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ABSTRACT The factors that determine host susceptibility to tuberculosis (TB) are
poorly defined. The microbiota has been identified as a key influence on the nutri-
tional, metabolic, and immunological status of the host, although its role in the
pathogenesis of TB is currently unclear. Here, we investigated the influence of Myco-
bacterium tuberculosis exposure on the microbiome and conversely the impact of
the intestinal microbiome on the outcome of M. tuberculosis exposure in a rhesus
macaque model of tuberculosis. Animals were infected with different strains and
doses of M. tuberculosis in three independent experiments, resulting in a range of
disease severities. The compositions of the microbiotas were then assessed using a
combination of 16S rRNA and metagenomic sequencing in fecal samples collected
pre- and postinfection. Clustering analyses of the microbiota compositions revealed
that alterations in the microbiome after M. tuberculosis infection were of much lower
magnitude than the variability seen between individual monkeys. However, the mi-
crobiomes of macaques that developed severe disease were noticeably distinct from
those of the animals with less severe disease as well as from each other. In particu-
lar, the bacterial families Lachnospiraceae and Clostridiaceae were enriched in mon-
keys that were more susceptible to infection, while numbers of Streptococcaceae
were decreased. These findings in infected nonhuman primates reveal that certain
baseline microbiome communities may strongly associate with the development of
severe tuberculosis following infection and can be more important disease correlates
than alterations to the microbiota following M. tuberculosis infection itself.

IMPORTANCE Why some but not all individuals infected with Mycobacterium tuber-
culosis develop disease is poorly understood. Previous studies have revealed an im-
portant influence of the microbiota on host resistance to infection with a number of
different disease agents. Here, we investigated the possible role of the individual’s
microbiome in impacting the outcome of M. tuberculosis infection in rhesus
monkeys experimentally exposed to this important human pathogen. Although
M. tuberculosis infection itself caused only minor alterations in the composition
of the gut microbiota in these animals, we observed a significant correlation be-
tween an individual monkey’s microbiome and the severity of pulmonary dis-
ease. More importantly, this correlation between microbiota structure and dis-
ease outcome was evident even prior to infection. Taken together, our findings
suggest that the composition of the microbiome may be a useful predictor of tu-
berculosis progression in infected individuals either directly because of the mi-
crobiome’s direct influence on host resistance or indirectly because of its associ-
ation with other host factors that have this influence. This calls for exploration of
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the potential of the microbiota composition as a predictive biomarker through
carefully designed prospective studies.

KEYWORDS microbiome, nonhuman primate, tuberculosis

Tuberculosis (TB) is the leading cause of death due to a single infectious agent (1).
The WHO estimates a third of the world’s population to be latently infected with

Mycobacterium tuberculosis. Nevertheless, only a small percentage of those individuals
exposed to M. tuberculosis develop active disease during their lifetime. Furthermore,
some exposed individuals appear to be able to clear the bacilli before the establish-
ment of an adaptive host immune response (2). The factors that determine this broad
spectrum of M. tuberculosis infection outcome remain poorly defined. One important
candidate is the host intestinal microbiome, which in a wide range of previous studies
has been shown to influence host resistance to a variety of different infectious and
inflammatory diseases both in the gut and at extraintestinal sites (3–5).

Previous studies by our group and others have revealed effects of M. tuberculosis
infection and treatment on the microbiota in both mouse models and humans (6, 7).
Nevertheless, none of this work has directly investigated possible associations of the
microbiome with outcome of TB exposure. Laboratory mice, while important experi-
mental models, do not present with the same TB disease spectrum observed in humans
(8) and present little interindividual variation in their intestinal microbiomes (9). Even in
patients, longitudinal before and after M. tuberculosis infection sampling is not possible
without sampling a large population over a long duration. To circumvent these issues,
we employed a nonhuman primate rhesus macaque model to examine the possible
association of the microbiome with TB disease outcome. While rhesus macaques are
highly susceptible to M. tuberculosis and fail to develop latent infection under most
experimental settings, their variable disease progression resembles that seen in hu-
mans (8, 10, 11). Additionally, their microbiotas display a high level of interindividual
variability comparable to that observed in clinical sampling (12).

To address possible interactions between the rhesus macaque microbiome and TB
disease, we analyzed the composition of the intestinal microbiota in fecal samples from
monkeys in a published retrospective (13) as well as two newly performed infection
studies involving different M. tuberculosis strains and intrabronchial inoculation doses.
Fecal samples were collected at multiple time points pre- and postinfection (Fig. 1A),
and the V4 region of the 16S rRNA gene was sequenced to determine the composition
of the microbiota. In the first experiment analyzed involving six monkeys and pooling
the time points from all animals, we failed to observe a significant difference in the
alpha diversities before and after M. tuberculosis exposure or at different time points
during infection (data not shown). However, we did observe major differences in alpha
diversity between individual animals (Fig. 1B). Similarly, beta-diversity analyses using
the Bray-Curtis dissimilarity index revealed that irrespective of infection status, the
microbiota in the different fecal samples cluster by animal (Fig. 1C), indicating that the
microbiome communities in the animals were different. When clustering analyses were
performed for all of the time points from each individual animal, we observed a
significant separation in the compositions of the pre- and postinfection microbiotas
(Fig. 1D). Similar results were observed in the two additional independent infection
experiments performed with two additional M. tuberculosis strains (see Fig. S1 in the
supplemental material). Together, the above findings suggested that M. tuberculosis
infection alters the intestinal microbiome in rhesus macaques, although in the absence
of uninfected controls, the influence of age-related alterations cannot be ruled out.
Regardless, the changes observed postinfection were of much lower magnitude than
those associated with the interindividual variability of the animals involved.

As reported previously, the rhesus macaques whose results are depicted in Fig. 1C
presented with a wide range of disease severities, as determined by positron emission
tomography-computed tomography (PET/CT) score and generalized weight loss (13).
This enabled us to ask whether the extent of disease is associated with microbiota
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composition. To do so, we calculated the distance of the microbiome of each infected
monkey relative to that of the healthiest macaque (ZK38) in the group and asked if that
distance correlated with weight loss as a shared disease correlate. Indeed, there was a
significant correlation between weight loss and the graphical distance from the time
point-matched microbiome of the monkey with the least severe disease (Fig. 2A).
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FIG 1 The interindividual variability in intestinal microbiota in rhesus macaques is greater than that induced by M. tuberculosis infection. (A) Six monkeys were
exposed to �10 CFU of the Mycobacterium tuberculosis Erdman strain (Mtb) via intrabronchial instillation. Change in body weight was monitored over the
course of infection as a measure of disease severity (13). Fecal samples were collected at the time points indicated (except for monkey ZK02, for which samples
were collected 1 week prior to infection and for 6 weeks postinfection) to longitudinally monitor alterations in the intestinal microbiota. Background
information on the animals is as follows (animal/gender [where F is female and M is male]/age in years): ZK02/F/4, ZK17/F/4.2, ZK26/F/4.2, ZK38/F/4.1,
ZJ01/F/5.4, and ZL43/M/3.1. All animals were bred in Poolesville, MD, USA. Information about prior antibiotic exposure was not available. (B) Alpha-diversity
estimates were calculated for each pre- and postinfection time point for each monkey using the Shannon index. The preinfection (P) and infected (I) time points
were pooled and grouped by animal along the x axis. The box plot error bars indicate minimum and maximum values. Significance was then calculated
between the preinfection time point of the monkey (ZK38) with the least severe disease (as determined from the PET/CT score and weight loss [13]) and the
preinfection time point of the other animals. Significance between the pooled postinfection time points were calculated in a similar manner. Differences that
were statistically significant are indicated (*, P � 0.05; **, P � 0.005; ****, P � 0.0001 [Student’s t test]). (C) Beta-diversity clustering analyses of 16S sequence
data from pre- and postinfection fecal samples of rhesus macaques were performed using the Bray-Curtis dissimilarity method, and the distances identified
were visualized on a principal-component (PC) plot. Each circle represents a single time point, with the circles color coded by animal, as shown in the key. Open
or closed circles indicate uninfected or infected status, respectively. Statistical testing of the Bray-Curtis distance between animals was performed using
permutational multivariate analysis of variance (PERMANOVA) and was found to be significant (P � 0.001). (D) Clustering analysis of all time points for each
animal was carried out independently to identify differences within pre- and postinfection microbiota. As an example, the clustering pattern for animal ZK17
(preinfection versus infected P � 0.05 [PERMANOVA]) is shown. The statistical significance of this comparison for the other animals was a P of �0.05 or lower
(data not shown) except for ZK02, which was not tested due to the availability of only one preinfection time point.
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FIG 2 Microbiota clustering in rhesus macaques associates with disease severity both before and after M. tuberculosis infection. (A) The distance of the
composition of the microbiota from each macaque from the corresponding time points of the animal with the least severe disease (ZK38) was quantified from
the 3D space in Fig. 1C and plotted against percent weight change over the course of infection. The significance of the entire comparison (P � 0.01) was
determined by regression analysis. (B) Clustering analysis of the 16S sequence data from all time points of the three independent experiments was performed
using the Bray-Curtis dissimilarity index. Each circle/triangle represents one time point and is colored by animal, as indicated in the key. Animals that developed

(Continued on next page)
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Moreover, when clustering analysis was performed on the sequenced 16S rRNA data
pooled from all three experiments described above, we observed that the animals that
lost more weight grouped together and that the monkeys that were more resistant (i.e.,
failed to lose weight) formed a separate cluster (Fig. 2B). Of particular note, we
observed this clustering pattern using just the preinfection microbiome points (Fig. S2).
Employing Procrustes analysis, a tool which determines the statistical similarities of
distribution patterns, no significant difference was observed in the clustering patterns
between the pre- and postinfection microbiome time points (Fig. 2C). This finding
suggests that it may be possible to predict the severity of TB disease progression from
the composition of the baseline preinfection microbiome.

To further validate the association of microbiota composition with disease progres-
sion, we constructed a Dirichlet multinomial mixture model (14) of the pooled data
from the three experiments to identify community types. The different samples were
found to partition into two community types, with all time points from each monkey
grouping into the same community (Fig. S3). Specifically, all animals that presented
with mild disease partitioned into one community, and monkeys with severe disease
grouped into the other community. Additionally, multivariate statistical analysis, in the
absence of animal identification as a metadata variable, identified disease severity and
not infection status or time point during the course of infection as the parameter that
most significantly associates with microbiota composition (data not shown).

We next asked which taxa are statistically distinct between the macaques with severe
versus mild disease. A total of 15 or 36 taxa were significantly altered between the two
groups before and after infection, respectively. Among those significantly increased in the
animals with severe disease both pre- and postinfection were taxa belonging to the families
Lachnospiraceae and Clostridiaceae 1, while members of the family Streptococcaceae and
the Bacteroidales RF16 and Clostridiales vadin B660 groups were decreased in the same
group (Fig. 2D). Members of the family Erysipelotrichaceae decreased and Ruminococcaceae
increased in the severe-disease group following infection (Fig. 2D), with a number of taxa
fluctuating in their abundances over the course of infection (Fig. S4).

Finally, to investigate differences in the gene coding capacity of the microbiomes of
animals that progressed to either severe or mild disease, we performed metagenomic
shotgun sequencing on the fecal samples from the preinfection time points. In addition
to corroborating the 16S rRNA gene data by showing an association between disease
severity and the taxonomic structure of the microbiota (Fig. S5A, first panel), metag-
enomic sequencing also revealed a functional (taxonomically naive) difference between
the predicted proteomes of microbiota samples as classified by seven different data-
bases in the InterPro consortium (15) (Fig. S5A). Specifically, as also found in the 16S
rRNA analysis, Roseburia intestinalis (family Lachnospiraceae), Succinivibrio dextrinosol-
vens, certain Ruminococcaceae, and Weissella (family Leuconostocaceae) were enriched
and Streptococcus equinus (family Streptococcaceae) was decreased in some or all
animals with severe disease (Fig. 2E). Although specific enzyme classes were found at
different relative abundances between the two severity groups (Fig. S5B), the enzyme
classes identified did not associate with a particular functional pathway.

In a prior study employing cynomolgus macaques, modest changes in the pulmonary

FIG 2 Legend (Continued)
more-severe TB as determined by weight loss are represented with circles, and monkeys that presented with mild disease are depicted with triangles. The
statistical significance of the Bray-Curtis distance between all animals with severe TB and those with mild TB was determined using PERMANOVA (P � 0.001).
(C) Procrustes analysis was performed between the Bray-Curtis principal-component matrices generated from independent analyses of the preinfection and
infection time points (Fig. S2) in order to test the congruence of the clustering pattern between the compositions of the microbiotas at every stage of the
experiment. Each black line connects the preinfection (open circle/triangle) and infected (closed circle/triangle) time points of each animal, with the length
of the line indicating the extent of change. The statistical significance of the congruence of the two distance matrices was determined using Monte-Carlo
simulation to be a P of �0.001, which in this test indicates the absence of a difference in the clustering pattern. (D) LEfSe comparisons indicate differentially
abundant families between mild and severe TB groups pre- and postinfection. Taxa that are relatively enriched in the monkeys with mild or severe TB before
as well as after M. tuberculosis infection are indicted by an asterisk. Data are filtered for a P of �0.05 and a linear discriminant analysis (LDA) score of �2. (E)
Metagenomic shotgun sequencing was performed on the fecal samples from the preinfection time points. The heatmap depicts unsupervised hierarchical
clustering of the preinfection time points of animals colored by disease severity. Species-level taxa that were present at �500 parts per million (PPM) in at
least 10% of the samples, with an adjusted P of �0.05 (Bonferroni correction), are displayed.
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microbiome were detected following M. tuberculosis infection, which failed to correlate with
the degree of lung inflammation observed (16). The present study focused on the intestinal
microbiome of a different nonhuman primate species (rhesus macaques) and likewise
showed only minor M. tuberculosis infection-induced changes in the microbiota. Instead,
this work revealed a significant association between the composition of the gut micro-
biome and disease outcome as reflected in weight loss, which in this experimental model
has been shown to reflect disease severity as determined by PET/CT score (13). Importantly,
this association was evident at baseline before the animals encountered the infection,
implicating the microbiome as a potential predictor of TB progression. Furthermore, this
correlation evident in an initial experiment involving one M. tuberculosis strain was robustly
maintained by the addition of data generated from two additional experiments employing
less virulent bacterial strains. The functional significance of the observed microbiome/
disease association is currently unclear. One straightforward hypothesis is that specific
microbiota communities directly modify host responses involved in pathogenesis. How-
ever, an equally plausible explanation of the data is that these specific communities are
instead indirect biomarkers of other host differences that themselves directly impact
disease outcome. Since the mechanisms that underlie the heterogenous pathogenesis of
M. tuberculosis infection in rhesus monkeys are poorly understood, it is impossible at
present to distinguish between the above-described alternative hypotheses. Nevertheless,
this report further highlights the need to investigate TB pathophysiology in more-relevant
animal models, as recent mouse model studies of the TB microbiome interaction have
revealed only a minimal role for the microbiome in host resistance to TB (17). Experiments
involving large animal and human cohorts and assessing the innate as well as adaptive host
resistance parameters previously linked to the microbiome are needed both to extend the
association documented here and to identify possible mechanistic links between disease
outcomes and the specific bacterial species associated with them.

Methods. All experimental procedures were in compliance with protocols approved
by the NIAID Animal Care and Use Committee. Fecal samples were collected and
processed as described previously (18). The V4 region of the 16S rRNA gene was
amplified and sequenced as previously described (18, 19). The sequence data were
processed and analyzed using the QIIME2/DADA2 (20, 21) pipeline, and the operational
taxonomic units (OTUs) were classified using the SILVA database (22). For alpha- and
beta-diversity analyses, samples were rarefied to 23,000 reads/sample. The week 7 time
point of monkey ZK26 was not included in the analyses due to insufficient numbers of
reads. Procrustes analysis was performed on the pre- and postinfection beta-diversity
clustering pattern using their principal-component distances to determine the congru-
ence of the two shapes. The Dirichlet multinomial mixture model implemented in
mothur (23) was used to identify community types, while LEfSe (24) was employed to
identify differentially abundant taxa. Whole-genome shotgun sequencing was per-
formed according to the Nextera DNA Flex protocol using the Illumina NextSeq 500
platform and the metagenomic data analyzed as previously described (25). Briefly,
reads were first filtered for quality and removal of host DNA sequences, after which they
were de novo assembled and the contigs were annotated ab initio. Taxonomic classi-
fication was performed by means of a k-mer spectrum analysis using custom databases
built from NCBI genome entries. The predicted proteome from the contigs of each
sample was characterized using InterProScan (15).

Data availability. Sequence data are available in the NCBI Short Read Archive (SRA)
database under BioProject ID PRJNA541010 (https://trace.ncbi.nlm.nih.gov/Traces/study/
?acc�SRP194962).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.01018-19.
FIG S1, PDF file, 0.6 MB.
FIG S2, PDF file, 0.4 MB.
FIG S3, PDF file, 0.4 MB.
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FIG S4, PDF file, 0.4 MB.
FIG S5, PDF file, 0.6 MB.

ACKNOWLEDGMENTS
This work was supported in whole or part by the Intramural Research Programs of

the NIAID and the NCI, NIH.
We are grateful to members of the NIAID Building 33 Animal Facility staff for their

help with fecal sample collection. We also acknowledge the NIH HPC Biowulf cluster,
NIAID Bioinformatics and Computational Biosciences Branch and NIH library for pro-
viding computational resources and Bruno Andrade for helpful discussions.

We declare that we have no conflicts of interest.

REFERENCES
1. WHO. 2018. Global tuberculosis report 2018. WHO, Geneva, Switzerland.
2. Simmons JD, Stein CM, Seshadri C, Campo M, Alter G, Fortune S, Schurr

E, Wallis RS, Churchyard G, Mayanja-Kizza H, Boom WH, Hawn TR. 2018.
Immunological mechanisms of human resistance to persistent Mycobac-
terium tuberculosis infection. Nat Rev Immunol 18:575–589. https://doi
.org/10.1038/s41577-018-0025-3.

3. Kamada N, Seo SU, Chen GY, Nunez G. 2013. Role of the gut microbiota
in immunity and inflammatory disease. Nat Rev Immunol 13:321–335.
https://doi.org/10.1038/nri3430.

4. Honda K, Littman DR. 2012. The microbiome in infectious disease and
inflammation. Annu Rev Immunol 30:759 –795. https://doi.org/10.1146/
annurev-immunol-020711-074937.

5. Rooks MG, Garrett WS. 2016. Gut microbiota, metabolites and host
immunity. Nat Rev Immunol 16:341–352. https://doi.org/10.1038/nri
.2016.42.

6. Namasivayam S, Sher A, Glickman MS, Wipperman MF. 2018. The micro-
biome and tuberculosis: early evidence for cross talk. mBio 9:e01420-18.
https://doi.org/10.1128/mBio.01420-18.

7. Hong BY, Maulen NP, Adami AJ, Granados H, Balcells ME, Cervantes J.
2016. Microbiome changes during tuberculosis and antituberculous
therapy. Clin Microbiol Rev 29:915–926. https://doi.org/10.1128/CMR
.00096-15.

8. O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP.
2013. The immune response in tuberculosis. Annu Rev Immunol 31:
475–527. https://doi.org/10.1146/annurev-immunol-032712-095939.

9. Nguyen TLA, Vieira-Silva S, Liston A, Raes J. 2015. How informative is the
mouse for human gut microbiota research? Dis Model Mech 8:1–16.
https://doi.org/10.1242/dmm.017400.

10. Sharpe S, White A, Gleeson F, McIntyre A, Smyth D, Clark S, Sarfas C,
Laddy D, Rayner E, Hall G, Williams A, Dennis M. 2016. Ultra low dose
aerosol challenge with Mycobacterium tuberculosis leads to divergent
outcomes in rhesus and cynomolgus macaques. Tuberculosis (Edinb)
96:1–12. https://doi.org/10.1016/j.tube.2015.10.004.

11. Maiello P, DiFazio RM, Cadena AM, Rodgers MA, Lin PL, Scanga CA, Flynn
JL. 2018. Rhesus macaques are more susceptible to progressive tuber-
culosis than cynomolgus macaques: a quantitative comparison. Infect
Immun 86:e00505-17. https://doi.org/10.1128/IAI.00505-17.

12. Yasuda K, Oh K, Ren B, Tickle TL, Franzosa EA, Wachtman LM, Miller AD,
Westmoreland SV, Mansfield KG, Vallender EJ, Miller GM, Rowlett JK,
Gevers D, Huttenhower C, Morgan XC. 2015. Biogeography of the intes-
tinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host
Microbe 17:385–391. https://doi.org/10.1016/j.chom.2015.01.015.

13. Kauffman KD, Sallin MA, Sakai S, Kamenyeva O, Kabat J, Weiner D,
Sutphin M, Schimel D, Via L, Barry CE, Wilder-Kofie T, Moore I, Moore R,
Barber DL. 2018. Defective positioning in granulomas but not lung-
homing limits CD4 T-cell interactions with Mycobacterium tuberculosis-
infected macrophages in rhesus macaques. Mucosal Immunol 11:
462– 473. https://doi.org/10.1038/mi.2017.60.

14. Holmes I, Harris K, Quince C. 2012. Dirichlet multinomial mixtures:
generative models for microbial metagenomics. PLoS One 7:e30126.
https://doi.org/10.1371/journal.pone.0030126.

15. Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD,
Chang HY, El-Gebali S, Fraser MI, Gough J, Haft DR, Huang H, Letunic I,

Lopez R, Luciani A, Madeira F, Marchler-Bauer A, Mi H, Natale DA, Necci
M, Nuka G, Orengo C, Pandurangan AP, Paysan-Lafosse T, Pesseat S,
Potter SC, Qureshi MA, Rawlings ND, Redaschi N, Richardson LJ, Rivoire
C, Salazar GA, Sangrador-Vegas A, Sigrist CJA, Sillitoe I, Sutton GG, Thanki
N, Thomas PD, Tosatto SCE, Yong SY, Finn RD. 2019. InterPro in 2019:
improving coverage, classification and access to protein sequence an-
notations. Nucleic Acids Res 47:D351–D360. https://doi.org/10.1093/nar/
gky1100.

16. Cadena AM, Ma Y, Ding T, Bryant M, Maiello P, Geber A, Lin PL, Flynn JL,
Ghedin E. 2018. Profiling the airway in the macaque model of tuberculosis
reveals variable microbial dysbiosis and alteration of community structure.
Microbiome 6:180. https://doi.org/10.1186/s40168-018-0560-y.

17. Dumas A, Corral D, Colom A, Levillain F, Peixoto A, Hudrisier D, Poquet
Y, Neyrolles O. 2018. The host microbiota contributes to early protection
against lung colonization by Mycobacterium tuberculosis. Front Immu-
nol 9:2656. https://doi.org/10.3389/fimmu.2018.02656.

18. Namasivayam S, Maiga M, Yuan W, Thovarai V, Costa DL, Mittereder LR,
Wipperman MF, Glickman MS, Dzutsev A, Trinchieri G, Sher A. 2017.
Longitudinal profiling reveals a persistent intestinal dysbiosis triggered
by conventional anti-tuberculosis therapy. Microbiome 5:71. https://doi
.org/10.1186/s40168-017-0286-2.

19. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turn-
baugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at
a depth of millions of sequences per sample. Proc Natl Acad Sci U S A
108(Suppl 1):4516–4522. https://doi.org/10.1073/pnas.1000080107.

20. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP.
2016. DADA2: high-resolution sample inference from Illumina amplicon
data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869.

21. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD,
Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley
ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD,
Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J,
Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of
high-throughput community sequencing data. Nat Methods 7:335–336.
https://doi.org/10.1038/nmeth.f.303.

22. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J,
Glockner FO. 2013. The SILVA ribosomal RNA gene database project:
improved data processing and web-based tools. Nucleic Acids Res 41:
D590 –D596. https://doi.org/10.1093/nar/gks1219.

23. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB,
Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B,
Thallinger GG, Van Horn DJ, Weber CF. 2009. Introducing mothur: open-
source, platform-independent, community-supported software for de-
scribing and comparing microbial communities. Appl Environ Microbiol
75:7537–7541. https://doi.org/10.1128/AEM.01541-09.

24. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS,
Huttenhower C. 2011. Metagenomic biomarker discovery and explana-
tion. Genome Biol 12:R60. https://doi.org/10.1186/gb-2011-12-6-r60.

25. Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP,
Takeda K, Hickman HD, McCulloch JA, Badger JH, Ajami NJ, Trinchieri G,
Pardo-Manuel de Villena F, Yewdell JW, Rehermann B. 2017. Wild mouse
gut microbiota promotes host fitness and improves disease resistance.
Cell 171:1015–1028. https://doi.org/10.1016/j.cell.2017.09.016.

The Microbiome in M. tuberculosis-Infected Macaques ®

May/June 2019 Volume 10 Issue 3 e01018-19 mbio.asm.org 7

https://doi.org/10.1038/s41577-018-0025-3
https://doi.org/10.1038/s41577-018-0025-3
https://doi.org/10.1038/nri3430
https://doi.org/10.1146/annurev-immunol-020711-074937
https://doi.org/10.1146/annurev-immunol-020711-074937
https://doi.org/10.1038/nri.2016.42
https://doi.org/10.1038/nri.2016.42
https://doi.org/10.1128/mBio.01420-18
https://doi.org/10.1128/CMR.00096-15
https://doi.org/10.1128/CMR.00096-15
https://doi.org/10.1146/annurev-immunol-032712-095939
https://doi.org/10.1242/dmm.017400
https://doi.org/10.1016/j.tube.2015.10.004
https://doi.org/10.1128/IAI.00505-17
https://doi.org/10.1016/j.chom.2015.01.015
https://doi.org/10.1038/mi.2017.60
https://doi.org/10.1371/journal.pone.0030126
https://doi.org/10.1093/nar/gky1100
https://doi.org/10.1093/nar/gky1100
https://doi.org/10.1186/s40168-018-0560-y
https://doi.org/10.3389/fimmu.2018.02656
https://doi.org/10.1186/s40168-017-0286-2
https://doi.org/10.1186/s40168-017-0286-2
https://doi.org/10.1073/pnas.1000080107
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1016/j.cell.2017.09.016
https://mbio.asm.org

	Methods. 
	Data availability. 
	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

