OA treatment (Zhu et al., 2017; Lu et al., 2021; Qiu et al.,

2021).

The potential mechanism under the
therapeutic effect of MSC-derived
extracellular vesicles

MSCEVs can effectively promote the synthesis of cartilage

extracellular matrix (ECM) (Yeo et al., 2013). The mechanisms

under the therapeutic effect of MSC-EVs attract much attention.

Multiple MSCs can serve as donor cell source for EV production,

and there are masses of various cargos in MSC-EVs, like nucleus

acids and proteins. Considering that EVs derived from different

MSCs possess similar therapeutic effect, MSC-EVs may share

evolutionary conserved key bioactive molecules in their

biological activity (Yeo et al., 2013; Toh et al., 2017). Proteins

inMSC-EVs contain some housekeeping enzymes that play a role

in reconstructing cartilage homeostasis viamodulating cell fate of

chondrocyte, remodeling bioenergetic metabolism, regulating

immune system and promoting cartilage matrix synthesis (Lai

et al., 2015).

Modulating cell fate of chondrocyte
In OA cartilage micro-environment, oxidative stress, ROS

production and inflammatory factors boost intensively, which

usually lead to cell apoptosis, cell death and cell dysfunction

(Haslauer et al., 2013; Heard et al., 2015; Toh et al., 2016). There

have been studies reporting that MSC-EVs could promote cell

proliferation via activating the phosphorylation of ERK1/2 and

AKT, the factors tightly connected with cell survival. In the repair

process of damaged sites, excessive ATP can lead to cell death of

neighbouring healthy cells. The ATP is metabolized via

hydrolysis into AMP (Toh et al., 2017). CD73, the hallmark

of EVs, serve as catalyst to activate the hydrolysis of AMP into

adenosine, the activator of survival related enzymes (Colgan

et al., 2006; Jacobson and Gao, 2006; Toh et al., 2017). The

ability of MSC-EVs in converting ATP into pro-survival kinases

make them potential in promoting cell proliferation for cartilage

repair. Additionally, MSC-EVs are capable to inhibit apoptosis

via mTOR pathway (Li X. et al., 2021; Jin et al., 2021; Lu et al.,

2021; Zhou et al., 2022), and promote autophagy (Zhang and Jin,

2022) to improve cell performance of chondrocytes.

Remodeling bioenergetic metabolism
Mitochondria, the ATP production organelle, plays a key role

in cartilage bioenergy homeostasis. Chondrocytes in OA are

reported to suffer mitochondrial dysfunction and reduced

electron transport chain (ETC) proteins activity. The inhibited

ETC activity and ATP production in chondrocytes lead to

abnormal bioenergetics, which then induce increased cell

apoptosis, more ROS production, enhanced catabolism and

inhibited anabolism of cartilage matrix (Vaamonde-García

et al., 2012; Lee et al., 2020). MSC-EVs are enriched in

enzymes to promote ATP production for decreased ATP

generation compensation in defective chondrocytes, which

make them potential in reconstructing bioenergetic

homeostasis and repair capability of chondrocytes in OA

(Pashoutan Sarvar et al., 2016; Toh et al., 2017).

Regulating immune system
Immune system is activated rapidly following tissue repair

happening, which exerts vital influence on tissue reconstruction.

Immune cell like macrophage, neutrophil and synovium cell

release amount of pro-inflammation factors (IL-1β, IL-6, IL-8,
MMPs, etc.), which then induce the cartilage matrix destruction

and OA progression (Haslauer et al., 2013; Heard et al., 2015;

Mianehsaz et al., 2019). Moreover, the modulation of

macrophage M1-M2 polarization plays a role in maintaining

inflammation balance during tissue repair process (Ding et al.,

2016; Utomo et al., 2016). There have been many studies

indicated that immunomodulation factors in MSC-EVs can

synergistically reduce IL-1β, IL-6, TNF-α expression, promote

M2 polarization, and enhance IL-10, TGF-β1 secretion, to

construct a positive immuno-microenvironment for cartilage

repair.
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Promoting cartilage matrix synthesis
ECM is the important component of cartilage structure and

gradually destroyed during OA progression. The inflammatory

pathological micro-environment tends to induce cartilage matrix

degradation, and cartilage structure loss (Haslauer et al., 2013;

Heard et al., 2015). Activating reparative responses and anabolic

related gene expression of chondrocytes is important in

promoting cartilage matrix re-deposition (Mizuta et al., 2004).

MSC-EVs are proved to promote cartilage matrix deposition via

upregulating SOX9, aggrecan, col2 expression and inhibit matrix

degradation through downregulating MMP13, MMP3,

ADAMTS-5 expression (Cosenza et al., 2017; Sun et al., 2019;

Zhang et al., 2019; Chen et al., 2020; Woo et al., 2020; Wang X.

et al., 2021).

The application of engineered
extracellular vesicles in osteoarthritis
treatment

MSC-EVs exert positive influence on immunomodulation,

cell fate regulation, bioenergy homeostasis remodeling, and

matrix synthesis modulation, which make MSC-EVs

considered to be potential candidates for OA treatment. To

further improve cargo delivery, cell specification and

fusion efficiency, multiple strategies can be utilized to

modify EVs, including direct (modify cargo and

membrane of EVs) and indirect (modify MSCs) methods

(Table 2).

Modifying MSCs for EVs engineering

EVs tend to inherit characteristics of their donor cells, and

donor MSCs can be modified to obtain correspondingly

customized miRNA enriched EVs (Kosaka et al., 2010; Ni

et al., 2020). The advantage of indirect MSC modification lies

in that the stimulation factors on MSCs are in control and can be

quantified.

Manipulating gene transfection
Gene transfection manipulation, mainly via viral vectors, can

not only improve EV yields, but also enhance functional cargos

like miRNA, circRNA and LncRNA in engineered EVs for OA

treatment Kosaka et al. (Kosaka et al., 2010) found that

upregulating the expression of neutral sphingomyelinase 2

TABLE 2 Modification strategies for EV engineering.

Modification methods Approaches Results References

Indirect MSC
modification strategies

Manipulating gene transfection Virus transfection Overexpressing miR-140–5p, and alleviating OA
progress through downregulating VEGFA

Liu et al. (2022)

Plasmid transfection Upregulating circRNA_0001236, and inhibiting cartilage
degradation via miR-3677–3p/Sox9

Mao et al. (2021)

Plasmid transfection Overexpressing lncRNA H19, and promoting
chondrogenesis through miR-29b-3p/FOXO3

Yan et al. (2021)

Co-incubating donor cells with
bioactive molecules

Co-incubation with
curcumin

Reducing the oxidative stress and protecting
chondrocytes

Xu et al. (2022)

Co-incubation with
TGF-β1

Enhancing the M2 polarization via miR-135b/
MAPK6 axis

Wang and Xu,
(2021)

Co-incubation with IL-1β Inhibiting inflammation of OA Kim et al. (2021)

Co-incubation with LPS Inhibiting cartilage matrix degradation Duan et al. (2021)

Engineering cell culture micro-
environment

3D culture Promoting chondrogenesis Yan and Wu,
(2020)

Dynamic mechanical
stimulation

Inhibiting inflammation via NF-κB signal pathway Liao et al. (2021)

Hypoxia micro-
environment culture

Enhancing cartilage repair Rong et al. (2021)

Direct EV modification
strategies

Enriching EV cargos Direct mixture method Loading COS into EVs, and promoting anabolic related
genes expression of chondrocytes

Li et al. (2021a)

Electroporation Loading KGN into EVs, and improving cartilage repair Xu et al. (2021)

Modifying EV membrane E7 peptide modifying EV
surface

Targeting synovial fluid-derived MSCs Xu et al. (2021)

Fusing CAP with EV
surface protein

Improving the chondrocyte target ability Liang et al. (2020)

Modifying EVs with PPD Regulating EV surface charge potential, and promoting
EV penetration into cartilage matrix

Feng et al. (2021)
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(nSMase2) in donor cells promoted the secretion of miRNAs,

which are transferable and functional to target cells.

The functions of miRNAs are important in the biological

performance of EVs in recipient cells. Through Microarray

analysis and literature review, key miRNAs can be found out.

Virus infection can effectively manipulate target gene

expression of donor cells and cargos of EVS. It has been

reported that upregulating expression of miR-26a–5p (Jin

et al., 2020), miR-126–3p (Zhou et al., 2021), miR-155–5p

(Wang Z. et al., 2021), miR-140–5p (Liu et al., 2022) in

MSCs and EVs can effectively inhibit inflammation, matrix

degradation, cell apoptosis and improve matrix secretion of

chondrocytes. The miRNAs can bind to target mRNAs, induce

mRNA degradation, and impact downstream signal pathways

(Zhuang et al., 2022). Apart from miRNAs, circRNAs and

lncRNAs are also potential in regulating cell behavior.

CircRNAs like circRNA_0001236 (Mao et al., 2021),

circHIPK3 (Li et al., 2021b) and lncRNAs like lncRNA H19

(Yan et al., 2021; Yang et al., 2021) can interact with target

miRNAs, regulate downstream genes, inhibit catabolism and

attenuate anabolism of chondrocytes. Thus, overexpression of

functional circRNAs and lncRNAs in EVs can also be potential

candidates for better OA therapeutic strategy.

Co-incubating donor cells with bioactive
molecules

Bioactive molecules can be loaded into EVs via co-

incubation with donor cells. The characteristic of donor cells

obtained following compound co-incubation can be

transmitted to EVs. Co-incubated with anti-inflammatory

factors like curcumin (Li et al., 2021c; Xu et al., 2022), TGF-

β1 (Wang and Xu, 2021) endows EVs with ideal capacity to

modulate macrophage polarization, reduce oxidative stress and

promote chondrocyte anabolism. Interestingly, IL-1β
(Colombini et al., 2021; Kim et al., 2021) and LPS (Duan

et al., 2021) preconditioned donor cell derived EVs are

proved to inhibit inflammation, improve chondrocyte

performance and ameliorate OA progression. The reason

accounting for this lies in that MSCs treated with low

concentration of LPS or IL-1β response adaptively, which is

beneficial for immunomodulation.

Engineering cell culture microenvironment
MSCculture microenvironment changes can exert

influence on the biological effect of EVs. Compared to 2D

culture, 3D culture can enhance the yield and functions of EVs

(Rocha et al., 2019). Yan et al. (Yan and Wu, 2020)

constructed a hollow-fiber bioreactor to build a 3D culture

microenvironment for cartilage restoration, and the results

indicated that EVs isolated from 3D culture cells showed

greater potential in promoting TGF-β1 expression and

Smad2/3 pathway. Moreover, dynamic mechanical

stimulation is also proved to be able to modulate cell

proliferation and differentiation, and improve EV

production and functions (Li et al., 2011; Guo et al., 2021).

(Liao et al. (2021) utilized ultrasound to load BMSCs with

mechanical stimulus, and found that the obtained EVs could

inhibit inflammation via NF-κB pathway, and enhance

cartilage matrix deposition (Figure 2). Apart from 3D

culture and mechanical stimulation, hypoxia

microenvironment regulates MSC performance via HIF-1α
(Malladi et al., 2007). EVs derived from hypoxia pre-

treatment MSCs were proved to promote repair capability

of chondrocytes through miR-216a-5p/JAK2/STAT3 pathway

(Rong et al., 2021).

Modifying EVs directly for EVs engineering

Indirect methods pre-synthesize components to enrich EV

cargos via donor cell modification. Direct engineering strategies,

including enriching EV cargos and modifying EV membranes,

can endow EVs with specific and controllable functions.

Enriching EVs cargos
Multiple strategies can be utilized to transfer cargos into EVs,

including direct co-incubation, physical and chemical methods.

Hydrophobic molecules can pass across EV phospholipid

membrane, which makes them suitable for the direct mixture

method (Fuhrmann et al., 2015). Li et al. (2021) co-incubated

EVs with chitosan oligosaccharides (COS) for 1 h at 37°C tomake

COS go into EVs and construct COS-EVs. The result indicated

that compared to EVs, COS-EVs exhibited better ability in

promoting anabolic related genes expression of chondrocytes.

Strategies like electroporation (Kooijmans et al., 2013; Pomatto

et al., 2018), sonication (Lamichhane et al., 2016), saponin

permeabilization (Pomatto et al., 2019), freeze-thawing (Luan

et al., 2017), and CaCl2 mediated method (Zhang D. et al., 2016)

can be utilized to directly load EVs with bioactive molecules. To

enhance drug encapsulation rate, Xu et al. (Xu et al. (2021)

encapsulated kartogenin (KGN) into EVs via electroporation,

and the encapsulation rate was advanced to 40% compared to 8%

of direct co-incubation. The enhanced KGN delivery efficiency

could promote cartilage repair.

Modifying EVs membrane
To further improve the target and drug delivery efficiency of

EVs, EVs membrane can be modified. Xu et al. (Xu et al. (2021)

modified EV surface with E7 peptide via plasmids transfection of

donor cells to target synovial fluid-derived MSCs for enhanced

OA treatment. Through plasmids transfection, liang et al. (Liang

et al., 2020) fused chondrocyte-affinity peptide (CAP) with EV

surface protein, and improved the chondrocyte target ability of

CAP-EVs. Apart from protein fusion, regulating EV surface

charge potential can promote EV penetration since the block

influence of negative cartilage matrix. Feng et al. (2021) utilized
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ε-polylysine-polyethylene-distearyl phosphatidylethanolamine

(PPD) modifying EVs to construct positively charged MSC-

EVs for better cartilage matrix penetration. Wei et al. (Wei

et al.) endowed EVs with amphiphilic positive potential

through surface modification of cationic 1,2-dioleoyl-3-

trimethylammonium propane (DOTAP), and the results

showed that DOTAP modified EVs could promote the

penetration of EVs into cartilage matrix, extend EV retention

and attenuate OA destruction.

Conclusion and further perspectives

EVs derived from different MSCs, loaded with abundant

cargos including miRNAs, lipids, and proteins, show great

potential in OA treatment. The mechanisms underlying the

MSC-EVs therapeutic effects lie in that MSC-EVs can play

roles in modulating cell fate of chondrocyte, remodeling

bioenergetic metabolism, regulating immune system and

promoting cartilage matrix synthesis. To further enhance

FIGURE 2
Low-intensity pulsed ultrasound (LIPUS) dynamic mechanical stimulus promoted the biological performance of MSC-EVs in OA treatment. (A)
Safranin O, Toluidine Blue and HE staining for knee joints sections; (B) Themechanism underlying the therapeutic effect of LIPUS-treated MSC-EVs;
(C,D) Western blot analysis for anabolism related proteins of chondrocytes, and semi-quantification; (E) RT-qPCR analysis for the expression of
anabolism related genes; (F) Western blot analysis for the expression of NF-κB pathway related proteins. Reproduced from Ref. (Liao et al.,
2021), International Immunopharmacology, ELSEVIER Publication at 2021.
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target and delivery efficiency of EVs, gene transfection

manipulation, co-incubation and cell culture

microenvironment engineering can be utilized to modify

donor cells, and EV cargo enrichment and EV membrane

modification can be applied to directly modify EVs.Wei Y

et al., 2021.

Although the wide application of MSC-EVs, in OA

treatment, there are still challenges requiring further

explorations.

1) Current studies mostly concentrate on the phenotype of

chondrocytes following EV treatment, but the molecular

mechanisms underlying the phenomenon are still unclear.

For precise medical treatment, the discovery of specific target

is crucial. Understanding the molecular mechanism in OA

development and treatment can provide a new approach for

treatment and facilitate precise intervention for patients.

2) Apart from the therapeutic effect of MSC-EVs, EVs also play a

role in the pathological process of OA development. Studying

the pathogenic effect of EVs can help better understand the

molecular mechanism of OA progress, and facilitate the

exploration of new therapeutic strategies. Moreover, EVs can

serve as biomarkers for early OA diagnosis, and more specific

and effective EVs as biomarkers are required to be found.

3) The MSC-EVs treatment can attenuate OA progression, but

the effect of MSC-EVs on reversing chondrocyte function is

short of demonstration. Whether applying EVs in early or late

period of OA can reverse OA pathological changes, but not

only mitigate OA progression, which needs more

explorations.

4) The kinetics and bio-distribution of EVs, and dosage of EVs

used in vivo experiments and further in clinical trials is still

unclear, which needs more researches to clarify.

5) The MSC therapy has undergone clinical trial period, and can

be applied in clinic, but the safety of MSC-EVs for clinical

application requires more studies to verify.

6) Indirect EV engineering strategies are costly, time-consuming

and hard to manipulate; utilizing new gene-editing

technologies, like CRISPR-Cas9 can make the gene

manipulation more efficient and accurate. Direct EV

modification might exert negative influence on

morphology and size of engineered EVs, and efficient and

scatheless EV engineering strategies are required.
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